Safety and efficacy of hydroxychloroquine for treatment of non-severe COVID-19 among adults in Uganda: a randomized open label phase II clinical trial

Pauline Byakika-Kibwika, Christine Sekaggya-Wiltshire, Jerome Roy Semakula, Jane Nakibuuka, Joseph Musaazi, James Kayima, Cornelius Sendagire, David Meya, Bruce Kirenga, Sarah Nanzigu, Arthur Kwizera, Fred Nakwagala, Ivan Kisuule, Misaki Wayengera, Henry G Mwebesa, Moses R Kamya, William Bazeyo, Pauline Byakika-Kibwika, Christine Sekaggya-Wiltshire, Jerome Roy Semakula, Jane Nakibuuka, Joseph Musaazi, James Kayima, Cornelius Sendagire, David Meya, Bruce Kirenga, Sarah Nanzigu, Arthur Kwizera, Fred Nakwagala, Ivan Kisuule, Misaki Wayengera, Henry G Mwebesa, Moses R Kamya, William Bazeyo

Abstract

Background: Several repurposed drugs such as hydroxychloroquine (HCQ) have been investigated for treatment of COVID-19, but none was confirmed to be efficacious. While in vitro studies have demonstrated antiviral properties of HCQ, data from clinical trials were conflicting regarding its benefit for COVID-19 treatment. Drugs that limit viral replication may be beneficial in the earlier course of the disease thus slowing progression to severe and critical illness.

Design: We conducted a randomized open label Phase II clinical trial from October-December 2020.

Methods: Patients diagnosed with COVID-19 using RT-PCR were included in the study if they were 18 years and above and had a diagnosis of COVID-19 made in the last 3 days. Patients were randomized in blocks, to receive either HCQ 400 mg twice a day for the first day followed by 200 mg twice daily for the next 4 days plus standard of care (SOC) treatment or SOC treatment alone. SARS COV-2 viral load (CT values) from RT-PCR testing of samples collected using nasal/orapharyngeal swabs was performed at baseline, day 2, 4, 6, 8 and 10. The primary outcome was median time from randomization to SARS COV-2 viral clearance by day 6.

Results: Of the 105 participants enrolled, 55 were assigned to the intervention group (HCQ plus SOC) and 50 to the control group (SOC only). Baseline characteristics were similar across treatment arms. Viral clearance did not differ by treatment arm, 20 and 19 participants respectively had SARS COV-2 viral load clearance by day 6 with no significant difference, median (IQR) number of days to viral load clearance between the two groups was 4(3-4) vs 4(2-4): p = 0.457. There were no significant differences in secondary outcomes (symptom resolution and adverse events) between the intervention group and the control group. There were no significant differences in specific adverse events such as elevated alkaline phosphatase, prolonged QTc interval on ECG, among patients in the intervention group as compared to the control group.

Conclusion: Our results show that HCQ 400 mg twice a day for the first day followed by 200 mg twice daily for the next 4 days was safe but not associated with reduction in viral clearance or symptom resolution among adults with COVID-19 in Uganda.

Trial registration: NCT04860284.

Keywords: COVID-19; Efficacy; Hydroxychloroquine; Outcomes; Safety; Treatment.

Conflict of interest statement

The authors declare no conflict of interest for this work.

© 2021. The Author(s).

Figures

Fig. 1
Fig. 1
Disposition of the study participants
Fig. 2
Fig. 2
Kaplan–Meier plot showing time to first SARS COV-2 viral load clearance by treatment groups

