Closed-Loop Frontal Midlineθ Neurofeedback: A Novel Approach for Training Focused-Attention Meditation

Tracy Brandmeyer, Arnaud Delorme, Tracy Brandmeyer, Arnaud Delorme

Abstract

Cortical oscillations serve as an index of both sensory and cognitive processes and represent one of the most promising candidates for training and targeting the top-down mechanisms underlying executive functions. Research findings suggest that theta (θ) oscillations (3-7 Hz) recorded over frontal-midline electrodes are broadly associated with a number of higher-order cognitive processes and may serve as the mechanistic backbone for cognitive control. Frontal-midline theta (FMθ) oscillations have also been shown to inversely correlate with activity in the default mode network (DMN), a network in the brain linked to spontaneous thought processes such as mind-wandering and rumination. In line with these findings, we previously observed increased FMθ oscillations in expert meditation practitioners during reported periods of focused-attention meditation practice when compared to periods of mind-wandering. In an effort to narrow the explanatory gap by directly connecting observed neurophysiological activity in the brain to the phenomenological nature of reported experience, we designed a methodologically novel and adaptive neurofeedback protocol with the aim of modulating FMθ while having meditation novice participants implement breath-focus strategies derived from focused-attention mediation practices. Participants who received eight sessions of the adaptive FMθ-meditation neurofeedback protocol were able to significantly modulate FMθ over frontal electrodes using focused-attention meditation strategies relative to their baseline by the end of the training and demonstrated significantly faster reaction times on correct trials during the n-back working memory task assessed before and after the FMθ-meditation neurofeedback protocol. No significant differences in frontal theta activity or behavior were observed in the active control participants who received age and gender matched sham neurofeedback. These findings help lay the groundwork for the development of brain training protocols and neurofeedback applications that aim to train features of the mental states and traits associated with focused-attention meditation.

Keywords: EEG; adaptive neurofeedback; attention training; frontal mid-line theta; meditation.

Copyright © 2020 Brandmeyer and Delorme.

Figures

FIGURE 1
FIGURE 1
Participants received either the neurofeedback or sham-neurofeedback training over the course of eight training from Tuesday to Friday in the first week, and from Monday to Thursday in the second week. Each Neurofeedback training session consisted of six five-min training blocks, separated by short 2–6 min breaks. The battery of tasks measuring executive functions were collected pre-neurofeedback on the first session and post-neurofeedback on the last session.
FIGURE 2
FIGURE 2
Closed loop Neurofeedback protocol starting from the acquisition of the signal to the automated ASR artifact rejection, to the FMθ extraction to the interface. When recording more than 8 channels (first and last sessions recorded 64 channels), the 8 channels Fpz, FZ, F7, F8, Cz, P7, P8, Oz were extracted from the data – although only these 8 channels were collected on all recording days, on the first day and last recording day 64 channels were recorded. Images in this figure were obtained with written consent.
FIGURE 3
FIGURE 3
For artifact rejection, each day an initial EEG baseline was measured for 1 min (start baseline), followed by six training blocks of 5 min each (block 1–6). This initial baseline was used by the ASR artifact rejection algorithm in order to optimize the filtering all feedback sessions for the day using the asr_calibrate function (default parameters of the ASR algorithm were used; variance rejection cut off of 5; block size of 10 sample to calculate covariance matrix; window size of 500 ms and window overlap of 330 ms.
FIGURE 4
FIGURE 4
(A) N-back task: visual illustration of the three levels of the n-back task. The red arrow indicates when the subject has been instructed to press the space key. (B) The Sustained Attention to response task (SART) is designed to measure a person’s ability to withhold responses to infrequent and unpredictable stimuli during a period of rapid and rhythmic responding to frequent stimuli. (C) The local-global task measures the ability to focus attention on a specific feature of a stimulus, either global or local, while resisting distraction from other features and is thought to be a relatively broad measure of conflict detection.
