Anti-Telomerase CD4+ Th1 Immunity and Monocytic-Myeloid-Derived-Suppressor Cells Are Associated with Long-Term Efficacy Achieved by Docetaxel, Cisplatin, and 5-Fluorouracil (DCF) in Advanced Anal Squamous Cell Carcinoma: Translational Study of Epitopes-HPV01 and 02 Trials

Laurie Spehner, Stefano Kim, Angélique Vienot, Eric François, Bruno Buecher, Olivier Adotevi, Dewi Vernerey, Syrine Abdeljaoued, Aurélia Meurisse, Christophe Borg, Laurie Spehner, Stefano Kim, Angélique Vienot, Eric François, Bruno Buecher, Olivier Adotevi, Dewi Vernerey, Syrine Abdeljaoued, Aurélia Meurisse, Christophe Borg

Abstract

Docetaxel, cisplatin and 5-fluorouracil (DCF) chemotherapy regimen is highly effective in advanced anal squamous cell carcinoma (SCCA), as demonstrated by the Epitopes-HPV02 study results. Here, we analyzed the impact of DCF regimen and the prognostic value of adaptive immune responses and immunosuppressive cells in SCCA patients included in two prospective studies (Epitopes-HPV01 and HPV02). The presence of T-cell responses against Human papillomavirus (HPV)16-E6/E7 and anti-telomerase (hTERT)-antigens was measured by IFNᵧ-ELISpot. Here, we showed that HPV-adaptive immune responses are increased in SCCA patients. SCCA patients also displayed enhanced circulating TH1 T-cells restricted by hTERT. Exposition to DCF increased hTERT immunity but not HPV or common viruses immune responses. Notably, the correlation of hTERT immune responses with SCCA patients' clinical outcomes highlights that hTERT is a relevant antigen in this HPV-related disease. The influence of peripheral immunosuppressive cells was investigated by flow cytometry. While both regulatory T-cells and monocytic-myeloid-derived suppressive cells (M-MDSC) accumulated in the peripheral blood of SCCA patients, only high levels of M-MDSC were negatively correlated with hTERT adaptive immune responses and predicted poor prognosis. Altogether, our results reveal that hTERT is a relevant antigen in HPV-driven SCCA disease and that M-MDSC levels influence TH1-adaptive immune responses and patients' survival.

Keywords: Biomarkers; DCF chemotherapy; M-MDSC; advanced anal squamous cell carcinoma; hTERT antigens.

Conflict of interest statement

C.B. declared these conflicts of interest: Advisory board: MSD, Pierre Fabre, Roche, Research grant: Roche; D.V. declared these conflicts of interest: Advisory board: Haliodx, Cellprothera, Incyte, Merck Serono. All remaining authors have declared no conflicts of interest.

Figures

Figure 1
Figure 1
Frequencies and intensities of antigen-specific T-cell responses in SCCA patients. PBMC from 17 healthy donors and SCCA patients before (n = 82) and after (n = 69) DCF chemotherapy were analyzed for antigen-specific T-cell responses by IFNᵧ ELISpot assay. A-C Intensity of positive HPV16-E6 (A), HPV16-E7 (B) and hTERT (C) specific T-cell responses in healthy donors and SCCA patients before and after DCF treatment. (D) Intensity of positive antiviral T-cell responses. Healthy donors population is represented by light gray points and SCCA patients by black points. Mann Whitney U test, where ** p < 0.01, *** p < 0.001. Median with interquartile range was indicated on graphs. Only the positive intensities of specific immune responses were indicated. (E,F) Correlation between HPV16-E6- and hTERT-specific immune responses before (E) and after DCF chemotherapy (F) in SCCA patients.
Figure 2
Figure 2
Presence of antigen-specific T-cell responses are associated with the clinical outcomes of SCCA patients. (A) The absolute lymphocyte count was analyzed in peripheral blood of SCCA patients before (n = 56) and after (n = 51) DCF chemotherapy. Kaplan-Meier curve in SCCA patients before and after DCF chemotherapy according to low absolute lymphocyte count. PBMC from SCCA patients before (n = 82) and after (n = 69) DCF chemotherapy were analyzed for antigen-specific T-cell responses by IFNᵧ ELISpot assay. (B,C) Kaplan-Meier OS curve in SCCA patients according to HPV (E6 and/or E7) (B) or hTERT (C) specific T-cell responses before and after DCF chemotherapy. Log-rank test, where p < 0.05. (D) Kaplan-Meier OS curve in SCCA patients according to antiviral-specific T-cell responses before and after DCF chemotherapy.
Figure 3
Figure 3
M-MDSC levels and not Treg levels are associated with the clinical outcomes in SCCA patients. PBMC from 19 healthy donors and SCCA patients before (n = 82) and after (n = 69) DCF chemotherapy were analyzed for Treg and M-MDSC population by flow cytometry. (A) Frequencies (%) of M-MDSC. (B) Frequencies (%) of CD25+Foxp3+ expressed on CD4+ T-cells. (C) Kaplan-Meier survival curve in SCCA patients before and after DCF chemotherapy according to Treg levels. (D) Kaplan-Meier survival curve in SCCA patients before and after DCF chemotherapy according to M-MDSC levels. Log-rank test, where ** p < 0.01. (E) Kaplan-Meier curve in distribution of M-MDSC levels in SCCA patients treated by DCF chemotherapy.
Figure 4
Figure 4
M-MDSC and not Treg levels are correlated with antigen-specific immune responses. (A,B) Intensities of positive HPV16-E6-, HPV16-E7-, hTERT- and antiviral-specific T-cell responses in SCCA patients before and after DCF chemotherapy according to Treg levels (A) or M-MDSC levels (B). Mann Whitney U test, where ** p < 0.01. Red plots represent patients without progression.

