Heart failure is associated with depletion of core intestinal microbiota

Mark Luedde, Thorben Winkler, Femke-Anouska Heinsen, Malte C Rühlemann, Martina E Spehlmann, Amer Bajrovic, Wolfgang Lieb, Andre Franke, Stephan J Ott, Norbert Frey, Mark Luedde, Thorben Winkler, Femke-Anouska Heinsen, Malte C Rühlemann, Martina E Spehlmann, Amer Bajrovic, Wolfgang Lieb, Andre Franke, Stephan J Ott, Norbert Frey

Abstract

Aims: In spite of current medical treatment approaches, mortality of chronic heart failure (HF) remains high and novel treatment modalities are thus urgently needed. A recent theory proposes a possible impact of the intestinal microbiome on the incidence and clinical course of heart failure. This study sought to systematically investigate, if there are specific changes of the intestinal microbiome in heart failure patients.

Methods and results: The intestinal microbiome of 20 patients with heart failure with reduced ejection fraction due to ischemic or dilated cardiomyopathy was investigated by applying high-throughput sequencing of the bacterial 16S rRNA gene. Microbial profiles were compared to those of matched controls in which heart failure was ruled out by clinical assessment and NT-proBNP serum levels (n = 20). According to the Shannon diversity index (which measures the intra-individual alpha-diversity) based on the distribution of operational taxonomic units (OTUs), HF cases showed a nominally significantly lower diversity index compared to controls (Pnom. = 0.01), and testing for genera abundance showed a tendency towards a decreased alpha diversity of HF patients. Beta-diversity measures (inter-individual diversity) revealed a highly significant separation of HF cases and controls, (e.g. Pweighted UniFracv = 0.004). Assessing the individual abundance of core measurable microbiota (CMM), a significant decrease of Coriobacteriaceae, Erysipelotrichaceae and Ruminococcaceae was observed on the family level. In line with that, Blautia, Collinsella, uncl. Erysipelotrichaceae and uncl. Ruminococcaceae showed a significant decrease in HF cases compared to controls on the genus level.

Conclusions: Heart failure patients showed a significantly decreased diversity of the intestinal microbiome as well as a downregulation of key intestinal bacterial groups. Our data point to an altered intestinal microbiome as a potential player in the pathogenesis and progression of heart failure.

Keywords: 16S; Diversity; Gut microbiome; Heart failure; Microbiota.

© 2017 The Authors. ESC Heart Failure published by John Wiley & Sons Ltd on behalf of the European Society of Cardiology.

Figures

Figure 1
Figure 1
(A) Alpha diversity: Shannon Index based on OTU abundance for controls and HF patients. (B) Beta diversity: PCoA plot of weighted UniFrac distances.
Figure 2
Figure 2
Genus level abundances of CMM for controls and HF cases. (A) Mean relative abundances of the two groups. (B) Relative abundances for the individual samples.
Figure 3
Figure 3
Taxonomic groups of CMM (family to OTU level) found with different abundances between HF cases and controls. ns: not significant (P > 0.05), *: P < 0.05, **: P < 0.01, ***: P < 0.001. P‐values before and after correction for multiple testing are separated by the slash character.

