Capsaicin, Nociception and Pain

Bárbara Frias, Adalberto Merighi, Bárbara Frias, Adalberto Merighi

Abstract

Capsaicin, the pungent ingredient of the hot chili pepper, is known to act on the transient receptor potential cation channel vanilloid subfamily member 1 (TRPV1). TRPV1 is involved in somatic and visceral peripheral inflammation, in the modulation of nociceptive inputs to spinal cord and brain stem centers, as well as the integration of diverse painful stimuli. In this review, we first describe the chemical and pharmacological properties of capsaicin and its derivatives in relation to their analgesic properties. We then consider the biochemical and functional characteristics of TRPV1, focusing on its distribution and biological effects within the somatosensory and viscerosensory nociceptive systems. Finally, we discuss the use of capsaicin as an agonist of TRPV1 to model acute inflammation in slices and other ex vivo preparations.

Keywords: TRPV1 receptor; analgesia; capsaicin; nociception; resinferatoxin; sensitization; somatic pain; vanilloids; visceral pain.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Illustration depicting TRPV1 receptor distribution in body organs and the main visceral and somatic pain pathways. TRPV1 is found in several body organs and when its expression increases, it contributes to the development of visceral and somatic pain. Afferent fibers innervating the viscera project to the CNS following the course of autonomic sympathetic and parasympathetic nerves. Afferent sympathetic fibers originating from the thoracolumbar DRGs follow the hypogastric, lumbar and splanchnic nerves (SN) after traversing the sympathetic prevertebral (celiac ganglion—CG, superior mesenteric ganglion- SMG and inferior mesenteric ganglia—IMG) and paravertebral ganglia (in magenta). Ascending projections from lamina I neurons in the spinal cord travel along the spinoparabrachial pathway (SPBP) to the parabrachial nucleus (PBN), whereas projections from deep dorsal horn neurons (STTN) travel along the spinothalamic tract (STT) to thalamic nuclei (VPMN and VPLN). The parasympathetic sensory innervation (in green) follows the vagus and pelvic nerve that terminate in the brainstem and lumbosacral cord, respectively. The gastrointestinal tract also has its own autonomic intrinsic nervous system—the enteric nervous system (ENS) — constituted by the submucosal (Meissner’s) and myenteric (Auerbach’s) plexuses. Enteric plexuses play a key role for communication with the autonomic extrinsic nervous system in several GI functions. Nociceptive somatic inputs from all the parts of the body, except the head, are transmitted to spinothalamic projection neurons in the dorsal horn of the spinal cord. These neurons in turn, reach the neurons in the ventro-postero lateral nucleus of the thalamus (VPLN) through the STT. Nociceptive somatic inputs (for simplicity, only the skin is depicted but these inputs also derive from the muscles, tendons, bones and joints) from the head are relayed to the spinal nucleus of the trigeminal nerve (SNTN) and then, along the trigeminothalamic fibers to the ventro-postero medial nucleus of the thalamus (VPMN). Finally, nociceptive input is transferred to the sensory cortex where it is perceived as pain. Affective, emotional and autonomic aspects of pain are processed in other cortical areas (black).
Figure 2
Figure 2
Schematics of TRPV1 localization and function in the urinary bladder and its contribution to bladder dysfunction. In the urinary bladder, TRPV1 can be found in sensory afferents and in the urothelium. Upon mechanical injury or inflammation TRPV1 levels are increased together with those of substance P and CGRP (stored in large granular vesicles—LGVs—large gray spheres) Nerve growth factor (NGF—orange spheres) is also released by the detrusor smooth muscle and the urothelium (orange arrows). NGF activates tropomyosin-related kinase A (TrkA) receptors expressed on afferent terminals, contributing to sensitization of neuronal TRPV1. The TrkA-NGF complex is internalized and retrogradely transported (dashed line) to neurons in lumbosacral dorsal root ganglia (DRGs), where de novo transcription of TRPV1 and additional sensory ion channels (including purinergic P2X3 receptor for ATP—small red spheres) is initiated. These newly synthesized ion channels are anterogradely transported back to afferent terminals to contribute to peripheral hypersensitivity. The urothelium also potentially produces brain-derived nerve factor (BDNF—blue spheres), which binds to tropomyosin-related kinase B (TrkB) receptors, further contributing to sensitization. This also participates to the development of bladder over activity, as shown by the increase number of bladder contractions in the graph at bottom right of the figure.
