Viral Dynamics and Real-Time RT-PCR Ct Values Correlation with Disease Severity in COVID-19

Ali A Rabaan, Raghavendra Tirupathi, Anupam A Sule, Jehad Aldali, Abbas Al Mutair, Saad Alhumaid, Muzaheed, Nitin Gupta, Thoyaja Koritala, Ramesh Adhikari, Muhammad Bilal, Manish Dhawan, Ruchi Tiwari, Saikat Mitra, Talha Bin Emran, Kuldeep Dhama, Ali A Rabaan, Raghavendra Tirupathi, Anupam A Sule, Jehad Aldali, Abbas Al Mutair, Saad Alhumaid, Muzaheed, Nitin Gupta, Thoyaja Koritala, Ramesh Adhikari, Muhammad Bilal, Manish Dhawan, Ruchi Tiwari, Saikat Mitra, Talha Bin Emran, Kuldeep Dhama

Abstract

Real-time RT-PCR is considered the gold standard confirmatory test for coronavirus disease 2019 (COVID-19). However, many scientists disagree, and it is essential to understand that several factors and variables can cause a false-negative test. In this context, cycle threshold (Ct) values are being utilized to diagnose or predict SARS-CoV-2 infection. This practice has a significant clinical utility as Ct values can be correlated with the viral load. In addition, Ct values have a strong correlation with multiple haematological and biochemical markers. However, it is essential to consider that Ct values might be affected by pre-analytic, analytic, and post-analytical variables such as collection technique, specimen type, sampling time, viral kinetics, transport and storage conditions, nucleic acid extraction, viral RNA load, primer designing, real-time PCR efficiency, and Ct value determination method. Therefore, understanding the interpretation of Ct values and other influential factors could play a crucial role in interpreting viral load and disease severity. In several clinical studies consisting of small or large sample sizes, several discrepancies exist regarding a significant positive correlation between the Ct value and disease severity in COVID-19. In this context, a revised review of the literature has been conducted to fill the knowledge gaps regarding the correlations between Ct values and severity/fatality rates of patients with COVID-19. Various databases such as PubMed, Science Direct, Medline, Scopus, and Google Scholar were searched up to April 2021 by using keywords including "RT-PCR or viral load", "SARS-CoV-2 and RT-PCR", "Ct value and viral load", "Ct value or COVID-19". Research articles were extracted and selected independently by the authors and included in the present review based on their relevance to the study. The current narrative review explores the correlation of Ct values with mortality, disease progression, severity, and infectivity. We also discuss the factors that can affect these values, such as collection technique, type of swab, sampling method, etc.

Keywords: COVID-19; Ct values; RT-PCR; SARS-CoV-2; mortality; severity; viral load.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Schematic illustration of RT-PCR methodology and the detection of a positive sample in clinical practice, using a specific threshold and Ct value. The SARS-CoV-2 viral load is inversely proportional to the Ct values, and a lower Ct value corresponds to a high viral load, indicating a higher level of infectiousness. The figure was designed by Biorender.com program (https://biorender.com/, accessed on 15 April 2021).

References

    1. Wishaupt J.O., van der Ploeg T., Smeets L.C., de Groot R., Versteegh F.G.A., Hartwig N.G. Pitfalls in interpretation of CT-values of RT-PCR in children with acute respiratory tract infections. J. Clin. Virol. 2017;90:1–6. doi: 10.1016/j.jcv.2017.02.010.
    1. Guan W., Ni Z., Hu Y., Liang W., Ou C., He J., Liu L., Shan H., Lei C., Hui D.S.C., et al. Clinical Characteristics of Coronavirus Disease 2019 in China. N. Engl. J. Med. 2020;382:1708–1720. doi: 10.1056/NEJMoa2002032.
    1. Dhama K., Patel S.K., Pathak M., Yatoo M.I., Tiwari R., Malik Y.S., Singh R., Sah R., Rabaan A.A., Bonilla-Aldana D.K., et al. An update on SARS-CoV-2/COVID-19 with particular reference to its clinical pathology, pathogenesis, immunopathology and mitigation strategies. Travel Med. Infect. Dis. 2020;37 doi: 10.1016/j.tmaid.2020.101755.
    1. Machhi J., Herskovitz J., Senan A.M., Dutta D., Nath B., Oleynikov M.D., Blomberg W.R., Meigs D.D., Hasan M., Patel M., et al. The Natural History, Pathobiology, and Clinical Manifestations of SARS-CoV-2 Infections. J. Neuroimmune Pharmacol. 2020;15:359–386. doi: 10.1007/s11481-020-09944-5.
    1. Attia Y.A., El-Saadony M.T., Swelum A.A., Qattan S.Y.A., Al-qurashi A.D., Asiry K.A., Shafi M.E., Elbestawy A.R., Gado A.R., Khafaga A.F., et al. COVID-19: Pathogenesis, advances in treatment and vaccine development and environmental impact—an updated review. Environ. Sci. Pollut. Res. 2021;28:22241–22264. doi: 10.1007/s11356-021-13018-1.
    1. Upadhyay S.K., Dan S., Girdhar M., Rastogi K. Recent Advancement in SARS-CoV-2 Diagnosis, Treatment, and Vaccine Formulation: A New Paradigm of Nanotechnology in Strategic Combating of COVID-19 Pandemic. Curr. Pharmacol. Rep. 2021;7:1–14. doi: 10.1007/s40495-021-00250-z.
    1. De Mesa Herrera L.R. Immunoinformatics approach in designing SARS-CoV-2 vaccine from experimentally determined SARS-CoV T-cell epitopes. J. Appl. Pharm. Sci. 2021;11:29–36. doi: 10.7324/JAPS.2021.110303.