FIGURE 5
FIGURE 5
(A) This graph shows the enhancement across sessions, and reflects FMθ amplitude percent change for the mean of theta power for the Neurofeedback group (green) and the sham group (blue) across each training session (S1–S8) as averaged over all corresponding blocks (blocks 1–6) as compared to the first session (S1). Baseline amplitude changes are reflected by the dotted lines for each group respectively, and are show for the training relative to the first baseline measurements. Error bars indicated the standard error of the mean. (B) This graph shows the enhancement across sessions for participants identified as responders to the adaptive neurofeedback protocol (three non-responders have been removed from the analyses). Non-responders are identified as individuals whose daily scores were three or more standard deviations from the mean. As in this figure shows the enhancement across sessions, and reflects FMθ amplitude percent change for the mean of theta power for the adaptive neurofeedback group (green) and the sham group (blue) across each training session (S1–S8) as averaged over all corresponding blocks (blocks 1–6) as compared to the first session (S1). Error bars indicate the standard error of the mean.
FIGURE 6
FIGURE 6
Frequency Spectra for the Neurofeedback group (top, green) and sham group (bottom, blue) showing differences in averaged spectral power between pre (session 1) and post (session 8) for electrode Fz (feedback location). Significant differences in multiple frequency bands were observed for the Feedback group (p < 0.05, corrected for multiple comparisons; p-values are reflected as black bars above the x-axis). No significant differences were observed in the sham group.
FIGURE 7
FIGURE 7
Log reaction times are indicated on the x-axis for the n-back task. The GLM revealed a significant pre/post neurofeedback training interaction showing faster reaction times for correct n-back trials in the neurofeedback group as compared to the sham feedback group after neurofeedback training.
FIGURE 8
FIGURE 8
Results for Adaptive Neurofeedback (top) and sham (bottom) groups for gamma-power during the 2-back task, before (left) and after (middle) the adaptive neurofeedback sessions. The color bar on the right represents the statistical significance of the difference pre and post neurofeedback.

References

    1. Aftanas L. I., Golocheikine S. A. (2001). Human anterior and frontal midline theta and lower alpha reflect emotionally positive state and internalized attention: high-resolution EEG investigation of meditation. Neurosci Lett. 310, 57–60. 10.1016/s0304-3940(01)02094-8
    1. Anguera J. A., Boccanfuso J., Rintoul J. L., Al-Hashimi O., Faraji F., Janowich J., et al. (2013). Video game training enhances cognitive control in older adults. Nature 501 97–101. 10.1038/nature12486
    1. Arns M., de Ridder S., Strehl U., Breteler M., Coenen A. (2009). Efficacy of Neurofeedback Treatment in ADHD: the effects on inattention, impulsivity and hyperactivity: a meta-analysis. Clin. EEG Neurosci. 40 180–189. 10.1177/155005940904000311
    1. Arns M., Heinrich H., Strehl U. (2014). Evaluation of neurofeedback in ADHD: the long and winding road. Biol. Psychol. 95 108–115. 10.1016/j.biopsycho.2013.11.013
    1. Basak C., Voss M. W., Erickson K. I., Boot W. R., Kramer A. F. (2011). Regional differences in brain volume predict the acquisition of skill in a complex real-time strategy videogame. Brain Cogn. 76 407–414. 10.1016/j.bandc.2011.03.017
    1. Benchenane K., Tiesinga P. H., Battaglia F. P. (2011). Oscillations in the prefrontal cortex: a gateway to memory and attention. Curr. Opin. Neurobiol. 21 475–485. 10.1016/j.conb.2011.01.004
    1. Bollimunta A., Chen Y., Schroeder C. E., Ding M. (2009). “Characterizing oscillatory cortical networks with Granger causality,” in Coherent Behavior in Neuronal Networks eds Rubin J., Josic K., Matias M., Romo R. (New York, NY: Springer; ), 169–189.
    1. Bollimunta A., Mo J., Schroeder C. E., Ding M. (2011). Neuronal mechanisms and attentional modulation of corticothalamic α oscillations. J. Neurosci. 31, 4935–4943. 10.1523/JNEUROSCI.5580-10.2011
    1. Brainard D. H. (1997). The psychophysics toolbox. Spatial Vision 10 433–436.
    1. Brandmeyer T. (2017). Investigating the Role of Oscillations in Endogenous and Exogenous Attentional States : Novel Methods in Neurophenomenology. Phd thesis, Paul Sabatier University, Toulouse.