References

    1. Siegel R.L., Miller K.D., Jemal A. Cancer statistics, 2019. CA Cancer J. Clin. 2019;69:7–34. doi: 10.3322/caac.21551.
    1. Islami F., Ferlay J., Lortet-Tieulent J., Bray F., Jemal A. International trends in anal cancer incidence rates. Int. J. Epidemiol. 2016;46:dyw276. doi: 10.1093/ije/dyw276.
    1. Lin C., Franceschi S., Clifford G.M. Human papillomavirus types from infection to cancer in the anus, according to sex and HIV status: A systematic review and meta-analysis. Lancet Infect. Dis. 2018;18:198–206. doi: 10.1016/S1473-3099(17)30653-9.
    1. Kim S.C., François E., André T., Samalin E., Jary M., El Hajbi F., Baba-Hamed N., Pernot S., Kaminsky M.-C., Bouché O., et al. Docetaxel, cisplatin, and fluorouracil chemotherapy for metastatic or unresectable locally recurrent anal squamous cell carcinoma (Epitopes-HPV02): A multicentre, single-arm, phase 2 study. Lancet Oncol. 2018;19:1094–1106. doi: 10.1016/S1470-2045(18)30321-8.
    1. Kim S., Meurisse A., Stouvenot M., Jary M., Hon T.N.T., Francois E., Buecher B., Andre T., Samalin E., Boulbair F., et al. Updated data of epitopes-HPV02 trial and external validation of efficacy of DCF in prospective epitopes-HPV01 study in advanced anal squamous cell carcinoma. Pooled analysis of 115 patients. Ann. Oncol. 2019;30:v203. doi: 10.1093/annonc/mdz246.012.
    1. Bezu L., Da Silva L.C.G., Dewitte H., Breckpot K., Fučíková J., Spisek R., Galluzzi L., Kepp O., Kroemer G. Combinatorial strategies for the induction of immunogenic cell death. Front. Immunol. 2015;6:187. doi: 10.3389/fimmu.2015.00187.
    1. Galluzzi L., Buqué A., Kepp O., Zitvogel L., Kroemer G. Immunological effects of conventional chemotherapy and targeted anticancer agents. Cancer Cell. 2015;28:690–714. doi: 10.1016/j.ccell.2015.10.012.
    1. Liu X., Yuan H., Fu B., Disbrow G.L., Apolinario T., Tomaić V., Kelley M.L., Baker C.C., Huibregtse J., Schlegel R. The E6AP ubiquitin ligase is required for transactivation of the hTERT promoter by the human papillomavirus E6 oncoprotein. J. Biol. Chem. 2005;280:10807–10816. doi: 10.1074/jbc.M410343200.
    1. Godet Y., Fabre E., Dosset M., Lamuraglia M., Levionnois E., Ravel P., Benhamouda N., Cazes A., Le Pimpec-Barthes F., Gaugler B., et al. Analysis of spontaneous tumor-specific CD4 T-cell immunity in lung cancer using promiscuous HLA-DR telomerase-derived epitopes: Potential synergistic effect with chemotherapy response. Clin. Cancer Res. 2012;18:2943–2953. doi: 10.1158/1078-0432.CCR-11-3185.
    1. Mandruzzato S., Brandau S., Britten C.M., Bronte V., Damuzzo V., Gouttefangeas C., Maurer D., Ottensmeier C.H., Van Der Burg S.H., Welters M.J.P., et al. Toward harmonized phenotyping of human myeloid-derived suppressor cells by flow cytometry: Results from an interim study. Cancer Immunol. Immunother. 2016;65:161–169. doi: 10.1007/s00262-015-1782-5.
    1. Visser J.T.J., Nijman H.W., Hoogenboom B., Jager P., Van Baarle D., Schuuring E., Abdulahad W., Miedema F., Van Der Zee A.G., Daemen T. Frequencies and role of regulatory T cells in patients with (pre)malignant cervical neoplasia. Clin. Exp. Immunol. 2007;150:199–209. doi: 10.1111/j.1365-2249.2007.03468.x.