    1. Chen G., Wu D., Guo W., Cao Y., Huang D., Wang H., Wang T., Zhang X., Chen H., Yu H., et al. Clinical and immunological features of severe and moderate coronavirus disease 2019. J. Clin. Investig. 2020;130:2620–2629. doi: 10.1172/JCI137244.
    1. Qin C., Zhou L., Hu Z., Zhang S., Yang S., Tao Y., Xie C., Ma K., Shang K., Wang W., et al. Dysregulation of immune response in patients with coronavirus 2019 (COVID-19) in Wuhan, China. Clin. Infect. Dis. 2020;71:762–768. doi: 10.1093/cid/ciaa248.
    1. Lucas C., Wong P., Klein J., Castro T.B.R., Silva J., Sundaram M., Ellingson M.K., Mao T., Oh J.E., Israelow B., et al. Longitudinal analyses reveal immunological misfiring in severe COVID-19. Nature. 2020;584:463–469. doi: 10.1038/s41586-020-2588-y.
    1. Zhao Y., Qin L., Zhang P., Li K., Liang L., Sun J., Xu B., Dai Y., Li X., Zhang C., et al. Longitudinal COVID-19 profiling associates IL-1RA and IL-10 with disease severity and RANTES with mild disease. JCI Insight. 2020;5 doi: 10.1172/jci.insight.139834.
    1. Sun B., Feng Y., Mo X., Zheng P., Wang Q., Li P., Peng P., Liu X., Chen Z., Huang H., et al. Kinetics of SARS-CoV-2 specific IgM and IgG responses in COVID-19 patients. Emerg. Microbes Infect. 2020;9:940–948. doi: 10.1080/22221751.2020.1762515.
    1. Wang X., Guo X., Xin Q., Pan Y., Hu Y., Li J., Chu Y., Feng Y., Wang Q. Neutralizing antibody responses to severe acute respiratory syndrome coronavirus 2 in coronavirus disease 2019 inpatients and convalescent patients. Clin. Infect. Dis. 2020;71:2688–2694. doi: 10.1093/cid/ciaa721.
    1. de Alwis R., Chen S., Gan E.S., Ooi E.E. Impact of immune enhancement on Covid-19 polyclonal hyperimmune globulin therapy and vaccine development. EBioMedicine. 2020;55:102768. doi: 10.1016/j.ebiom.2020.102768.
    1. Huybens E.M., Bus M.P.A., Massaad R.A., Wijers L., van der Voet J.A., Delfos N.M., van der Feltz M., Heemstra K.A., Koch S.M.P., De Luca M., et al. Correlation of Chest CT and RT-PCR Testing for Coronavirus Disease 2019 (COVID-19) in China: A Report of 1014 Cases. Radiology. 2020;296:E32–E40.
    1. Lee N., Chan P.K.S., Hui D.S.C., Rainer T.H., Wong E., Choi K.W., Lui G.C.Y., Wong B.C.K., Wong R.Y.K., Lam W.Y., et al. Viral loads and duration of viral shedding in adult patients hospitalized with influenza. J. Infect. Dis. 2009;200:492–500. doi: 10.1086/600383.
    1. Fang F.C., Naccache S.N., Greninger A.L. The laboratory diagnosis of coronavirus disease 2019-frequently asked questions. Clin. Infect. Dis. 2020;71:2996–3001. doi: 10.1093/cid/ciaa742.
    1. Hou Y.J., Okuda K., Edwards C.E., Martinez D.R., Asakura T., Dinnon K.H., Kato T., Lee R.E., Yount B.L., Mascenik T.M., et al. SARS-CoV-2 Reverse Genetics Reveals a Variable Infection Gradient in the Respiratory Tract. Cell. 2020;182:429–446.e14. doi: 10.1016/j.cell.2020.05.042.
    1. Pan Y., Zhang D., Yang P., Poon L.L.M., Wang Q. Viral load of SARS-CoV-2 in clinical samples. Lancet Infect. Dis. 2020;20:411–412. doi: 10.1016/S1473-3099(20)30113-4.
    1. Yu J., Kang M., Song Y., Xia J., Guo Q., Song T., He J., Yen H.-L., Peiris M., Wu J. SARS-CoV-2 Viral Load in Upper Respiratory Specimens of Infected Patients. N. Engl. J. Med. 2020;382:1177–1179.
    1. van Kampen J.J.A., van de Vijver D.A.M.C., Fraaij P.L.A., Haagmans B.L., Lamers M.M., Okba N., van den Akker J.P.C., Endeman H., Gommers D.A.M.P.J., Cornelissen J.J., et al. Shedding of infectious virus in hospitalized patients with coronavirus disease-2019 (COVID-19): Duration and key determinants. medRxiv. 2020 doi: 10.1101/2020.06.08.20125310.
    1. Perera R.A.P.M., Tso E., Tsang O.T.Y., Tsang D.N.C., Fung K., Leung Y.W.Y., Chin A.W.H., Chu D.K.W., Cheng S.M.S., Poon L.L.M., et al. SARS-CoV-2 virus culture and subgenomic RNA for respiratory specimens from patients with mild Coronavirus disease. Emerg. Infect. Dis. 2020;26:2701–2704. doi: 10.3201/eid2611.203219.
    1. Page O.T., Metrics A., Articles R. Severe Acute Respiratory Syndrome Coronavirus 2—Speci c Antibody Responses in Coronavirus Disease 2019 Patients. Emerg. Infect. Dis. 2020;26:1478–1488.
    1. Young B.E., Ong S.W.X., Ng L.F.P., Anderson D.E., Chia W.N., Chia P.Y., Ang L.W., Mak T.-M., Kalimuddin S., Chai L.Y.A., et al. Viral Dynamics and Immune Correlates of Coronavirus Disease 2019 (COVID-19) Severity. Clin. Infect. Dis. 2020 doi: 10.1093/cid/ciaa1280.