    1. Brandmeyer T., Delorme A. (2013). Meditation and neurofeedback. Front. Psychol. 4:688. 10.3389/fpsyg.2013.00688
    1. Brandmeyer T., Delorme A. (2018). Reduced mind-wandering in experienced meditators and associated EEG correlates. Exp. Brain Res. 236 2519–2528. 10.1007/s00221-016-4811-5
    1. Brandmeyer T., Delorme A., Wahbeh H. (2019). The neuroscience of meditation: classification, phenomenology, correlates, and mechanisms. Prog. Brain Res. 244 1–29.
    1. Brefczynski-Lewis J. A., Lutz A., Schaefer H. S., Levinson D. B., Davidson R. J. (2007). Neural correlates of attentional expertise in long-term meditation practitioners. Proc. Natl. Acad. Sci. U.S.A. 104 11483–11488. 10.1073/pnas.0606552104
    1. Buzsáki G. (2004). Large-scale recording of neuronal ensembles. Nat. Neurosci. 7 446–451. 10.1038/nn1233
    1. Buzsáki G. (2010). Neural syntax: cell assemblies, synapsembles, and readers. Neuron 68 362–385. 10.1016/j.neuron.2010.09.023
    1. Cavanagh J. F., Figueroa C. M., Cohen M. X., Frank M. J. (2012). Frontal theta reflects uncertainty and unexpectedness during exploration and exploitation. Cereb. Cortex 22 2575–2586. 10.1093/cercor/bhr332
    1. Cavanagh J. F., Frank M. J. (2014). Frontal theta as a mechanism for cognitive control. Trends Cogn. Sci. 18 414–421. 10.1016/j.tics.2014.04.012
    1. Cavanagh J. F., Shackman A. J. (2015). Frontal midline theta reflects anxiety and cognitive control: meta-analytic evidence. J. Physiol. Paris 109 3–15. 10.1016/j.jphysparis.2014.04.003
    1. Cohen M. X. (2011). Error-related medial frontal theta activity predicts cingulate-related structural connectivity. Neuroimage 55, 1373–1383. 10.1016/j.neuroimage.2010.12.072
    1. Cohen M. X. (2014). A neural microcircuit for cognitive conflict detection and signaling. Trends Neurosci. 37 480–490. 10.1016/j.tins.2014.06.004
    1. Cohen M. X., Cavanagh J. F. (2011). Single-trial regression elucidates the role of prefrontal theta oscillations in response conflict. Front. Psychol. 2:30. 10.3389/fpsyg.2011.00030
    1. deBettencourt M. T. D., Cohen J. D., Lee R. F., Norman K. A., Turk-Browne N. B. (2015). Closed-loop training of attention with real-time brain imaging. Nat. Neurosci. 18, 470–475. 10.1038/nn.3940
    1. Dehaene S., Kerszberg M., Changeux J.-P. (1998). A neuronal model of a global workspace in effortful cognitive tasks. Proc. Natl. Acad. Sci. U.S.A. 95 14529–14534. 10.1073/pnas.95.24.14529
    1. DeJong H., Fox E., Stein A. (2019). Does rumination mediate the relationship between attentional control and symptoms of depression? J. Behav. Ther. Exp. Psychiatry 63 28–35.
    1. Delorme A., Brandmeyer T. (2019). When the meditating mind wanders. Curr. Opin. Psychol. 28 133–137.
    1. Delorme A., Makeig S. (2004). EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. J. Neurosci. Methods 134 9–21. 10.1016/j.jneumeth.2003.10.009
    1. Delorme A., Sejnowski T., Makeig S. (2007). Enhanced detection of artifacts in EEG data using higher-order statistics and independent component analysis. Neuroimage 34 1443–1449. 10.1016/j.neuroimage.2006.11.004
    1. Dudai Y. (2004). The neurobiology of consolidations, or, how stable is the engram? Ann. Rev. Psychol. 55 51–86. 10.1146/annurev.psych.55.090902.142050