References

    1. Yancy CW, Jessup M, Bozkurt B, Butler J, Casey DE Jr, Drazner MH, Fonarow GC, Geraci SA, Horwich T, Januzzi JL, Johnson MR, Kasper EK, Levy WC, Masoudi FA, McBride PE, McMurray JJ, Mitchell JE, Peterson PN, Riegel B, Sam F, Stevenson LW, Tang WH, Tsai EJ, Wilkoff BL. 2013 ACCF/AHA guideline for the management of heart failure: a report of the American College of Cardiology Foundation/American Heart Association Task Force on practice guidelines. Circulation 2013; 128: e240–e327.
    1. Go AS, Mozaffarian D, Roger VL, Benjamin EJ, Berry JD, Blaha MJ, Dai S, Ford ES, Fox CS, Franco S, Fullerton HJ, Gillespie C, Hailpern SM, Heit JA, Howard VJ, Huffman MD, Judd SE, Kissela BM, Kittner SJ, Lackland DT, Lichtman JH, Lisabeth LD, Mackey RH, Magid DJ, Marcus GM, Marelli A, Matchar DB, McGuire DK, Mohler ER 3rd, Moy CS, Mussolino ME, Neumar RW, Nichol G, Pandey DK, Paynter NP, Reeves MJ, Sorlie PD, Stein J, Towfighi A, Turan TN, Virani SS, Wong ND, Woo D, Turner MB. Heart disease and stroke statistics‐‐2014 update: a report from the American Heart Association. Circulation 2014; 129: e28–e292.
    1. Warriner D, Sheridan P, Lawford P. Heart failure: not a single organ disease but a multisystem syndrome. Br J Hosp Med (London, England : 2005) 2015; 76: 330–336.
    1. Zhang YJ, Li S, Gan RY, Zhou T, Xu DP, Li HB. Impacts of Gut Bacteria on Human Health and Diseases. Int J Mol Sci 2015; 16: 7493–7519.
    1. Nagatomo Y, Tang WH. Intersections Between Microbiome and Heart Failure: Revisiting the Gut Hypothesis. J Card Fail 2015; 21: 973–980.
    1. Sandek A, Bjarnason I, Volk HD, Crane R, Meddings JB, Niebauer J, Kalra PR, Buhner S, Herrmann R, Springer J, Doehner W, von Haehling S, Anker SD, Rauchhaus M. Studies on bacterial endotoxin and intestinal absorption function in patients with chronic heart failure. Int J Cardiol 2012; 157: 80–85.
    1. Sandek A, Swidsinski A, Schroedl W, Watson A, Valentova M, Herrmann R, Scherbakov N, Cramer L, Rauchhaus M, Grosse‐Herrenthey A, Krueger M, von Haehling S, Doehner W, Anker SD, Bauditz J. Intestinal blood flow in patients with chronic heart failure: a link with bacterial growth, gastrointestinal symptoms, and cachexia. J Am Coll Cardiol 2014; 64: 1092–1102.
    1. Sandek A, Bauditz J, Swidsinski A, Buhner S, Weber‐Eibel J, von Haehling S, Schroedl W, Karhausen T, Doehner W, Rauchhaus M, Poole‐Wilson P, Volk HD, Lochs H, Anker SD. Altered intestinal function in patients with chronic heart failure. J Am Coll Cardiol 2007; 50: 1561–1569.
    1. Anker SD, Egerer KR, Volk HD, Kox WJ, Poole‐Wilson PA, Coats AJ. Elevated soluble CD14 receptors and altered cytokines in chronic heart failure. Am J Cardiol 1997; 79: 1426–1430.
    1. Peschel T, Schonauer M, Thiele H, Anker SD, Schuler G, Niebauer J. Invasive assessment of bacterial endotoxin and inflammatory cytokines in patients with acute heart failure. Eur J Heart Fail 2003; 5: 609–614.
    1. Thierer J, Acosta A, Vainstein N, Sultan M, Francesia A, Marino J, Prado AH, Guglielmone R, Trivi M, Boero L, Brites F, Anker S. Relation of left ventricular ejection fraction and functional capacity with metabolism and inflammation in chronic heart failure with reduced ejection fraction (from the MIMICA Study). Am J Cardiol 2010; 105: 977–983.
    1. Pasini E, Aquilani R, Testa C, Baiardi P, Angioletti S, Boschi F, Verri M, Dioguardi F. Pathogenic Gut Flora in Patients With Chronic Heart Failure. JACC Heart Fail 2016; 4: 220–227.