References

    1. Johns Hopkins University of Medicine. Corona Virus Resource Center. https://coronavirusjhuedu/. 2021
    1. Oxner A, Vellanki M, Myers A, et al. Reducing mortality from severe malaria in Sierra Leonean children by applying the World Health Organization's standard malarial protocol with additional sublingual glucose: a continuous quality improvement report. Int J Infect Dis. 2020;96:61–67. doi: 10.1016/j.ijid.2020.04.046.
    1. Hamid H, Abid Z, Amir A, et al. Current burden on healthcare systems in low- and middle-income countries: recommendations for emergency care of COVID-19. Drugs Therapy Perspect. 2020 doi: 10.1007/s40267-020-00766-2.
    1. Eisele TP, Bennett A, Silumbe K, et al. Short-term impact of mass drug administration with dihydroartemisinin plus piperaquine on malaria in Southern Province Zambia: a cluster-randomized controlled trial. J Infect Dis. 2016;214(12):1831–1839. doi: 10.1093/infdis/jiw416.
    1. Liu J, Cao R, Xu M, et al. Hydroxychloroquine, a less toxic derivative of chloroquine, is effective in inhibiting SARS-CoV-2 infection in vitro. Cell Discov. 2020;6(1):16. doi: 10.1038/s41421-020-0156-0.
    1. Gautret P, Lagier JC, Parola P, et al. Hydroxychloroquine and azithromycin as a treatment of COVID-19: results of an open-label non-randomized clinical trial. Int J Antimicrob Agents. 2020;56(1):105949. doi: 10.1016/j.ijantimicag.2020.105949.
    1. Maisonnasse P, Guedj J, Contreras V, et al. Hydroxychloroquine use against SARS-CoV-2 infection in non-human primates. Nature. 2020;585(7826):584–587. doi: 10.1038/s41586-020-2558-4.
    1. Kirenga B, Muttamba W, Kayongo A, et al. Characteristics and outcomes of admitted patients infected with SARS-CoV-2 in Uganda. BMJ Open Respir Res. 2020 doi: 10.1136/bmjresp-2020-000646.
    1. Mallat J, Hamed F, Balkis M, et al. Hydroxychloroquine is associated with slower viral clearance in clinical COVID-19 patients with mild to moderate disease. Medicine (Baltimore) 2020;99(52):e23720. doi: 10.1097/MD.0000000000023720.
    1. Cavalcanti AB, Zampieri FG, Rosa RG, et al. Hydroxychloroquine with or without Azithromycin in mild-to-moderate COVID-19. N Engl J Med. 2020;383(21):2041–2052. doi: 10.1056/NEJMoa2019014.
    1. Ghazy RM, Almaghraby A, Shaaban R, et al. A systematic review and meta-analysis on chloroquine and hydroxychloroquine as monotherapy or combined with azithromycin in COVID-19 treatment. Sci Rep. 2020;10(1):22139. doi: 10.1038/s41598-020-77748-x.
    1. Tonnesmann E, Kandolf R, Lewalter T. Chloroquine cardiomyopathy—a review of the literature. Immunopharmacol Immunotoxicol. 2013;35(3):434–442. doi: 10.3109/08923973.2013.780078.
    1. Fantini J, Di Scala C, Chahinian H, et al. Structural and molecular modelling studies reveal a new mechanism of action of chloroquine and hydroxychloroquine against SARS-CoV-2 infection. Int J Antimicrob Agents. 2020;55(5):105960. doi: 10.1016/j.ijantimicag.2020.105960.
    1. Al-Bari MA. Chloroquine analogues in drug discovery: new directions of uses, mechanisms of actions and toxic manifestations from malaria to multifarious diseases. J Antimicrob Chemother. 2015;70(6):1608–1621. doi: 10.1093/jac/dkv018.
    1. Keyaerts E, Vijgen L, Maes P, et al. In vitro inhibition of severe acute respiratory syndrome coronavirus by chloroquine. Biochem Biophys Res Commun. 2004;323(1):264–268. doi: 10.1016/j.bbrc.2004.08.085.
    1. de Wilde AH, Jochmans D, Posthuma CC, et al. Screening of an FDA-approved compound library identifies four small-molecule inhibitors of Middle East respiratory syndrome coronavirus replication in cell culture. Antimicrob Agents Chemother. 2014;58(8):4875–4884. doi: 10.1128/AAC.03011-14.
    1. Kaptein SJF, Jacobs S, Langendries L, et al. Favipiravir at high doses has potent antiviral activity in SARS-CoV-2-infected hamsters, whereas hydroxychloroquine lacks activity. Proc Natl Acad Sci U S A. 2020;117(43):26955–26965. doi: 10.1073/pnas.2014441117.