Figure 3
Figure 3
Schematic drawing of the spinal cord slices preparations exploiting the agonist action of capsaicin onto TRPV1 expressing neurons and fibers in the dorsal horn. Top panel shows at left the laminar distribution of primary afferent terminals originating from different classes of nociceptors in DRG neurons; at right the distribution of TRPV1 in peptidergic terminals (yellow dots) originating from skin and viscera in laminae I-II. Receptors are less densely localized in the outer part of lamina II (IIo) as compared to lamina I and the inner part of lamina II (IIi). Lamina II also contains TRPV1-IR interneurons that are spared in organotypically cultured slices (bottom panel). For simplicity, proprioceptive muscle afferents are not represented. In acute slices (middle panel) primary afferents are severed at dorsal roots but their terminals remain functional for several hours allowing performing electrophysiological recording, calcium imaging and proto-oncogene c-Fos/pERK immunocytochemistry. The black dots indicate the distribution of proto-oncogene c-Fos/pERK-IR neurons after capsaicin challenge. White dots exemplify the location of the cells responding to the vanilloid with increased intracellular calcium concentration in real-time confocal imaging. In organotypic cultures (bottom panel) sectioned primary afferents degenerate and thus, only the TRPV1-IR lamina II neurons are spared. This type of preparation is useful to isolate the effects of TRPV1 activation on these neurons, in the absence of primary afferent input.

References

    1. Thresh J.C. Isolation of capsacin. Pharm. J. Tr. 1876;6:941–947.
    1. Nelson E.K. The constitution of capsaicin, the pungent principle of capsicum. II. J. Am. Chem. Soc. 1920;42:597–599.
    1. De A.K., editor. Capsicum: The Genus Capsicum. CRC Press; London, UK: 2003.
    1. Musfiroh I., Mutakin M., Angelina T., Muchtaridi M. Capsaicin level of various capsicum fruits. Int. J. Pharm. Pharm. Sci. 2013;5:248–251.
    1. Caterina M.J., Schumacher M.A., Tominaga M., Rosen T.A., Levine J.D., Julius D. The capsaicin receptor: A heat-activated ion channel in the pain pathway. Nature. 1997;389:816–824.
    1. Krause J.E., Chenard B.L., Cortright D.N. Transient receptor potential ion channels as targets for the discovery of pain therapeutics. Curr. Opin. Investig. Drugs. 2005;6:48–57.
    1. Hayes P., Meadows H.J., Gunthorpe M.J., Harries M.H., Duckworth D.M., Cairns W., Harrison D.C., Clarke C.E., Ellington K., Prinjha R.K., et al. Cloning and functional expression of a human orthologue of rat vanilloid receptor-1. Pain. 2000;88:205–215. doi: 10.1016/S0304-3959(00)00353-5.
    1. Mezey E., Toth Z.E., Cortright D.N., Arzubi M.K., Krause J.E., Elde R., Guo A., Blumberg P.M., Szallasi A. Distribution of mrna for vanilloid receptor subtype 1 (vr1), and vr1-like immunoreactivity, in the central nervous system of the rat and human. Proc. Natl. Acad. Sci. USA. 2000;97:3655–3660. doi: 10.1073/pnas.97.7.3655.
    1. Birder L.A., Kanai A.J., de Groat W.C., Kiss S., Nealen M.L., Burke N.E., Dineley K.E., Watkins S., Reynolds I.J., Caterina M.J. Vanilloid receptor expression suggests a sensory role for urinary bladder epithelial cells. Proc. Natl. Acad. Sci. USA. 2001;98:13396–13401. doi: 10.1073/pnas.231243698.
    1. Cavanaugh D.J., Chesler A.T., Braz J.M., Shah N.M., Julius D., Basbaum A.I. Restriction of transient receptor potential vanilloid-1 to the peptidergic subset of primary afferent neurons follows its developmental downregulation in nonpeptidergic neurons. J. Neurosci. 2011;31:10119–10127. doi: 10.1523/JNEUROSCI.1299-11.2011.