    1. He X., Lau E.H.Y., Wu P., Deng X., Wang J., Hao X., Lau Y.C., Wong J.Y., Guan Y., Tan X., et al. Temporal dynamics in viral shedding and transmissibility of COVID-19. Nat. Med. 2020;26:672–675. doi: 10.1038/s41591-020-0869-5.
    1. Cheng V.C.C., Hung I.F.N., Tang B.S.F., Chu C.M., Wong M.M.L., Chan K.H., Wu A.K.L., Tse D.M.W., Chan K.S., Zheng B.J., et al. Viral Replication in the Nasopharynx Is Associated with Diarrhea in Patients with Severe Acute Respiratory Syndrome. Clin. Infect. Dis. 2004;38:467–475. doi: 10.1086/382681.
    1. Chu C.M., Poon L.L.M., Cheng V.C.C., Chan K.S., Hung I.F.N., Wong M.M.L., Chan K.H., Leung W.S., Tang B.S.F., Chan V.L., et al. Initial viral load and the outcomes of SARS. Cmaj. 2004;171:1349–1352. doi: 10.1503/cmaj.1040398.
    1. Rao S.N., Manissero D., Steele V.R., Pareja J. A Narrative Systematic Review of the Clinical Utility of Cycle Threshold Values in the Context of COVID-19. Infect. Dis. Ther. 2020;9:573–586. doi: 10.1007/s40121-020-00324-3.
    1. Dramé M., Tabue Teguo M., Proye E., Hequet F., Hentzien M., Kanagaratnam L., Godaert L. Should RT-PCR be considered a gold standard in the diagnosis of COVID-19? J. Med. Virol. 2020;92:2312–2313. doi: 10.1002/jmv.25996.
    1. Hernández-Huerta M.T., Pérez-Campos Mayoral L., Sánchez Navarro L.M., Mayoral-Andrade G., Pérez-Campos Mayoral E., Zenteno E., Pérez-Campos E. Should RT-PCR be considered a gold standard in the diagnosis of COVID-19? J. Med. Virol. 2021;93:137–138. doi: 10.1002/jmv.26228.
    1. Romero-Alvarez D., Garzon-Chavez D., Espinosa F., Ligña E., Teran E., Mora F., Espin E., Albán C., Galarza J.M., Reyes J. Cycle threshold values in the context of multiple rt-pcr testing for sars-cov-2. Risk Manag. Healthc. Policy. 2021;14:1311–1317. doi: 10.2147/RMHP.S282962.
    1. Song K.H., Kim D.M., Lee H., Ham S.Y., Oh S.M., Jeong H., Jung J., Kang C.K., Park J.Y., Kang Y.M., et al. Dynamics of viral load and anti-SARS-CoV-2 antibodies in patients with positive RT-PCR results after recovery from COVID-19. Korean J. Intern. Med. 2021;36:11–14. doi: 10.3904/kjim.2020.325.
    1. Public Health England . Understanding Cycle Threshold (Ct) in SARS-CoV-2 RT-PCR a Guide for Health Protection Teams. PHE Publishers; Birmingham, UK: 2020. pp. 1–12.
    1. Kashyap B., Goyal N., Prakash A. COVID diagnostics: Do we have sufficient armamentarium for the present and the unforeseen? Indian J. Med. Spec. 2020;11:117. doi: 10.4103/INJMS.INJMS_92_20.
    1. Sarkar B., Sinha R., Sarkar K. Initial viral load of a COVID-19-infected case indicated by its cycle threshold value of polymerase chain reaction could be used as a predictor of its transmissibility-An experience from Gujarat, India. Indian J. Community Med. 2020;45:278–282. doi: 10.4103/ijcm.IJCM_593_20.
    1. Tom M.R., Mina M.J. To Interpret the SARS-CoV-2 Test, Consider the Cycle Threshold Value. Clin. Infect. Dis. 2020;71:2252–2254. doi: 10.1093/cid/ciaa619.
    1. Huang J.T., Ran R.X., Lv Z.H., Feng L.N., Ran C.Y., Tong Y.Q., Li D., Su H.W., Zhu C.L., Qiu S.L., et al. Chronological Changes of Viral Shedding in Adult Inpatients with COVID-19 in Wuhan, China. Clin. Infect. Dis. 2020;71:2158–2166. doi: 10.1093/cid/ciaa631.
    1. Feikin D.R., Alraddadi B., Qutub M., Shabouni O., Curns A., Oboho I.K., Tomczyk S.M., Wolff B., Watson J.T., Madani T.A. Association of higher MERS-CoV virus load with severe disease and death, Saudi Arabia, 2014. Emerg. Infect. Dis. 2015;21:2029–2035. doi: 10.3201/eid2111.150764.
    1. Skok K., Stelzl E., Trauner M., Kessler H.H., Lax S.F. Post-mortem viral dynamics and tropism in COVID-19 patients in correlation with organ damage. Virchows Arch. 2021;478:343–353. doi: 10.1007/s00428-020-02903-8.
    1. La Scola B., Le Bideau M., Andreani J., Hoang V.T., Grimaldier C., Colson P., Gautret P., Raoult D. Viral RNA load as determined by cell culture as a management tool for discharge of SARS-CoV-2 patients from infectious disease wards. Eur. J. Clin. Microbiol. Infect. Dis. 2020;39:1059–1061. doi: 10.1007/s10096-020-03913-9.
    1. Abdulrahman A., Mallah S.I., Alawadhi A., Perna S., Janahi E.M., AlQahtani M.M. Association between RT-PCR Ct values and COVID-19 new daily cases: A multicenter cross-sectional study. medRxiv. 2020 doi: 10.1101/2020.12.07.20245233.