    1. Morris V.K., Salem M.E., Nimeiri H., Iqbal S., Singh P., Ciombor K., Polite B., Deming D., Chan E., Wade J.L., et al. Nivolumab for previously treated unresectable metastatic anal cancer (NCI9673): A multicentre, single-arm, phase 2 study. Lancet Oncol. 2017;18:446–453. doi: 10.1016/S1470-2045(17)30104-3.
    1. Ott P.A., Piha-Paul S., Munster P., Pishvaian M.J., Van Brummelen E.M.J., Cohen R.B., Gomez-Roca C., Ejadi S., Stein M., Chan E., et al. Safety and antitumor activity of the anti-PD-1 antibody pembrolizumab in patients with recurrent carcinoma of the anal canal. Ann. Oncol. 2017;28:1036–1041. doi: 10.1093/annonc/mdx029.
    1. Galaine J., Turco C., Vauchy C., Royer B., Mercier-Letondal P., Queiroz L., Loyon R., Mouget V., Boidot R., Laheurte C., et al. CD4 T cells target colorectal cancer antigens upregulated by oxaliplatin. Int. J. Cancer. 2019;145:3112–3125. doi: 10.1002/ijc.32620.
    1. Laheurte C., Dosset M., Vernerey D., Boullerot L., Gaugler B., Gravelin E., Kaulek V., Jacquin M., Cuche L., Eberst G., et al. Distinct prognostic value of circulating anti-telomerase CD4+ Th1 immunity and exhausted PD-1+/TIM-3+ T cells in lung cancer. Br. J. Cancer. 2019;121:405–416. doi: 10.1038/s41416-019-0531-5.
    1. Zelba H., Weide B., Martens A., Derhovanessian E., Bailur J.K., Kyzirakos C., Pflugfelder A., Eigentler T., Di Giacomo A.M., Maio M., et al. Circulating CD4+ T cells that produce IL4 or IL17 when stimulated by melan-A but not by NY-ESO-1 have negative impacts on survival of patients with stage IV melanoma. Clin. Cancer Res. 2014;20:4390–4399. doi: 10.1158/1078-0432.CCR-14-1015.
    1. Weide B., Zelba H., Derhovanessian E., Pflugfelder A., Eigentler T., Di Giacomo A.M., Maio M., Aarntzen E.H.J.G., De Vries I.J.M., Sucker A., et al. Functional T cells targeting NY-ESO-1 or Melan-A are predictive for survival of patients with distant melanoma metastasis. J. Clin. Oncol. 2012;30:1835–1841. doi: 10.1200/JCO.2011.40.2271.
    1. Masterson L.M., Lechner M., Loewenbein S., Mohammed H., Davies-Husband C., Fenton T.R., Sudhoff H., Jani P., Goon P., Sterling J. CD8 + T cell response to human papillomavirus 16 E7 is able to predict survival outcome in oropharyngeal cancer. Eur. J. Cancer. 2016;67:141–151. doi: 10.1016/j.ejca.2016.08.012.
    1. Zhang Y., Dakic A., Chen R., Dai Y., Schlegel R., Liu X. Direct HPV E6/Myc interactions induce histone modifications, Pol II phosphorylation, and hTERT promoter activation. Oncotarget. 2017;8:96323–96339. doi: 10.18632/oncotarget.22036.
    1. Stevanovic S., Pasetto A., Helman S.R., Gartner J.J., Prickett T.D., Howie B., Robins H., Robbins P.F., Klebanoff C.A., Rosenberg S.A., et al. Landscape of immunogenic tumor antigens in successful immunotherapy of virally induced epithelial cancer. Science. 2017;356:200–205. doi: 10.1126/science.aak9510.
    1. Lyford-Pike S., Peng S., Young G.D., Taube J.M., Westra W.H., Akpeng B., Bruno T.C., Richmon J.D., Wang H., Bishop J.A., et al. Evidence for a role of the PD-1:PD-L1 pathway in immune resistance of HPV-associated head and neck squamous cell carcinoma. Cancer Res. 2013;73:1733–1741. doi: 10.1158/0008-5472.CAN-12-2384.