    1. Ebbinghaus H. (1964). Memory: A Contribution to Experimental Psychology. USA: Dover.
    1. Egner T., Gruzelier J. H. (2004). EEG Biofeedback of low beta band components: frequency-specific effects on variables of attention and event-related brain potentials. Clin. Neurophysiol. 115 131–139. 10.1016/S1388-2457(03)00353-5
    1. Enriquez-Geppert S., Huster R. J., Figge C., Herrmann C. S. (2014). Self-regulation of frontal-midline theta facilitates memory updating and mental set shifting. Front. Behav. Neurosci. 8:420. 10.3389/fnbeh.2014.00420
    1. Enriquez-Geppert S., Huster R. J., Scharfenort R., Mokom Z., Figge C., Zimmermann J., et al. (2013). The morphology of midcingulate cortex predicts frontal-midline theta neurofeedback success. Front. Hum. Neurosci. 7:453. 10.3389/fnhum.2013.00453
    1. Ericsson K. A., Hoffman R. R., Kozbelt A., Williams A. M. (2018). The Cambridge Handbook of Expertise and Expert Performance. Cambridge: Cambridge University Press.
    1. Evans S., Ling M., Hill B., Rinehart N., Austin D., Sciberras E. (2018). Systematic review of meditation-based interventions for children with ADHD. Eur. Child Adolesc. Psychiatry 27 9–27. 10.1007/s00787-017-1008-9
    1. Fox K. C. R., Andrews-Hanna J. R., Mills C., Dixon M. L., Markovic J., Thompson E., et al. (2018). Affective neuroscience of self-generated thought. Ann. N. Y. Acad. Sci. 1426 25–51. 10.1111/nyas.13740
    1. Fox K. C. R., Spreng R. N., Ellamil M., Andrews-Hanna J. R., Christoff K. (2015). The wandering brain: meta-analysis of functional neuroimaging studies of mind-wandering and related spontaneous thought processes. Neuroimage 111 611–621. 10.1016/j.neuroimage.2015.02.039
    1. Frankland P. W., Bontempi B. (2005). The organization of recent and remote memories. Nat. Rev. Neurosci. 6 119–130. 10.1038/nrn1607
    1. Fries P. (2005). A mechanism for cognitive dynamics: neuronal communication through neuronal coherence. Trends Cogn. Sci. 9 474–480. 10.1016/j.tics.2005.08.011
    1. Friese U., Daume J., Göschl F., König P., Wang P., Engel A. K. (2016). Oscillatory brain activity during multisensory attention reflects activation, disinhibition, and cognitive control. Sci. Rep. 6:32775.
    1. Friston K. (2010). The free-energy principle: a unified brain theory? Nat. Rev. Neurosci. 11 127–138. 10.1038/nrn2787
    1. Gajewski P. D., Hanisch E., Falkenstein M., Thönes S., Wascher E. (2018). What does the n-back task measure as we get older? Relations between working-memory measures and other cognitive functions across the lifespan. Front. Psychol. 9:2208. 10.3389/fpsyg.2018.02208
    1. Garrison K. A., Zeffiro T. A., Scheinost D., Constable R. T., Brewer J. A. (2015). Meditation leads to reduced default mode network activity beyond an active task. Cogn. Affect. Behav. Neurosci. 15 712–720. 10.3758/s13415-015-0358-3
    1. Gevensleben H., Holl B., Albrecht B., Vogel C., Schlamp D., Kratz O., et al. (2009). Is neurofeedback an efficacious treatment for ADHD? A randomised controlled clinical trial. J. Child Psychol. Psychiatry 50 780–789. 10.1111/j.1469-7610.2008.02033.x
    1. Gibson E. M., Purger D., Mount C. W., Goldstein A. K., Lin G. L., Wood L. S., et al. (2014). Neuronal Activity Promotes Oligodendrogenesis and Adaptive Myelination in the Mammalian Brain. Science 344:1252304. 10.1126/science.1252304