    1. Karahasan Yagci A., Sarinoglu R.C., Bilgin H., Yanılmaz Ö., Sayın E., Deniz G., Guncu M.M., Doyuk Z., Barıs C., Kuzan B.N., et al. Relationship of the cycle threshold values of SARS-CoV-2 polymerase chain reaction and total severity score of computerized tomography in patients with COVID 19. Int. J. Infect. Dis. 2020;101:160–166. doi: 10.1016/j.ijid.2020.09.1449.
    1. Arnold P.R., Lord N.P., Smith A.N., Bybee S.M. The Effects of Non-Ideal Temperature Regimes on RNA Quality from Samples Stored in RNAlater-like Buffer: An Attempt to Replicate Field Conditions. J. Anal. Mol. Tech. 2016;2 doi: 10.13188/2474-1914.1000006.
    1. Ghoshal U., Vasanth S., Tejan N. A guide to laboratory diagnosis of Corona Virus Disease-19 for the gastroenterologists. Indian J. Gastroenterol. 2020;39:236–242. doi: 10.1007/s12664-020-01082-3.
    1. Halperin D.T. Prevalence of Asymptomatic SARS-CoV-2 Infection. Ann. Intern. Med. 2021;174:283. doi: 10.7326/L20-1282.
    1. Kishimoto K., Kobayashi R., Hori D., Sano H., Suzuki D., Kobayashi K. Febuxostat as a prophylaxis for tumor lysis syndrome in children with hematological malignancies. Anticancer Res. 2017;37:5845–5849. doi: 10.21873/anticanres.12028.
    1. Esteve C., Catherine F.X., Chavanet P., Blot M., Piroth L. How should a positive PCR test result for COVID-19 in an asymptomatic individual be interpreted and managed? Med. Mal. Infect. 2020;50:633–638. doi: 10.1016/j.medmal.2020.09.014.
    1. Yongchen Z., Shen H., Wang X., Shi X., Li Y., Yan J., Chen Y., Gu B. Different longitudinal patterns of nucleic acid and serology testing results based on disease severity of COVID-19 patients. Emerg. Microbes Infect. 2020;9:833–836. doi: 10.1080/22221751.2020.1756699.
    1. Vandenberg O., Martiny D., Rochas O., van Belkum A., Kozlakidis Z. Considerations for diagnostic COVID-19 tests. Nat. Rev. Microbiol. 2021;19:171–183. doi: 10.1038/s41579-020-00461-z.
    1. Long Q.X., Tang X.J., Shi Q.L., Li Q., Deng H.J., Yuan J., Hu J.-L., Xu W., Zhang Y., Lv F.-J., et al. Clinical and immunological assessment of asymptomatic SARS-CoV-2 infections. Nat. Med. 2020;26:1200–1204. doi: 10.1038/s41591-020-0965-6.
    1. Kimball A., Hatfield K.M., Arons M., James A., Taylor J., Spicer K., Bardossy A.C., Oakley L.P., Tanwar S., Chisty Z., et al. Asymptomatic and Presymptomatic SARS-CoV-2 Infections in Residents of a Long-Term Care Skilled Nursing Facility—King County, Washington, March 2020. Morb. Mortal. Wkly. Rep. 2020;69:377–381. doi: 10.15585/mmwr.mm6913e1.
    1. Asai T. COVID-19: Accurate interpretation of diagnostic tests—A statistical point of view. J. Anesth. 2021;35:328–332. doi: 10.1007/s00540-020-02875-8.
    1. Abo-Youssef A.M., Afify H., Azouz A.A., Abdel-Rahman H.M., Abdel-Naim A.B., Allam S. Febuxostat attenuates testosterone-induced benign prostatic hyperplasia in rats via inhibiting JAK/STAT axis. Life Sci. 2020;260:118414. doi: 10.1016/j.lfs.2020.118414.
    1. Nakatsu Y., Seno Y., Kushiyama A., Sakoda H., Fujishiro M., Katasako A., Mori K., Matsunaga Y., Fukushima T., Kanaoka R., et al. The xanthine oxidase inhibitor febuxostat suppresses development of nonalcoholic steatohepatitis in a rodent model. Am. J. Physiol. Gastrointest. Liver Physiol. 2015;309:G42–G51. doi: 10.1152/ajpgi.00443.2014.
    1. Watson J., Whiting P.F., Brush J.E. Interpreting a covid-19 test result. BMJ. 2020;369 doi: 10.1136/bmj.m1808.
    1. Pan Y., Long L., Zhang D., Yuan T., Cui S., Yang P., Wang Q., Ren S. Potential False-Negative Nucleic Acid Testing Results for Severe Acute Respiratory Syndrome Coronavirus 2 from Thermal Inactivation of Samples with Low Viral Loads. Clin. Chem. 2020;66:794–801. doi: 10.1093/clinchem/hvaa091.
    1. Dahdouh E., Lázaro-Perona F., Romero-Gómez M.P., Mingorance J., García-Rodriguez J. Ct values from SARS-CoV-2 diagnostic PCR assays should not be used as direct estimates of viral load. J. Infect. 2021;82:414–451. doi: 10.1016/j.jinf.2020.10.017.
    1. Lieberman J.A., Pepper G., Naccache S.N., Huang M.L., Jerome K.R., Greninger A.L. Comparison of commercially available and laboratory-developed assays for in vitro detection of sars-cov-2 in clinical laboratories. J. Clin. Microbiol. 2020;58 doi: 10.1128/JCM.00821-20.
    1. Loeffelholz M.J., Alland D., Butler-Wu S.M., Pandey U., Perno C.F., Nava A., Carroll K.C., Mostafa H., Davies E., McEwan A., et al. Multicenter evaluation of the cepheid xpert xpress sars-cov-2 test. J. Clin. Microbiol. 2020;58 doi: 10.1128/JCM.00926-20.