    1. Badoual C., Hans S., Merillon N., Van Ryswick C., Ravel P., Benhamouda N., Levionnois E., Nizard M., Si-Mohamed A., Besnier N., et al. PD-1–expressing tumor-infiltrating T cells are a favorable prognostic biomarker in HPV-associated head and neck cancer. Cancer Res. 2012;73:128–138. doi: 10.1158/0008-5472.CAN-12-2606.
    1. Ichihara F., Kono K., Takahashi A., Kawaida H., Sugai H., Fujii H. Increased populations of regulatory T cells in peripheral blood and tumor-infiltrating lymphocytes in patients with gastric and esophageal cancers. Clin. Cancer Res. 2003;9:4404–4408.
    1. Zeng C., Yao Y., Jie W., Zhang M., Hu X., Zhao Y., Wang S., Yin J., Song Y. Up-regulation of Foxp3 participates in progression of cervical cancer. Cancer Immunol. Immunother. 2012;62:481–487. doi: 10.1007/s00262-012-1348-8.
    1. Curiel T.J., Coukos G., Zou L., Alvarez X., Cheng P., Mottram P., Evdemon-Hogan M., Conejo-Garcia J.R., Zhang L., Burow M., et al. Specific recruitment of regulatory T cells in ovarian carcinoma fosters immune privilege and predicts reduced survival. Nat. Med. 2004;10:942–949. doi: 10.1038/nm1093.
    1. Parikh F., Duluc D., Imai N., Clark A., Misiukiewicz K., Bonomi M., Gupta V., Patsias A., Parides M., Demicco E.G., et al. Chemoradiotherapy-induced upregulation of PD-1 antagonizes immunity to HPV-related oropharyngeal cancer. Cancer Res. 2014;74:7205–7216. doi: 10.1158/0008-5472.CAN-14-1913.
    1. Hodge J.W., Garnett-Benson C., Farsaci B., Palena C., Tsang K.-Y., Ferrone S., Gameiro S.R. Chemotherapy-induced immunogenic modulation of tumor cells enhances killing by cytotoxic T lymphocytes and is distinct from immunogenic cell death. Int. J. Cancer. 2013;133:624–636. doi: 10.1002/ijc.28070.
    1. Bruchard M., Mignot G., Dérangère V., Chalmin F., Chevriaux A., Végran F., Boireau W., Simon B., Ryffel B., Connat J.L., et al. Chemotherapy-triggered cathepsin B release in myeloid-derived suppressor cells activates the Nlrp3 inflammasome and promotes tumor growth. Nat. Med. 2012;19:57–64. doi: 10.1038/nm.2999.
    1. Limagne E., Euvrard R., Thibaudin M., Rébé C., Derangere V., Chevriaux A., Boidot R., Végran F., Bonnefoy N., Vincent J., et al. Accumulation of MDSC and Th17 cells in patients with metastatic colorectal cancer predicts the efficacy of a FOLFOX–bevacizumab drug treatment regimen. Cancer Res. 2016;76:5241–5252. doi: 10.1158/0008-5472.CAN-15-3164.
    1. Kim S.C., Buecher B., André T., Jary M., Bidard F.-C., Ghiringhelli F., François É., Taieb J., Smith D., De La Fouchardière C., et al. Atezolizumab plus modified docetaxel-cisplatin-5-fluorouracil (mDCF) regimen versus mDCF in patients with metastatic or unresectable locally advanced recurrent anal squamous cell carcinoma: A randomized, non-comparative phase II SCARCE GERCOR trial. BMC Cancer. 2020;20:352. doi: 10.1186/s12885-020-06841-1.
    1. Laheurte C., Galaine J., Beziaud L., Dosset M., Kerzerho J., Jacquemard C., Gaugler B., Ferrand C., Dormoy A., Aubin F., et al. Immunoprevalence and magnitude of HLA-DP4 versus HLA-DR-restricted spontaneous CD4+ Th1 responses against telomerase in cancer patients. OncoImmunology. 2016;5:e1137416. doi: 10.1080/2162402X.2015.1137416.
    1. Hothorn T., Lausen B. On the exact distribution of maximally selected rank statistics. Comput. Stat. Data Anal. 2003;43:121–137. doi: 10.1016/S0167-9473(02)00225-6.

Source: PubMed

3
Abonnieren