    1. Gruzelier J., Egner T. (2005). Critical validation studies of neurofeedback. Child Adolesc. Psychiatr. Clin. 14 83–104. 10.1016/j.chc.2004.07.002
    1. Gusnard D. A., Raichle M. E., Raichle M. E. (2001). Searching for a baseline: functional imaging and the resting human brain. Nat. Rev. Neurosci. 2 685–694. 10.1038/35094500
    1. Haegens S., Osipova D., Oostenveld R., Jensen O. (2010). Somatosensory working memory performance in humans depends on both engagement and disengagement of regions in a distributed network. Hum. Brain Mapp. 31, 26–35. 10.1002/hbm.20842
    1. Hanslmayr S., Klimesch W., Sauseng P., Gruber W., Doppelmayr M., Freunberger R., et al. (2005). Visual discrimination performance is related to decreased alpha amplitude but increased phase locking. Neurosci. Lett. 375 64–68. 10.1016/j.neulet.2004.10.092
    1. Hasenkamp W., Barsalou L. W. (2012). Effects of meditation experience on functional connectivity of distributed brain networks. Front. Hum. Neurosci. 6:38. 10.3389/fnhum.2012.00038
    1. Holroyd C. B., Coles M. G. H. (2002). The neural basis of human error processing: reinforcement learning, dopamine, and the error-related negativity. Psychol. Rev. 109 679–709. 10.1037/0033-295X.109.4.679
    1. Huber R., Ghilardi M. F., Massimini M., Tononi G. (2004). Local sleep and learning. Nature 430 78–81. 10.1038/nature02663
    1. Huster R. J., Westerhausen R., Herrmann C. S. (2011). Sex differences in cognitive control are associated with midcingulate and callosal morphology. Brain Struct. Funct. 215 225–235. 10.1007/s00429-010-0289-2
    1. Huster R. J., Wolters C., Wollbrink A., Schweiger E., Wittling W., Pantev C., et al. (2009). Effects of anterior cingulate fissurization on cognitive control during stroop interference. Hum. Brain Mapp. 30 1279–1289. 10.1002/hbm.20594
    1. Jocham G., Ullsperger M. (2009). Neuropharmacology of performance monitoring. Neurosci. Biobehav. Rev. 33 48–60. 10.1016/j.neubiorev.2008.08.011
    1. Josipovic Z. (2010). Duality and nonduality in meditation research. Conscious. Cogn. 19 1119–1121. 10.1016/j.concog.2010.03.016
    1. Kahana M. J., Seelig D., Madsen J. R. (2001). Theta returns. Curr. Opin. Neurobiol. 11 739–744. 10.1016/S0959-4388(01)00278-1
    1. Kaiser D. A., Othmer S. (2000). Effect of neurofeedback on variables of attention in a large multi-center trial. J. Neurother. 4 5–15. 10.1300/J184v04n01_02
    1. Kamiya J. (1968). Conscious control of brain waves. Psychol. Today 1 56–60.
    1. Kerr C. E., Sacchet M. D., Lazar S. W., Moore C. I., Jones S. R. (2013). Mindfulness starts with the body: somatosensory attention and top-down modulation of cortical alpha rhythms in mindfulness meditation. Front. Hum. Neurosci. 7:12. 10.3389/fnhum.2013.00012
    1. Kothe C. A., Makeig S. (2013). BCILAB: a platform for brain-computer interface development. J. Neural Eng. 10:056014 10.1088/1741-2560/10/5/056014
    1. Kucyi A., Salomons T. V., Davis K. D. (2013). Mind-wandering away from pain dynamically engages antinociceptive and default mode brain networks. Proc. Natl. Acad. Sci. U.S.A. 110 18692–18697. 10.1073/pnas.1312902110
    1. Lazar S. W., Kerr C. E., Wasserman R. H., Gray J. R., Greve D. N., Treadway M. T., et al. (2005). Meditation experience is associated with increased cortical thickness. Neuroreport 16 1893–1897.
    1. Lezak M. D., Howieson D. B., Loring D. W., Fischer J. S. (2004). Neuropsychological Assessment. Oxford: Oxford University Press.