    1. Yang Y., Yang M., Yuan J., Wang F., Wang Z., Li J., Zhang M., Xing L., Wei J., Peng L., et al. Laboratory Diagnosis and Monitoring the Viral Shedding of SARS-CoV-2 Infection. Innovation. 2020;1 doi: 10.1016/j.xinn.2020.100061.
    1. Wenling W., Yanli X., Ruqin G., Roujian L., Han K., Guizhen W., Tan W. Detection of SARS-CoV-2 in Different Types of Clinical Specimens. J. Am. Med. Assoc. 2020;323:1843–1844.
    1. Huang Y., Chen S., Yang Z., Guan W., Liu D., Lin Z., Zhang Y., Xu Z., Liu X., Li Y. SARS-CoV-2 viral load in clinical samples from critically ill patients. Am. J. Respir. Crit. Care Med. 2020;201:1435–1438. doi: 10.1164/rccm.202003-0572LE.
    1. Kim J.Y., Ko J.H., Kim Y., Kim Y.J., Kim J.M., Chung Y.S., Kim H.M., Han M.G., Kim S.Y., Chin B.S. Viral load kinetics of SARS-CoV-2 infection in first two patients in Korea. J. Korean Med. Sci. 2020;35 doi: 10.3346/jkms.2020.35.e86.
    1. Aquino-Jarquin G. The Raw Cycle Threshold Values From Reverse-transcription Polymerase Chain Reaction Detection Are Not Viral Load Quantitation Units. Clin. Infect. Dis. 2021;72:1489–1490. doi: 10.1093/cid/ciaa830.
    1. Chen Y., Chen L., Deng Q., Zhang G., Wu K., Ni L., Yang Y., Liu B., Wang W., Wei C., et al. The presence of SARS-CoV-2 RNA in the feces of COVID-19 patients. J. Med. Virol. 2020;92:833–840. doi: 10.1002/jmv.25825.
    1. To K.K.W., Tsang O.T.Y., Yip C.C.Y., Chan K.H., Wu T.C., Chan J.M.C., Leung W.S., Chik T.S.H., Choi C.Y.C., Kandamby D.H., et al. Consistent detection of 2019 novel coronavirus in saliva. Clin. Infect. Dis. 2020;71:841–843. doi: 10.1093/cid/ciaa149.
    1. Zhang G., Zhang J., Wang B., Zhu X., Wang Q., Qiu S. Analysis of clinical characteristics and laboratory findings of 95 cases of 2019 novel coronavirus pneumonia in Wuhan, China: A retrospective analysis. Respir. Res. 2020;21 doi: 10.1186/s12931-020-01338-8.
    1. To K.K.W., Tsang O.T.Y., Leung W.S., Tam A.R., Wu T.C., Lung D.C., Yip C.C.Y., Cai J.P., Chan J.M.C., Chik T.S.H., et al. Temporal profiles of viral load in posterior oropharyngeal saliva samples and serum antibody responses during infection by SARS-CoV-2: An observational cohort study. Lancet Infect. Dis. 2020;20:565–574. doi: 10.1016/S1473-3099(20)30196-1.
    1. Liu W.D., Chang S.Y., Wang J.T., Tsai M.J., Hung C.C., Hsu C.L., Chang S.C. Prolonged virus shedding even after seroconversion in a patient with COVID-19. J. Infect. 2020;81:318–356. doi: 10.1016/j.jinf.2020.03.063.
    1. Tirupathi R., Renu Ramparas T., Wadhwa G., Areti S., Kaur J., Salim S., Rabaan A.A., Al-Tawfiq J.A. Viral dynamics in the upper respiratory tract (Urt) of sars-cov-2. Infez. Med. 2020;28:486–499.
    1. Choudhuri J., Carter J., Nelson R., Skalina K., Osterbur-Badhey M., Johnson A., Goldstein Y., Paroder M., Szymanski J. SARS-CoV-2 PCR cycle threshold at hospital admission associated with Patient Mortality. medRxiv. 2020 doi: 10.1101/2020.09.16.20195941.
    1. Han M.S., Byun J.H., Cho Y., Rim J.H. RT-PCR for SARS-CoV-2: Quantitative versus qualitative. Lancet Infect. Dis. 2021;21:165. doi: 10.1016/S1473-3099(20)30424-2.
    1. Public Health Ontario . An Overview of Cycle Threshold Values and Their Role in SARS-CoV-2 Real-Time PCR Test Interpretation. Queen’s Printer for Ontario; Toronto, ON, Canada: 2020. pp. 1–14.
    1. Bullard J., Dust K., Funk D., Strong J.E., Alexander D., Garnett L., Boodman C., Bello A., Hedley A., Schiffman Z., et al. Predicting Infectious Severe Acute Respiratory Syndrome Coronavirus 2 From Diagnostic Samples. Clin. Infect. Dis. 2020;71:2663–2666. doi: 10.1093/cid/ciaa638.
    1. Arevalo-Rodriguez I., Buitrago-Garcia D., Simancas-Racines D., Zambrano-Achig P., Del Campo R., Ciapponi A., Sued O., Martinez-García L., Rutjes A.W., Low N., et al. False-negative results of initial RT-PCR assays for COVID-19: A systematic review. PLoS ONE. 2020;15:e0242958. doi: 10.1371/journal.pone.0242958.
    1. Fajnzylber J., Regan J., Coxen K., Corry H., Wong C., Rosenthal A., Worrall D., Giguel F., Piechocka-Trocha A., Atyeo C., et al. SARS-CoV-2 viral load is associated with increased disease severity and mortality. Nat. Commun. 2020;11:5493. doi: 10.1038/s41467-020-19057-5.