    1. Ponikowski P, Voors AA, Anker SD, Bueno H, Cleland JG, Coats AJ, Falk V, Gonzalez‐Juanatey JR, Harjola VP, Jankowska EA, Jessup M, Linde C, Nihoyannopoulos P, Parissis JT, Pieske B, Riley JP, Rosano GM, Ruilope LM, Ruschitzka F, Rutten FH, van der Meer P, Authors/Task Force M , Document R . 2016 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: The Task Force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC). Developed with the special contribution of the Heart Failure Association (HFA) of the ESC. Eur J Heart Fail 2016; 18: 891–975.
    1. Krawczak M, Nikolaus S, von Eberstein H, Croucher PJ, El Mokhtari NE, Schreiber S. PopGen: population‐based recruitment of patients and controls for the analysis of complex genotype‐phenotype relationships. Community Genet 2006; 9: 55–61.
    1. Nothlings U, Krawczak M. PopGen. A population‐based biobank with prospective follow‐up of a control group. Bundesgesundheitsbl 2012; 55: 831–835.
    1. Caporaso JG, Lauber CL, Walters WA, Berg‐Lyons D, Lozupone CA, Turnbaugh PJ, Fierer N, Knight R. Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proc Natl Acad Sci U S A 2011; 108: 4516–4522.
    1. Magoc T, Salzberg SL. FLASH: fast length adjustment of short reads to improve genome assemblies. Bioinformatics (Oxford, England) 2011; 27: 2957–2963.
    1. Edgar RC, Haas BJ, Clemente JC, Quince C, Knight R. UCHIME improves sensitivity and speed of chimera detection. Bioinformatics (Oxford, England) 2011; 27: 2194–2200.
    1. Edgar RC. Search and clustering orders of magnitude faster than BLAST. Bioinformatics (Oxford, England) 2010; 26: 2460–2461.
    1. Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 2004; 32: 1792–1797.
    1. Edgar RC. MUSCLE: a multiple sequence alignment method with reduced time and space complexity. BMC Bioinformatics 2004; 5: 113.
    1. Price MN, Dehal PS, Arkin AP. FastTree: computing large minimum evolution trees with profiles instead of a distance matrix. Mol Biol Evol 2009; 26: 1641–1650.
    1. Price MN, Dehal PS, Arkin AP. FastTree 2‐‐approximately maximum‐likelihood trees for large alignments. PLoS One 2010; 5: e9490.
    1. Lozupone C, Knight R. UniFrac: a new phylogenetic method for comparing microbial communities. Appl Environ Microbiol 2005; 71: 8228–8235.
    1. Faith DP. Conservation evaluation and phylogenetic diversity. Biol Conserv 1992. ; 61: 1–10.1992/01/01
    1. Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, Lesniewski RA, Oakley BB, Parks DH, Robinson CJ, Sahl JW, Stres B, Thallinger GG, Van Horn DJ, Weber CF. Introducing mothur: open‐source, platform‐independent, community‐supported software for describing and comparing microbial communities. Appl Environ Microbiol 2009; 75: 7537–7541.
    1. Wang Q, Garrity GM, Tiedje JM, Cole JR. Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol 2007; 73: 5261–5267.
    1. Team RDC . R: A language and environment for statistical computing. Vienna, Austria: Foundation for Statistical Computing; 2008.
    1. Oksanen J, Blanchet F, Kindt R, Legendre P, Minchin P, O’Hara R, Simpson G, Solymos P, Stevens H, Wagner H. Vegan: Community Ecology Package. R package version 2.3‐0. 2015.
    1. Wang Y, Naumann U, Wright ST, Warton DI. mvabund– an R package for model‐based analysis of multivariate abundance data. Methods Ecol Evol 2012; 3: 471–474.
    1. Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc B Methodol 1995; 57: 289–300.