    1. Mishra S.K., Hoon M.A. Ablation of trpv1 neurons reveals their selective role in thermal pain sensation. Mol. Cell. Neurosci. 2010;43:157–163. doi: 10.1016/j.mcn.2009.10.006.
    1. Mishra S.K., Tisel S.M., Orestes P., Bhangoo S.K., Hoon M.A. Trpv1-lineage neurons are required for thermal sensation. EMBO J. 2011;30:582–593. doi: 10.1038/emboj.2010.325.
    1. Cristino L., de Petrocellis L., Pryce G., Baker D., Guglielmotti V., di Marzo V. Immunohistochemical localization of cannabinoid type 1 and vanilloid transient receptor potential vanilloid type 1 receptors in the mouse brain. Neuroscience. 2006;139:1405–1415. doi: 10.1016/j.neuroscience.2006.02.074.
    1. Ferrini F., Salio C., Vergnano A.M., Merighi A. Vanilloid receptor-1 (trpv1)-dependent activation of inhibitory neurotransmission in spinal substantia gelatinosa neurons of mouse. Pain. 2007;129:195–209. doi: 10.1016/j.pain.2007.01.009.
    1. Cavanaugh D.J., Chesler A.T., Jackson A.C., Sigal Y.M., Yamanaka H., Grant R., O'Donnell D., Nicoll R.A., Shah N.M., Julius D., et al. Trpv1 reporter mice reveal highly restricted brain distribution and functional expression in arteriolar smooth muscle cells. J. Neurosci. 2011;31:5067–5077. doi: 10.1523/JNEUROSCI.6451-10.2011.
    1. Nilius B., Owsianik G. The transient receptor potential family of ion channels. Genome Biol. 2011;12:218. doi: 10.1186/gb-2011-12-3-218.
    1. Caterina M.J., Leffler A., Malmberg A.B., Martin W.J., Trafton J., Petersen-Zeitz K.R., Koltzenburg M., Basbaum A.I., Julius D. Impaired nociception and pain sensation in mice lacking the capsaicin receptor. Science. 2000;288:306–313. doi: 10.1126/science.288.5464.306.
    1. Smart D., Gunthorpe M.J., Jerman J.C., Nasir S., Gray J., Muir A.I., Chambers J.K., Randall A.D., Davis J.B. The endogenous lipid anandamide is a full agonist at the human vanilloid receptor (hvr1) Br. J. Pharmacol. 2000;129:227–230. doi: 10.1038/sj.bjp.0703050.
    1. Correll C.C., Phelps P.T., Anthes J.C., Umland S., Greenfeder S. Cloning and pharmacological characterization of mouse trpv1. Neurosci Lett. 2004;370:55–60. doi: 10.1016/j.neulet.2004.07.058.
    1. Smart D., Jerman J.C., Gunthorpe M.J., Brough S.J., Ranson J., Cairns W., Hayes P.D., Randall A.D., Davis J.B. Characterisation using flipr of human vanilloid vr1 receptor pharmacology. Eur. J. Pharmacol. 2001;417:51–58. doi: 10.1016/S0014-2999(01)00901-3.
    1. Takayama Y., Uta D., Furue H., Tominaga M. Pain-enhancing mechanism through interaction between trpv1 and anoctamin 1 in sensory neurons. Proc. Natl. Acad. Sci. USA. 2015;112:5213–5218. doi: 10.1073/pnas.1421507112.
    1. Sharma S.K., Vij A.S., Sharma M. Mechanisms and clinical uses of capsaicin. Eur. J. Pharmacol. 2013;720:55–62. doi: 10.1016/j.ejphar.2013.10.053.
    1. Tympanidis P., Casula M.A., Yiangou Y., Terenghi G., Dowd P., Anand P. Increased vanilloid receptor vr1 innervation in vulvodynia. Eur. J. Pain. 2004;8:129–133. doi: 10.1016/S1090-3801(03)00085-5.
    1. Geppetti P., Trevisani M. Activation and sensitisation of the vanilloid receptor: Role in gastrointestinal inflammation and function. Br. J. Pharmacol. 2004;141:1313–1320. doi: 10.1038/sj.bjp.0705768.