    1. Magleby R., Westblade L.F., Trzebucki A., Simon M.S., Rajan M., Park J., Goyal P., Safford M.M., Satlin M.J. Impact of SARS-CoV-2 Viral Load on Risk of Intubation and mortality Among Hospitalized Patients with Coronavirus Disease 2019. Clin. Infect. Dis. 2020 doi: 10.1093/cid/ciaa851.
    1. Cascella M., Rajnik M., Cuomo A., Dulebohn S.C., Di Napoli R. Features, Evaluation, and Treatment of Coronavirus. StatPearls. 2020;9:1–17.
    1. Nag P., Sadani K., Mukherji S., Seo G., Lee G., Kim M.J., Baek S.H., Choi M., Ku K.B., Lee C.S., et al. Diagnosing COVID-19: The Disease and Tools for Detection. ACS Nano. 2020;14:5135–5142.
    1. Peñarrubia L., Ruiz M., Porco R., Rao S.N., Juanola-Falgarona M., Manissero D., López-Fontanals M., Pareja J. Multiple assays in a real-time RT-PCR SARS-CoV-2 panel can mitigate the risk of loss of sensitivity by new genomic variants during the COVID-19 outbreak. Int. J. Infect. Dis. 2020;97:225–229. doi: 10.1016/j.ijid.2020.06.027.
    1. Public Health England . SARS-CoV-2 Variants of Concern and Variants under Investigation in England: Technical Briefing 12. Wellington House; London, UK: 2021. pp. 1–54.
    1. [(accessed on 28 February 2021)]; Available online: .
    1. Nguyen N.N.T., McCarthy C., Lantigua D., Camci-Unal G. Development of Diagnostic Tests for Detection of SARS-CoV-2. Diagnostics. 2020;10:905. doi: 10.3390/diagnostics10110905.
    1. Primer and Probe Design to Detect SARS-CoV-2 Variants. Kilobaser—Your Personal DNA Printer. [(accessed on 26 May 2021)];2021 Available online:
    1. Korber B., Fischer W.M., Gnanakaran S., Yoon H., Theiler J., Abfalterer W., Hengartner N., Giorgi E.E., Bhattacharya T., Foley B., et al. Tracking Changes in SARS-CoV-2 Spike: Evidence that D614G Increases Infectivity of the COVID-19 Virus. Cell. 2020;182:812–827.e19. doi: 10.1016/j.cell.2020.06.043.
    1. Faíco-Filho K.S., Passarelli V.C., Bellei N. Is higher viral load in SARS-CoV-2 associated with death? Am. J. Trop. Med. Hyg. 2020;103:2019–2021. doi: 10.4269/ajtmh.20-0954.
    1. Cereda D., Tirani M., Rovida F., Demicheli V., Ajelli M., Poletti P., Trentini F., Guzzetta G., Marziano V., Barone A., et al. The early phase of the COVID-19 outbreak in Lombardy, Italy. arXiv. 20202003.09320
    1. Miller E.H., Zucker J., Castor D., Annavajhala M.K., Sepulveda J.L., Green D.A., Whittier S., Scherer M., Medrano N., Sobieszczyk M.E., et al. Pretest Symptom Duration and Cycle Threshold Values for Severe Acute Respiratory Syndrome Coronavirus 2 Reverse-Transcription Polymerase Chain Reaction Predict Coronavirus Disease 2019 Mortality. Open Forum Infect. Dis. 2021;8 doi: 10.1093/ofid/ofab003.
    1. Silva Júnior J.V.J., Merchioratto I., de Oliveira P.S.B., Rocha Lopes T.R., Brites P.C., de Oliveira E.M., Weiblen R., Flores E.F. End-point RT-PCR: A potential alternative for diagnosing coronavirus disease 2019 (COVID-19) J. Virol. Methods. 2021;288 doi: 10.1016/j.jviromet.2020.114007.
    1. Liu Y., Yan L.M., Wan L., Xiang T.X., Le A., Liu J.M., Peiris M., Poon L.L.M., Zhang W. Viral dynamics in mild and severe cases of COVID-19. Lancet Infect. Dis. 2020;20:656–657. doi: 10.1016/S1473-3099(20)30232-2.
    1. Xu T., Chen C., Zhu Z., Cui M., Chen C., Dai H., Xue Y. Clinical features and dynamics of viral load in imported and non-imported patients with COVID-19. Int. J. Infect. Dis. 2020;94:68–71. doi: 10.1016/j.ijid.2020.03.022.
    1. Shi F., Wu T., Zhu X., Ge Y., Zeng X., Chi Y., Du X., Zhu L., Zhu F., Zhu B., et al. Association of viral load with serum biomakers among COVID-19 cases. Virology. 2020;546:122–126. doi: 10.1016/j.virol.2020.04.011.
    1. Zhang G., Nie S., Zhang Z., Zhang Z. Longitudinal change of severe acute respiratory syndrome coronavirus 2 antibodies in patients with coronavirus disease 2019. J. Infect. Dis. 2020;222:183–188. doi: 10.1093/infdis/jiaa229.
    1. Padoan A., Cosma C., Sciacovelli L., Faggian D.P.M. Analytical performances of a chemiluminescence immunoassay for SARS-CoV-2 IgM/IgG and antibody kinetics. Clin. Chem. Lab. Med. 2020;58:1081–1088. doi: 10.1515/cclm-2020-0443.
    1. Tay M.Z., Poh C.M., Rénia L., MacAry P.A., Ng L.F.P. The trinity of COVID-19: Immunity, inflammation and intervention. Nat. Rev. Immunol. 2020;20:363–374. doi: 10.1038/s41577-020-0311-8.
    1. Zhou F., Yu T., Du R., Fan G., Liu Y., Liu Z., Xiang J., Wang Y., Song B., Gu X., et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: A retrospective cohort study. Lancet. 2020;395:1054–1062. doi: 10.1016/S0140-6736(20)30566-3.