    1. Loui P., Li H. C., Schlaug G. (2011). White matter integrity in right hemisphere predicts pitch-related grammar learning. Neuroimage 55 500–507. 10.1016/j.neuroimage.2010.12.022
    1. Marco-Pallares J., Cucurell D., Cunillera T., García R., Andrés-Pueyo A., Münte T. F., et al. (2008). Human oscillatory activity associated to reward processing in a gambling task. Neuropsychologia 46 241–248. 10.1016/j.neuropsychologia.2007.07.016
    1. Mason M. F., Norton M. I., Horn J. D. V., Wegner D. M., Grafton S. T., Macrae C. N. (2007). Wandering minds: the default network and stimulus-independent thought. Science 315 393–395. 10.1126/science.1131295
    1. Mitchell D. J., McNaughton N., Flanagan D., Kirk I. J. (2008). Frontal-midline theta from the perspective of hippocampal “theta.”. Progr. Neurobiol. 86 156–185. 10.1016/j.pneurobio.2008.09.005
    1. Morecraft R. J., Tanji J. (2009). Cingulofrontal interactions and the cingulate motor areas. Cingulate Neurobiol. Dis. 113–144.
    1. Mullen T., Kothe C., Chi Y. M., Ojeda A., Kerth T., Makeig S., et al. (2013). “Real-time modeling and 3D visualization of source dynamics and connectivity using wearable EEG,” in Proceedings of the 2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Osaka, 2184–2187. 10.1109/EMBC.2013.6609968
    1. Nan W., Rodrigues J. P., Ma J., Qu X., Wan F., Mak P.-I., et al. (2012). Individual alpha neurofeedback training effect on short term memory. Int. J. Psychophysiol. 86 83–87. 10.1016/j.ijpsycho.2012.07.182
    1. Owen A. M., Hampshire A., Grahn J. A., Stenton R., Dajani S., Burns A. S., et al. (2010). Putting brain training to the test. Nature 465 775–778. 10.1038/nature09042
    1. Pagnoni G., Cekic M. (2007). Age effects on gray matter volume and attentional performance in Zen meditation. Neurobiol. Aging 28 1623–1627. 10.1016/j.neurobiolaging.2007.06.008
    1. Peeters F., Ronner J., Bodar L., van Os J., Lousberg R. (2014). Validation of a neurofeedback paradigm: manipulating frontal EEG alpha-activity and its impact on mood. Int. J. Psychophysiol. 93 116–120. 10.1016/j.ijpsycho.2013.06.010
    1. Phillips J. M., Vinck M., Everling S., Womelsdorf T. (2014). A long-range fronto-parietal 5- to 10-Hz network predicts “top-down” controlled guidance in a task-switch paradigm. Cereb. Cortex 24, 1996–2008. 10.1093/cercor/bht050
    1. Poe G. R., Nitz D. A., McNaughton B. L., Barnes C. A. (2000). Experience-dependent phase-reversal of hippocampal neuron firing during REM sleep. Brain Res. 855, 176–180. 10.1016/S0006-8993(99)02310-0
    1. Price D. D., Finniss D. G., Benedetti F. (2008). A comprehensive review of the placebo effect: recent advances and current thought. Annu. Rev. Psychol. 59, 565–590. 10.1146/annurev.psych.59.113006.095941
    1. Rabipour S., Raz A. (2012). Training the brain: fact and fad in cognitive and behavioral remediation. Brain Cogn. 79 159–179. 10.1016/j.bandc.2012.02.006
    1. Raichle M. E. (2015). The Brain’s default mode network. Annu. Rev. Neurosci. 38 433–447. 10.1146/annurev-neuro-071013-014030
    1. Roozendaal B. (2000). Glucocorticoids and the regulation of memory consolidation. Psychoneuroendocrinology 25, 213–238. 10.1016/S0306-4530(99)00058-X
    1. Scheeringa R., Bastiaansen M. C. M., Petersson K. M., Oostenveld R., Norris D. G., Hagoort P. (2008). Frontal theta EEG activity correlates negatively with the default mode network in resting state. Int. J. Psychophysiol. 67 242–251. 10.1016/j.ijpsycho.2007.05.017
    1. Shackman A. J., Salomons T. V., Slagter H. A., Fox A. S., Winter J. J., Davidson R. J. (2011). The integration of negative affect, pain and cognitive control in the cingulate cortex. Nat. Rev. Neurosci. 12 154–167. 10.1038/nrn2994
    1. Shors T. J. (2014). The adult brain makes new neurons, and effortful learning keeps them alive. Curr. Dir. Psychol. Sci. 23, 311–318. 10.1177/0963721414540167
    1. Shors T. J., Anderson M. L., Curlik D. M., II, Nokia M. S. (2012). Use it or lose it: how neurogenesis keeps the brain fit for learning. Behav. Brain Res. 227, 450–458. 10.1016/j.bbr.2011.04.023
    1. Sitaram R., Ros T., Stoeckel L., Haller S., Scharnowski F., Lewis-Peacock J., et al. (2017). Closed-loop brain training: the science of neurofeedback. Nat. Rev. Neurosci. 18 86.