    1. Yiangou Y., Facer P., Dyer N.H., Chan C.L., Knowles C., Williams N.S., Anand P. Vanilloid receptor 1 immunoreactivity in inflamed human bowel. Lancet. 2001;357:1338–1339. doi: 10.1016/S0140-6736(00)04503-7.
    1. Bhutani M., Pathak A.K., Nair A.S., Kunnumakkara A.B., Guha S., Sethi G., Aggarwal B.B. Capsaicin is a novel blocker of constitutive and interleukin-6-inducible stat3 activation. Clin. Cancer Res. 2007;13:3024–3032. doi: 10.1158/1078-0432.CCR-06-2575.
    1. Donnerer J., Liebmann I. The nk1 receptor antagonist sr140333 inhibits capsaicin-induced erk phosphorylation in sensory neurons. Pharmacology. 2006;77:144–149. doi: 10.1159/000094022.
    1. Ye X.Y., Ling Q.Z., Chen S.J. Identification of a potential target of capsaicin by computational target fishing. Evid. Based Complement. Alternat. Med. 2015;2015:983951. doi: 10.1155/2015/983951.
    1. Merighi A., Salio C., Ghirri A., Lossi L., Ferrini F., Betelli C., Bardoni R. Bdnf as a pain modulator. Prog. Neurobiol. 2008;85:297–317. doi: 10.1016/j.pneurobio.2008.04.004.
    1. Bonica J.J. Evolution and current status of pain programs. J. Pain Symptom Manage. 1990;5:368–374. doi: 10.1016/0885-3924(90)90032-F.
    1. Hunt S.P., Mantyh P.W. The molecular dynamics of pain control. Nat. Rev. Neurosci. 2001;2:83–91. doi: 10.1038/35053509.
    1. Cervero F., Laird J.M. Visceral pain. Lancet. 1999;353:2145–2148. doi: 10.1016/S0140-6736(99)01306-9.
    1. McMahon S.B., Dmitrieva N., Koltzenburg M. Visceral pain. Br. J. Anaesth. 1995;75:132–144. doi: 10.1093/bja/75.2.132.
    1. Abrahams V.C., Swett J.E. The pattern of spinal and medullary projections from a cutaneous nerve and a muscle nerve of the forelimb of the cat: A study using the transganglionic transport of hrp. J. Comp. Neurol. 1986;246:70–84. doi: 10.1002/cne.902460105.
    1. Morgan C., Nadelhaft I., deGroat W.C. The distribution within the spinal cord of visceral primary afferent axons carried by the lumbar colonic nerve of the cat. Brain Res. 1986;398:11–17. doi: 10.1016/0006-8993(86)91244-8.
    1. Giamberardino M.A. Recent and forgotten aspects of visceral pain. Eur. J. Pain. 1999;3:77–92. doi: 10.1053/eujp.1999.0117.
    1. Sikandar S., Dickenson A.H. Visceral pain: The ins and outs, the ups and downs. Curr. Opin. Support. Palliat. Care. 2012;6:17–26. doi: 10.1097/SPC.0b013e32834f6ec9.
    1. Blackshaw L.A. Visceral pain readouts in experimental medicine. Neurogastroenterol. Motil. 2012;24:891–894. doi: 10.1111/nmo.12014.
    1. Sengupta J.N. Visceral pain: The neurophysiological mechanism. Handb. Exp. Pharmacol. 2009:31–74.
    1. Gebhart G.F.J.J. Bonica lecture--2000: Physiology, pathophysiology, and pharmacology of visceral pain. Reg. Anesth. Pain Med. 2000;25:632–638. doi: 10.1053/rapm.2000.18187.
    1. Gebhart G.F. Pathobiology of visceral pain: Molecular mechanisms and therapeutic implications iv. Visceral afferent contributions to the pathobiology of visceral pain. Am. J. Physiol. Gastrointest. Liver Physiol. 2000;278:G834–G838.
    1. Todd A.J. Anatomy of primary afferents and projection neurones in the rat spinal dorsal horn with particular emphasis on substance p and the neurokinin 1 receptor. Exp. Physiol. 2002;87:245–249. doi: 10.1113/eph8702351.
    1. Bester H., Menendez L., Besson J.M., Bernard J.F. Spino (trigemino) parabrachiohypothalamic pathway: Electrophysiological evidence for an involvement in pain processes. J. Neurophysiol. 1995;73:568–585.