    1. Carmo A., Pereira-Vaz J., Mota V., Mendes A., Morais C., da Silva A.C., Camilo E., Pinto C.S., Cunha E., Pereira J., et al. Clearance and persistence of SARS-CoV-2 RNA in patients with COVID-19. J. Med. Virol. 2020;92:2227–2231. doi: 10.1002/jmv.26103.
    1. Shah S., Singhal T., Davar N., Thakkar P. No correlation between Ct values and severity of disease or mortality in patients with COVID 19 disease. Indian J. Med. Microbiol. 2021;39:116–117. doi: 10.1016/j.ijmmb.2020.10.021.
    1. Samavedam S., Aluru N., Rajyalakshmi B., Reddy P.R. Prognostic Value of “Cycle Threshold” in Confirmed COVID-19 Patients. Indian J. Crit. Care Med. 2021;25:322–326. doi: 10.5005/jp-journals-10071-23765.
    1. Fang Z., Zhang Y., Hang C., Ai J., Li S., Zhang W. Comparisons of viral shedding time of SARS-CoV-2 of different samples in ICU and non-ICU patients. J. Infect. 2020;81:147–178. doi: 10.1016/j.jinf.2020.03.013.
    1. Kostakoglu U., Kant A., Atalar S., Ertunc B., Erensoy S., Dalmanoglu E., Yilmaz I., Sevimli B., Erturk A., Yilmaz G. Diagnostic value of chest ct and initial real-time rt-pcr in covid-19 infection. Pakistan J. Med. Sci. 2021;37:234–238. doi: 10.12669/pjms.37.1.2956.
    1. Böhmer M.M., Buchholz U., Corman V.M., Hoch M., Katz K., Marosevic D.V., Böhm S., Woudenberg T., Ackermann N., Konrad R., et al. Investigation of a COVID-19 outbreak in Germany resulting from a single travel-associated primary case: A case series. Lancet Infect. Dis. 2020;20:920–928. doi: 10.1016/S1473-3099(20)30314-5.
    1. Xiao A.T., Tong Y.X., Zhang S. Profile of RT-PCR for SARS-CoV-2: A Preliminary Study from 56 COVID-19 Patients. Clin. Infect. Dis. 2020;71:2249–2251. doi: 10.1093/cid/ciaa460.
    1. Saponaro F., Rutigliano G., Sestito S., Bandini L., Storti B., Bizzarri R., Zucchi R. ACE2 in the Era of SARS-CoV-2: Controversies and Novel Perspectives. Front. Mol. Biosci. 2020;7 doi: 10.3389/fmolb.2020.588618.
    1. Yao Y., Wang H., Liu Z. Expression of ACE2 in airways: Implication for COVID-19 risk and disease management in patients with chronic inflammatory respiratory diseases. Clin. Exp. Allergy. 2020;50:1313–1324. doi: 10.1111/cea.13746.
    1. Trunfio M., Venuti F., Alladio F., Longo B.M., Burdino E., Cerutti F., Ghisetti V., Bertucci R., Picco C., Bonora S., et al. Diagnostic SARS-CoV-2 Cycle Threshold Value Predicts Disease Severity, Survival, and Six-Month Sequelae in COVID-19 Symptomatic Patients. Viruses. 2021;13:281. doi: 10.3390/v13020281.
    1. Liu Y., Liao W., Wan L., Xiang T., Zhang W. Correlation Between Relative Nasopharyngeal Virus RNA Load and Lymphocyte Count Disease Severity in Patients with COVID-19. Viral Immunol. 2020 doi: 10.1089/vim.2020.0062.
    1. Liu Y., Yang Y., Zhang C., Huang F., Wang F., Yuan J., Wang Z., Li J., Li J., Feng C., et al. Clinical and biochemical indexes from 2019-nCoV infected patients linked to viral loads and lung injury. Sci. China Life Sci. 2020;50:258–269. doi: 10.1007/s11427-020-1643-8.
    1. Yuan C., Zhu H., Yang Y., Cai X., Xiang F., Wu H., Yao C., Xiang Y., Xiao H. Viral loads in throat and anal swabs in children infected with SARS-CoV-2. Emerg. Microbes Infect. 2020;9:1233–1237. doi: 10.1080/22221751.2020.1771219.
    1. Singanayagam A., Patel M., Charlett A., Bernal J.L., Saliba V., Ellis J., Ladhani S., Zambon M., Gopal R. Duration of infectiousness and correlation with RT-PCR cycle threshold values in cases of COVID-19, England, January to May 2020. Eurosurveillance. 2020;25 doi: 10.2807/1560-7917.ES.2020.25.32.2001483.
    1. Salvatore P.P., Dawson P., Wadhwa A., Rabold E.M., Buono S., Dietrich E.A., Reses H.E., Vuong J., Pawloski L., Dasu T., et al. Epidemiological Correlates of PCR Cycle Threshold Values in the Detection of SARS-CoV-2. Clin. Infect. Dis. 2020;72:761–776. doi: 10.1093/cid/ciaa1469.
    1. Wyllie A.L., Fournier J., Casanovas-Massana A., Campbell M., Tokuyama M., Vijayakumar P., Warren J.L., Geng B., Muenker M.C., Moore A.J., et al. Saliva or Nasopharyngeal Swab Specimens for Detection of SARS-CoV-2. N. Engl. J. Med. 2020;383:1283–1286. doi: 10.1056/NEJMc2016359.
    1. Yu X., Sun S., Shi Y., Wang H., Zhao R., Sheng J. SARS-CoV-2 viral load in sputum correlates with risk of COVID-19 progression. Crit. Care. 2020;24 doi: 10.1186/s13054-020-02893-8.
