Retinoic acid receptors and retinoid X receptors: interactions with endogenous retinoic acids

G Allenby, M T Bocquel, M Saunders, S Kazmer, J Speck, M Rosenberger, A Lovey, P Kastner, J F Grippo, P Chambon, G Allenby, M T Bocquel, M Saunders, S Kazmer, J Speck, M Rosenberger, A Lovey, P Kastner, J F Grippo, P Chambon

Abstract

The binding of endogenous retinoids and stereoisomers of retinoic acid (RA) to the retinoid nuclear receptors, RA receptor (RARs) and retinoid X receptors (RXRs), was characterized using nucleosol preparations from transiently transfected COS-1 cells. Among several stereoisomers of RA tested, including 7-cis-, 9-cis-, 11-cis-, 13-cis-, and all-trans-RA, only 9-cis-RA effectively competes with 9-cis-[3H]RA binding to the RXRs. Additionally, the endogenous retinoid trans-didehydro-RA (t-ddRA) does not interact with RXRs, whereas the 9-cis form of ddRA competes effectively. RXRs (alpha, beta, and gamma) bind 9-cis-RA with dissociation constants (Kd) of 15.7, 18.3, and 14.1 nM, respectively. In contrast to the selectivity of RXRs for 9-cis-RA, RARs bind both t-RA and 9-cis-RA with high affinity, exhibiting Kd values in the 0.2-0.7 nM range for both ligands. Unlike RARs, the cellular RA binding proteins CRABPI or CRABPII bind t-RA but do not bind 9-cis-RA. Consistent with the binding data, 9-cis-RA and 9-cis-ddRA transcriptionally activate both GAL4-RXR and GAL4-RAR chimeric receptors with EC50 values of 3-20 nM for 9-cis-RA and 9-cis-ddRA, whereas t-RA and t-ddRA efficiently activate only GAL4-RAR chimeric receptors. Thus, 9-cis forms of endogenous retinoids can contribute to the pleiotropic effects of retinoids by interacting with both the RARs and RXRs.

References

    1. Br J Nutr. 1988 May;59(3):443-9
    1. Biochim Biophys Acta. 1988 Jul 22;961(2):177-82
    1. Nature. 1989 Jun 29;339(6227):714-7
    1. Proc Natl Acad Sci U S A. 1989 Jul;86(14):5310-4
    1. J Nutr. 1989 Jul;119(7):1013-9
    1. Proc Natl Acad Sci U S A. 1989 Aug;86(15):5854-8
    1. EMBO J. 1989 May;8(5):1441-6
    1. Cell. 1989 Nov 3;59(3):477-87
    1. Nature. 1990 May 17;345(6272):224-9
    1. Biochem Biophys Res Commun. 1991 Sep 30;179(3):1554-61
    1. Biomed Pharmacother. 1991;45(4-5):131-43
    1. Cell. 1991 Dec 20;67(6):1251-66
    1. Nature. 1992 Jan 23;355(6358):359-61
    1. Cell. 1992 Jan 24;68(2):377-95
    1. Cell. 1992 Jan 24;68(2):397-406
    1. Genes Dev. 1992 Mar;6(3):329-44
    1. Arch Biochem Biophys. 1992 Apr;294(1):173-7
    1. EMBO J. 1992 Apr;11(4):1419-35
    1. Cancer Res. 1992 Jul 1;52(13):3687-92
    1. Nature. 1992 Aug 13;358(6387):587-91
    1. Cell. 1992 Sep 18;70(6):1007-19
    1. Cell. 1992 Oct 2;71(1):73-85
    1. Trends Biochem Sci. 1992 Oct;17(10):427-33
    1. Proc R Soc Lond B Biol Sci. 1964 Feb 18;159:510-35
    1. Am J Physiol. 1978 Aug;235(2):E97-102
    1. J Invest Dermatol. 1982 Aug;79(2):89-93
    1. J Lipid Res. 1985 Mar;26(3):387-92
    1. J Invest Dermatol. 1985 Dec;85(6):498-500
    1. Proc Natl Acad Sci U S A. 1990 Aug;87(16):6233-7
    1. Nature. 1990 Jun 28;345(6278):815-9
    1. J Biol Chem. 1986 Oct 15;261(29):13592-7
    1. Biochem Biophys Res Commun. 1990 Nov 30;173(1):339-45
    1. J Cell Biol. 1991 Mar;112(5):965-79
    1. Mol Cell Biol. 1991 Jul;11(7):3814-20
    1. Biochemistry. 1991 Jun 25;30(25):6224-30
    1. Cell. 1991 Aug 9;66(3):555-61
    1. J Biol Chem. 1991 Sep 5;266(25):16572-9
    1. J Biol Chem. 1987 Apr 5;262(10):4492-500
    1. Nature. 1987 Jun 18-24;327(6123):625-8
    1. Biochem J. 1987 Jun 1;244(2):489-92
    1. Nature. 1987 Dec 3-9;330(6147):444-50
    1. Nature. 1987 Dec 17-23;330(6149):624-9
    1. Nucleic Acids Res. 1988 Jan 11;16(1):369
    1. Nature. 1988 Apr 28;332(6167):850-3
    1. Science. 1988 May 13;240(4854):889-95
    1. Trends Genet. 1988 Nov;4(11):309-14

Source: PubMed

3
Abonnieren