    1. Bushnell M.C., Duncan G.H. Sensory and affective aspects of pain perception: Is medial thalamus restricted to emotional issues? Exp. Brain Res. 1989;78:415–418. doi: 10.1007/BF00228914.
    1. Groenewegen H.J. Organization of the afferent connections of the mediodorsal thalamic nucleus in the rat, related to the mediodorsal-prefrontal topography. Neuroscience. 1988;24:379–431. doi: 10.1016/0306-4522(88)90339-9.
    1. Mertz H., Morgan V., Tanner G., Pickens D., Price R., Shyr Y., Kessler R. Regional cerebral activation in irritable bowel syndrome and control subjects with painful and nonpainful rectal distention. Gastroenterology. 2000;118:842–848. doi: 10.1016/S0016-5085(00)70170-3.
    1. Furness J.B. Types of neurons in the enteric nervous system. J. Auton Nerv. Syst. 2000;81:87–96. doi: 10.1016/S0165-1838(00)00127-2.
    1. Furness J.B. Novel gut afferents: Intrinsic afferent neurons and intestinofugal neurons. Auton Neurosci. 2006;125:81–85. doi: 10.1016/j.autneu.2006.01.007.
    1. Meghvansi M.K., Siddiqui S., Khan M.H., Gupta V.K., Vairale M.G., Gogoi H.K., Singh L. Naga chilli: A potential source of capsaicinoids with broad-spectrum ethnopharmacological applications. J. Ethnopharmacol. 2010;132:1–14. doi: 10.1016/j.jep.2010.08.034.
    1. Bhagowati R.R., Changkija S. Genetic variability and traditional practices in naga king chili of nagaland. Asian Agri-Hist. 2009;13:171–180.
    1. Vetter I., Cheng W., Peiris M., Wyse B.D., Roberts-Thomson S.J., Zheng J., Monteith G.R., Cabot P.J. Rapid, opioid-sensitive mechanisms involved in transient receptor potential vanilloid 1 sensitization. J. Biol. Chem. 2008;283:19540–19550. doi: 10.1074/jbc.M707865200.
    1. Liapi A., Wood J.N. Extensive co-localization and heteromultimer formation of the vanilloid receptor-like protein trpv2 and the capsaicin receptor trpv1 in the adult rat cerebral cortex. Eur. J. Neurosci. 2005;22:825–834. doi: 10.1111/j.1460-9568.2005.04270.x.
    1. Wang C., Hu H.Z., Colton C.K., Wood J.D., Zhu M.X. An alternative splicing product of the murine trpv1 gene dominant negatively modulates the activity of trpv1 channels. J. Biol. Chem. 2004;279:37423–37430. doi: 10.1074/jbc.M407205200.
    1. Chu C., Zavala K., Fahimi A., Lee J., Xue Q., Eilers H., Schumacher M.A. Transcription factors sp1 and sp4 regulate trpv1 gene expression in rat sensory neurons. Mol. Pain. 2011;7:44. doi: 10.1186/1744-8069-7-44.
    1. Schumacher M.A., Eilers H. Trpv1 splice variants: Structure and function. Front. Biosci. (Landmark Ed.) 2010;15:872–882. doi: 10.2741/3651.
    1. Lyall V., Heck G.L., Vinnikova A.K., Ghosh S., Phan T.H., Alam R.I., Russell O.F., Malik S.A., Bigbee J.W., DeSimone J.A. The mammalian amiloride-insensitive non-specific salt taste receptor is a vanilloid receptor-1 variant. J. Physiol. 2004;558:147–159. doi: 10.1113/jphysiol.2004.065656.
    1. Charrua A., Cruz C.D., Narayanan S., Gharat L., Gullapalli S., Cruz F., Avelino A. Grc-6211, a new oral specific trpv1 antagonist, decreases bladder overactivity and noxious bladder input in cystitis animal models. J. Urol. 2009;181:379–386. doi: 10.1016/j.juro.2008.08.121.