    1. U.S. National Libraries of Medicine. . https://clinicaltrialsgov/ct2/results?term=hydroxychloroquine&cond=Covid19&Search=Apply&recrs=e&age_v=&gndr=&type=&rslt=. Accessed 13 April 2021
    1. Chen J, Liu D, Liu L, et al. A pilot study of hydroxychloroquine in treatment of patients with moderate COVID-19. Zhejiang Da Xue Xue Bao Yi Xue Ban. 2020;49(2):215–219. doi: 10.3785/j.issn.1008-9292.2020.03.03.
    1. Consortium WHOST, Pan H, Peto R, et al. Repurposed Antiviral Drugs for Covid-19—Interim WHO Solidarity Trial Results. N Engl J Med. 2021;384(6):497–511. 10.1056/NEJMoa2023184
    1. Omrani AS, Pathan SA, Thomas SA, et al. Randomized double-blinded placebo-controlled trial of hydroxychloroquine with or without azithromycin for virologic cure of non-severe COVID-19. EClinicalMedicine. 2020;29:100645. doi: 10.1016/j.eclinm.2020.100645.
    1. Tang W, Cao Z, Han M, et al. Hydroxychloroquine in patients with mainly mild to moderate coronavirus disease 2019: open label, randomised controlled trial. BMJ. 2020;369:m1849. doi: 10.1136/bmj.m1849.
    1. Dhibar DP, Arora N, Kakkar A, et al. Post-exposure prophylaxis with hydroxychloroquine for the prevention of COVID-19, a myth or a reality? The PEP-CQ Study. Int J Antimicrob Agents. 2020;56(6):106224. doi: 10.1016/j.ijantimicag.2020.106224.
    1. Barnabas RV, Brown ER, Bershteyn A, et al. Hydroxychloroquine as postexposure prophylaxis to prevent severe acute respiratory syndrome coronavirus 2 infection : a randomized trial. Ann Intern Med. 2021;174(3):344–352. doi: 10.7326/M20-6519.
    1. Boulware DR, Pullen MF, Bangdiwala AS, et al. A randomized trial of hydroxychloroquine as postexposure prophylaxis for COVID-19. N Engl J Med. 2020;383(6):517–525. doi: 10.1056/NEJMoa2016638.
    1. Singh B, Ryan H, Kredo T, et al. Chloroquine or hydroxychloroquine for prevention and treatment of COVID-19. Cochrane Database Syst Rev. 2021;2:CD013587. doi: 10.1002/14651858.CD013587.pub2.
    1. Rajasingham R, Bangdiwala AS, Nicol MR, et al. Hydroxychloroquine as pre-exposure prophylaxis for COVID-19 in healthcare workers: a randomized trial. medRxiv. 2020 doi: 10.1101/2020.09.18.20197327.
    1. Abella BS, Jolkovsky EL, Biney BT, et al. Efficacy and safety of hydroxychloroquine vs placebo for pre-exposure SARS-CoV-2 prophylaxis among health care workers: a randomized clinical trial. JAMA Intern Med. 2021;181(2):195–202. doi: 10.1001/jamainternmed.2020.6319.
    1. Kashour Z, Riaz M, Garbati MA, et al. Efficacy of chloroquine or hydroxychloroquine in COVID-19 patients: a systematic review and meta-analysis. J Antimicrob Chemother. 2021;76(1):30–42. doi: 10.1093/jac/dkaa403.
    1. Fiolet T, Guihur A, Rebeaud ME, et al. Effect of hydroxychloroquine with or without azithromycin on the mortality of coronavirus disease 2019 (COVID-19) patients: a systematic review and meta-analysis. Clin Microbiol Infect. 2021;27(1):19–27. doi: 10.1016/j.cmi.2020.08.022.
    1. U.S Food and Drug Adminstration. Request for emergency use authorization for use of chloroquine phosphate or hydroxychloroquine sulfate. https://wwwfdagov/media/136534/download . 2020.
    1. U.S. Food and Drug Administration. Emergency use authorization of hydroxycholoroquine for treatment of COVID-19. https://wwwfdagov/media/136537download#:~:text=The%20US%20Food%20and%20Drug,a%20clinical%20trial%20is%20not. 2020.
    1. Srinivasa A, Tosounidou S, Gordon C. Increased incidence of gastrointestinal side effects in patients taking hydroxychloroquine: a brand-related issue? J Rheumatol. 2017;44(3):398. doi: 10.3899/jrheum.161063.
    1. Mitja O, Corbacho-Monne M, Ubals M, et al. A cluster-randomized trial of hydroxychloroquine for prevention of COVID-19. N Engl J Med. 2021;384(5):417–427. doi: 10.1056/NEJMoa2021801.

Source: PubMed

3
Abonnieren