    1. Human Microbiome Project C . Structure, function and diversity of the healthy human microbiome. Nature 2012; 486: 207–214.
    1. Falony G, Joossens M, Vieira‐Silva S, Wang J, Darzi Y, Faust K, Kurilshikov A, Bonder MJ, Valles‐Colomer M, Vandeputte D, Tito RY, Chaffron S, Rymenans L, Verspecht C, De Sutter L, Lima‐Mendez G, D'Hoe K, Jonckheere K, Homola D, Garcia R, Tigchelaar EF, Eeckhaudt L, Fu J, Henckaerts L, Zhernakova A, Wijmenga C, Raes J. Population‐level analysis of gut microbiome variation. Science (New York, NY) 2016; 352: 560–564.
    1. Karlsson FH, Fak F, Nookaew I, Tremaroli V, Fagerberg B, Petranovic D, Backhed F, Nielsen J. Symptomatic atherosclerosis is associated with an altered gut metagenome. Nat Commun 2012; 3: 1245.
    1. Lambeth SM, Carson T, Lowe J, Ramaraj T, Leff JW, Luo L, Bell CJ, Shah VO. Composition, Diversity and Abundance of Gut Microbiome in Prediabetes and Type 2 Diabetes. J Diabetes Obes 2015; 2: 1–7.
    1. Jenq RR, Taur Y, Devlin SM, Ponce DM, Goldberg JD, Ahr KF, Littmann ER, Ling L, Gobourne AC, Miller LC, Docampo MD, Peled JU, Arpaia N, Cross JR, Peets TK, Lumish MA, Shono Y, Dudakov JA, Poeck H, Hanash AM, Barker JN, Perales M‐A, Giralt SA, Pamer EG, van den Brink MRM. Intestinal Blautia Is Associated with Reduced Death from Graft‐versus‐Host Disease. Biol Blood Marrow Transplant 2015; 21: 1373–1383.
    1. Sokol H, Pigneur B, Watterlot L, Lakhdari O, Bermudez‐Humaran LG, Gratadoux JJ, Blugeon S, Bridonneau C, Furet JP, Corthier G, Grangette C, Vasquez N, Pochart P, Trugnan G, Thomas G, Blottiere HM, Dore J, Marteau P, Seksik P, Langella P. Faecalibacterium prausnitzii is an anti‐inflammatory commensal bacterium identified by gut microbiota analysis of Crohn disease patients. Proc Natl Acad Sci U S A 2008; 105: 16731–16736.
    1. Martin R, Miquel S, Chain F, Natividad JM, Jury J, Lu J, Sokol H, Theodorou V, Bercik P, Verdu EF, Langella P, Bermudez‐Humaran LG. Faecalibacterium prausnitzii prevents physiological damages in a chronic low‐grade inflammation murine model. BMC Microbiol 2015; 15: 67.
    1. Dick SA, Epelman S. Chronic Heart Failure and Inflammation: What Do We Really Know? Circ Res 2016; 119: 159–176.
    1. Scher JU, Littman DR, Abramson SB. Microbiome in Inflammatory Arthritis and Human Rheumatic Diseases. Arthritis Rheumatol (Hoboken, NJ) 2016; 68: 35–45.
    1. Lerner A, Matthias T. Rheumatoid arthritis‐celiac disease relationship: joints get that gut feeling. Autoimmun Rev 2015; 14: 1038–1047.
    1. Btaiche IF, Chan LN, Pleva M, Kraft MD. Critical illness, gastrointestinal complications, and medication therapy during enteral feeding in critically ill adult patients. Nutr Clin Pract: official publication of the American Society for Parenteral and Enteral Nutrition 2010; 25: 32–49.
    1. Tang WH, Wang Z, Fan Y, Levison B, Hazen JE, Donahue LM, Wu Y, Hazen SL. Prognostic value of elevated levels of intestinal microbe‐generated metabolite trimethylamine‐N‐oxide in patients with heart failure: refining the gut hypothesis. J Am Coll Cardiol 2014; 64: 1908–1914.
    1. Suzuki T, Heaney LM, Bhandari SS, Jones DJ, Ng LL. Trimethylamine N‐oxide and prognosis in acute heart failure. Heart (British Cardiac Society) 2016; 102: 841–848.
    1. Wills ES, Jonkers D, Savelkoul PH, Masclee AA, Pierik MJ, Penders J. Fecal Microbial Composition of Ulcerative Colitis and Crohn's Disease Patients in Remission and Subsequent Exacerbation. PLoS One 2014; 9: e90981.

Source: PubMed

3
Abonnieren