    1. Tominaga M., Caterina M.J., Malmberg A.B., Rosen T.A., Gilbert H., Skinner K., Raumann B.E., Basbaum A.I., Julius D. The cloned capsaicin receptor integrates multiple pain-producing stimuli. Neuron. 1998;21:531–543. doi: 10.1016/S0896-6273(00)80564-4.
    1. Alexander S.P., Catterall W.A., Kelly E., Marrion N., Peters J.A., Benson H.E., Faccenda E., Pawson A.J., Sharman J.L., Southan C., et al. The concise guide to pharmacology 2015/16: Voltage-gated ion channels. Br. J. Pharmacol. 2015;172:5904–5941. doi: 10.1111/bph.13349.
    1. Planells-Cases R., Garcia-Sanz N., Morenilla-Palao C., Ferrer-Montiel A. Functional aspects and mechanisms of trpv1 involvement in neurogenic inflammation that leads to thermal hyperalgesia. Pflugers Arch. 2005;451:151–159. doi: 10.1007/s00424-005-1423-5.
    1. Szallasi A., Cortright D.N., Blum C.A., Eid S.R. The vanilloid receptor trpv1: 10 years from channel cloning to antagonist proof-of-concept. Nat. Rev. Drug Discov. 2007;6:357–372. doi: 10.1038/nrd2280.
    1. Mohapatra D.P., Nau C. Regulation of ca2+-dependent desensitization in the vanilloid receptor trpv1 by calcineurin and camp-dependent protein kinase. J. Biol. Chem. 2005;280:13424–13432. doi: 10.1074/jbc.M410917200.
    1. Mohapatra D.P., Nau C. Desensitization of capsaicin-activated currents in the vanilloid receptor trpv1 is decreased by the cyclic amp-dependent protein kinase pathway. J. Biol. Chem. 2003;278:50080–50090. doi: 10.1074/jbc.M306619200.
    1. Rosenbaum T., Simon S.A. Trpv1 receptors and signal transduction. In: Liedtke W.B., Heller S., editors. Trp ion Channel Function in Sensory Transduction and Cellular Signaling Cascades. Taylor & Francis Group; Boca Raton, FL, USA: 2007.
    1. Ma W., Quirion R. Inflammatory mediators modulating the transient receptor potential vanilloid 1 receptor: Therapeutic targets to treat inflammatory and neuropathic pain. Expert Opin. Ther. Targets. 2007;11:307–320. doi: 10.1517/14728222.11.3.307.
    1. Yang J., Yu H.M., Zhou X.D., Kolosov V.P., Perelman J.M. Study on trpv1-mediated mechanism for the hypersecretion of mucus in respiratory inflammation. Mol. Immunol. 2013;53:161–171. doi: 10.1016/j.molimm.2012.06.015.
    1. Szallasi A., Blumberg P.M. Complex regulation of trpv1 by vanilloids. In: Liedtke W.B., Heller S., editors. Trp Ion Channel Function in Sensory Transduction and Cellular Signaling Cascades. Taylor & Francis Group; Boca Raton, FL, USA: 2007.
    1. Planells-Cases R., Valente P., Ferrer-Montiel A., Qin F., Szallasi A. Complex regulation of trpv1 and related thermo-trps: Implications for therapeutic intervention. Adv. Exp. Med. Biol. 2011;704:491–515.
    1. Kim S., Kang C., Shin C.Y., Hwang S.W., Yang Y.D., Shim W.S., Park M.Y., Kim E., Kim M., Kim B.M., et al. Trpv1 recapitulates native capsaicin receptor in sensory neurons in association with fas-associated factor 1. J. Neurosci. 2006;26:2403–2412. doi: 10.1523/JNEUROSCI.4691-05.2006.
    1. Richardson J.D., Vasko M.R. Cellular mechanisms of neurogenic inflammation. J. Pharmacol. Exp. Ther. 2002;302:839–845. doi: 10.1124/jpet.102.032797.
    1. Veronesi B., Oortgiesen M. The trpv1 receptor: Target of toxicants and therapeutics. Toxicol. Sci. 2006;89:1–3. doi: 10.1093/toxsci/kfj034.
    1. Jordt S.E., Tominaga M., Julius D. Acid potentiation of the capsaicin receptor determined by a key extracellular site. Proc. Natl. Acad. Sci. USA. 2000;97:8134–8139. doi: 10.1073/pnas.100129497.