    1. Huang J., Mao T., Li S., Wu L., Xu X., Li H., Xu C., Su F., Dai J., Shi J., et al. Long period dynamics of viral load and antibodies for SARS-CoV-2 infection: An observational cohort study. medRxiv. 2020 doi: 10.1101/2020.04.22.20071258.
    1. Kujawski S.A., Wong K.K., Collins J.P., Epstein L., Killerby M.E., Midgley C.M., Abedi G.R., Ahmed N.S., Almendares O., Alvarez F.N., et al. Clinical and virologic characteristics of the first 12 patients with coronavirus disease 2019 (COVID-19) in the United States. Nat. Med. 2020;26:861–868. doi: 10.1038/s41591-020-0877-5.
    1. Han M.S., Seong M.W., Kim N., Shin S., Cho S.I., Park H., Kim T.S., Park S.S., Choi E.H. Viral RNA load in mildly symptomatic and asymptomatic children with COVID-19, Seoul, South Korea. Emerg. Infect. Dis. 2020;26:2497–2499. doi: 10.3201/eid2610.202449.
    1. Kim E.S., Chin B.S., Kang C.K., Kim N.J., Kang Y.M., Choi J.P., Oh D.H., Kim J.H., Koh B., Kim S.E., et al. Clinical course and outcomes of patients with severe acute respiratory syndrome coronavirus 2 infection: A preliminary report of the first 28 patients from the korean cohort study on COVID-19. J. Korean Med. Sci. 2020;35 doi: 10.3346/JKMS.2020.35.E142.
    1. Young B.E., Ong S.W.X., Kalimuddin S., Low J.G., Tan S.Y., Loh J., Ng O.T., Marimuthu K., Ang L.W., Mak T.M., et al. Epidemiologic Features and Clinical Course of Patients Infected with SARS-CoV-2 in Singapore. J. Am. Med. Assoc. 2020;323:1488–1494. doi: 10.1001/jama.2020.3204.
    1. Arons M.M., Hatfield K.M., Reddy S.C., Kimball A., James A., Jacobs J.R., Taylor J., Spicer K., Bardossy A.C., Oakley L.P., et al. Presymptomatic SARS-CoV-2 Infections and Transmission in a Skilled Nursing Facility. N. Engl. J. Med. 2020;382:2081–2090. doi: 10.1056/NEJMoa2008457.
    1. Cevik M., Tate M., Lloyd O., Maraolo A.E., Schafers J., Ho A. SARS-CoV-2, SARS-CoV, and MERS-CoV viral load dynamics, duration of viral shedding, and infectiousness: A systematic review and meta-analysis. Lancet Microbe. 2021;2:e13–e22. doi: 10.1016/S2666-5247(20)30172-5.
    1. Mowrer C.T., Creager H., Cawcutt K., Birge J., Lyden E., Van Schooneveld T.C., Rupp M.E., Hewlett A. Evaluation of cycle threshold values at deisolation. Infect. Control Hosp. Epidemiol. 2021;2021:1–3. doi: 10.1017/ice.2021.132.
    1. Baddal B., Sanlidag T., Uzun B., Uzun Ozsahin D. The use of double border-screening strategy in the surveillance and prevention of COVID-19. J. Infect. Public Health. 2021;14:757–758. doi: 10.1016/j.jiph.2021.03.012.
    1. Imborek K.L., Krasowski M.D., Natvig P., Merrill A.E., Diekema D.J., Ford B.A. Experience With Pretravel Testing for SARS-CoV-2 at an Academic Medical Center. Acad. Pathol. 2021;8 doi: 10.1177/23742895211010247.
    1. Ramanathan M., Ferguson I.D., Miao W., Khavari P.A. SARS-CoV-2 B.1.1.7 and B.1.351 Spike variants bind human ACE2 with increased affinity. Lancet Infect. Dis. 2021 doi: 10.1016/S1473-3099(21)00262-0.
    1. Otsuka Y., Hagiya H., Nakano Y., Omura D., Hasegawa K., Yamada H., Iio K., Honda T., Otsuka F. A patient with human coronavirus NL63 falsely diagnosed with COVID-19; Lesson learned for the importance of definitive diagnosis. J. Infect. Chemother. 2021 doi: 10.1016/j.jiac.2021.05.001.
    1. Peñarrubia L., Ruiz M., Porco R., Rao S.N., Vella S.A., Juanola-Falgarona M., Manissero D., López-Fontanals M., Pareja J. In response to: Multiple assays in a real-time RT-PCR severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) panel can mitigate the risk of loss of sensitivity by new genomic variants during the COVID-19 outbreak. Int. J. Infect. Dis. 2021;105:241–242. doi: 10.1016/j.ijid.2021.01.049.
    1. Shen P. Impact of SARS-CoV-2 Viral Load on Risk of Intubation and mortality Among Hospitalized Patients with Coronavirus Disease 2019. Eur. Neuropsychopharmacol. 2015;26:1–15.
    1. Rabaan A.A., Al-Ahmed S.H., Muhammad J., Khan A., Sule A.A., Tirupathi R., Mutair A.A., Alhumaid S., Al-Omari A., Dhawan M., et al. Role of Inflammatory Cytokines in COVID-19 Patients: A Review on Molecular Mechanisms, Immune Functions, Immunopathology and Immunomodulatory Drugs to Counter Cytokine Storm. Vaccines. 2021;9:436. doi: 10.3390/vaccines9050436.
    1. Zacharioudakis I.M., Zervou F.N., Prasad P.J., Shao Y., Basu A., Inglima K., Weisenberg S.A., Aguero-Rosenfeld M.E. Association of SARS-CoV-2 genomic load trends with clinical status in COVID-19: A retrospective analysis from an academic hospital center in New York City. PLoS ONE. 2020;15:e0242399. doi: 10.1371/journal.pone.0242399.

Source: PubMed

3
Abonnieren