    1. Staufenbiel S. M., Brouwer A.-M., Keizer A. W., van Wouwe N. C. (2014). Effect of beta and gamma neurofeedback on memory and intelligence in the elderly. Biol. Psychol. 95 74–85. 10.1016/j.biopsycho.2013.05.020
    1. Steriade M., Timofeev I. (2003). Neuronal plasticity in thalamocortical networks during sleep and waking oscillations. Neuron 37 563–576. 10.1016/S0896-6273(03)00065-5
    1. Swick D., Turken U. (2002). Dissociation between conflict detection and error monitoring in the human anterior cingulate cortex. Proc. Nat. Acad. Sci. 99, 16354–16359. 10.1073/pnas.252521499
    1. Tang Y.-Y., Posner M. I. (2014). Training brain networks and states. Trends Cogn. Sci. 18 345–350. 10.1016/j.tics.2014.04.002
    1. van de Vijver I., Ridderinkhof K. R., Cohen M. X. (2011). Frontal oscillatory dynamics predict feedback learning and action adjustment. J. Cogn. Neurosci. 23 4106–4121. 10.1162/jocn_a_00110
    1. Van Praag H., Schinder A. F., Christie B. R., Toni N., Palmer T. D., Gage F. H. (2002). Functional neurogenesis in the adult hippocampus. Nature 415, 1030–1034. 10.1038/4151030a
    1. Vernon D., Dempster T., Bazanova O., Rutterford N., Pasqualini M., Andersen S. (2009). Alpha neurofeedback training for performance enhancement: reviewing the methodology. J. Neurother. 13 214–227.
    1. von Stein A., Sarnthein J. (2000). Different frequencies for different scales of cortical integration: from local gamma to long range alpha/theta synchronization. Int. J. Psychophysiol. 38 301–313. 10.1016/S0167-8760(00)00172-0
    1. Wang J.-R., Hsieh S. (2013). Neurofeedback training improves attention and working memory performance. Clin. Neurophysiol. 124 2406–2420. 10.1016/j.clinph.2013.05.020
    1. Wang S., Young K. M. (2014). White matter plasticity in adulthood. Neuroscience 276 148–160. 10.1016/j.neuroscience.2013.10.018
    1. Wei J., Ke Y., Sun C., An X., Qi H., Ming D., et al. (2017). “The timing of theta phase synchronization accords with vigilant attention,” in Proceedings of the 2017 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) (Jeju Island: IEEE; ), 2442–2445.
    1. Wong A., Leahy W., Marcus N., Sweller J. (2012). Cognitive load theory, the transient information effect and e-learning. Learn. Instruct. 22 449–457. 10.1016/j.learninstruc.2012.05.004
    1. Zoefel B., Huster R. J., Herrmann C. S. (2011). Neurofeedback training of the upper alpha frequency band in EEG improves cognitive performance. Neuroimage 54 1427–1431. 10.1016/j.neuroimage.2010.08.078

Source: PubMed

3
Abonnieren