    1. Tominaga M., Wada M., Masu M. Potentiation of capsaicin receptor activity by metabotropic atp receptors as a possible mechanism for atp-evoked pain and hyperalgesia. Proc. Natl. Acad. Sci. USA. 2001;98:6951–6956. doi: 10.1073/pnas.111025298.
    1. Ahern G.P., Wang X., Miyares R.L. Polyamines are potent ligands for the capsaicin receptor trpv1. J. Biol. Chem. 2006;281:8991–8995. doi: 10.1074/jbc.M513429200.
    1. Hwang S.W., Cho H., Kwak J., Lee S.Y., Kang C.J., Jung J., Cho S., Min K.H., Suh Y.G., Kim D., et al. Direct activation of capsaicin receptors by products of lipoxygenases: Endogenous capsaicin-like substances. Proc. Natl. Acad. Sci. USA. 2000;97:6155–6160. doi: 10.1073/pnas.97.11.6155.
    1. McHugh D., McMaster R.S., Pertwee R.G., Roy S., Mahadevan A., Razdan R.K., Ross R.A. Novel compounds that interact with both leukotriene b4 receptors and vanilloid trpv1 receptors. J. Pharmacol. Exp. Ther. 2006;316:955–965. doi: 10.1124/jpet.105.095992.
    1. Huang S.M., Bisogno T., Trevisani M., Al-Hayani A., De Petrocellis L., Fezza F., Tognetto M., Petros T.J., Krey J.F., Chu C.J., et al. An endogenous capsaicin-like substance with high potency at recombinant and native vanilloid vr1 receptors. Proc. Natl. Acad. Sci. USA. 2002;99:8400–8405. doi: 10.1073/pnas.122196999.
    1. Zygmunt P.M., Petersson J., Andersson D.A., Chuang H., Sorgard M., Di Marzo V., Julius D., Hogestatt E.D. Vanilloid receptors on sensory nerves mediate the vasodilator action of anandamide. Nature. 1999;400:452–457.
    1. Moriyama T., Higashi T., Togashi K., Iida T., Segi E., Sugimoto Y., Tominaga T., Narumiya S., Tominaga M. Sensitization of trpv1 by ep1 and ip reveals peripheral nociceptive mechanism of prostaglandins. Mol. Pain. 2005;1:3. doi: 10.1186/1744-8069-1-3.
    1. Cesare P., Dekker L.V., Sardini A., Parker P.J., McNaughton P.A. Specific involvement of pkc-epsilon in sensitization of the neuronal response to painful heat. Neuron. 1999;23:617–624. doi: 10.1016/S0896-6273(00)80813-2.
    1. Chuang H.H., Prescott E.D., Kong H., Shields S., Jordt S.E., Basbaum A.I., Chao M.V., Julius D. Bradykinin and nerve growth factor release the capsaicin receptor from ptdins(4,5)p2-mediated inhibition. Nature. 2001;411:957–962. doi: 10.1038/35082088.
    1. Shin J., Cho H., Hwang S.W., Jung J., Shin C.Y., Lee S.Y., Kim S.H., Lee M.G., Choi Y.H., Kim J., et al. Bradykinin-12-lipoxygenase-vr1 signaling pathway for inflammatory hyperalgesia. Proc. Natl. Acad. Sci. USA. 2002;99:10150–10155. doi: 10.1073/pnas.152002699.
    1. Negri L., Lattanzi R., Giannini E., Colucci M., Margheriti F., Melchiorri P., Vellani V., Tian H., de Felice M., Porreca F. Impaired nociception and inflammatory pain sensation in mice lacking the prokineticin receptor pkr1: Focus on interaction between pkr1 and the capsaicin receptor trpv1 in pain behavior. J. Neurosci. 2006;26:6716–6727. doi: 10.1523/JNEUROSCI.5403-05.2006.
    1. Premkumar L.S., Ahern G.P. Induction of vanilloid receptor channel activity by protein kinase c. Nature. 2000;408:985–990. doi: 10.1038/35050121.
    1. McNamara F.N., Randall A., Gunthorpe M.J. Effects of piperine, the pungent component of black pepper, at the human vanilloid receptor (trpv1) Br. J. Pharmacol. 2005;144:781–790. doi: 10.1038/sj.bjp.0706040.
    1. Xu H., Blair N.T., Clapham D.E. Camphor activates and strongly desensitizes the transient receptor potential vanilloid subtype 1 channel in a vanilloid-independent mechanism. J. Neurosci. 2005;25:8924–8937. doi: 10.1523/JNEUROSCI.2574-05.2005.
    1. Cuypers E., Yanagihara A., Karlsson E., Tytgat J. Jellyfish and other cnidarian envenomations cause pain by affecting trpv1 channels. FEBS Lett. 2006;580:5728–5732. doi: 10.1016/j.febslet.2006.09.030.
    1. Siemens J., Zhou S., Piskorowski R., Nikai T., Lumpkin E.A., Basbaum A.I., King D., Julius D. Spider toxins activate the capsaicin receptor to produce inflammatory pain. Nature. 2006;444:208–212. doi: 10.1038/nature05285.
    1. Bohlen C.J., Priel A., Zhou S., King D., Siemens J., Julius D. A bivalent tarantula toxin activates the capsaicin receptor, trpv1, by targeting the outer pore domain. Cell. 2010;141:834–845. doi: 10.1016/j.cell.2010.03.052.
    1. Sluka K.A., Willis W.D. The effects of g-protein and protein kinase inhibitors on the behavioral responses of rats to intradermal injection of capsaicin. Pain. 1997;71:165–178. doi: 10.1016/S0304-3959(97)03371-X.
    1. Zou X., Lin Q., Willis W.D. Role of protein kinase a in phosphorylation of nmda receptor 1 subunits in dorsal horn and spinothalamic tract neurons after intradermal injection of capsaicin in rats. Neuroscience. 2002;115:775–786. doi: 10.1016/S0306-4522(02)00490-6.
    1. Sun R., Yan J., Willis W.D. Activation of protein kinase b/akt in the periphery contributes to pain behavior induced by capsaicin in rats. Neuroscience. 2007;144:286–294. doi: 10.1016/j.neuroscience.2006.08.084.
    1. Gamse R., Petsche U., Lembeck F., Jancso G. Capsaicin applied to peripheral nerve inhibits axoplasmic transport of substance p and somatostatin. Brain Res. 1982;239:447–462. doi: 10.1016/0006-8993(82)90521-2.
    1. Anand P., Bley K. Topical capsaicin for pain management: Therapeutic potential and mechanisms of action of the new high-concentration capsaicin 8% patch. Br. J. Anaesth. 2011;107:490–502. doi: 10.1093/bja/aer260.
    1. Johansen M.E., Reilly C.A., Yost G.S. Trpv1 antagonists elevate cell surface populations of receptor protein and exacerbate trpv1-mediated toxicities in human lung epithelial cells. Toxicol. Sci. 2006;89:278–286. doi: 10.1093/toxsci/kfi292.
    1. Thomas K.C., Sabnis A.S., Johansen M.E., Lanza D.L., Moos P.J., Yost G.S., Reilly C.A. Transient receptor potential vanilloid 1 agonists cause endoplasmic reticulum stress and cell death in human lung cells. J. Pharmacol. Exp. Ther. 2007;321:830–838. doi: 10.1124/jpet.107.119412.
    1. Pan H.L., Khan G.M., Alloway K.D., Chen S.R. Resiniferatoxin induces paradoxical changes in thermal and mechanical sensitivities in rats: Mechanism of action. J. Neurosci. 2003;23:2911–2919.
    1. Nolano M., Simone D.A., Wendelschafer-Crabb G., Johnson T., Hazen E., Kennedy W.R. Topical capsaicin in humans: Parallel loss of epidermal nerve fibers and pain sensation. Pain. 1999;81:135–145. doi: 10.1016/S0304-3959(99)00007-X.
    1. Sikand P., Premkumar L.S. Potentiation of glutamatergic synaptic transmission by protein kinase c-mediated sensitization of trpv1 at the first sensory synapse. J. Physiol. 2007;581:631–647. doi: 10.1113/jphysiol.2006.118620.
    1. Treede R.D., Meyer R.A., Raja S.N., Campbell J.N. Peripheral and central mechanisms of cutaneous hyperalgesia. Prog. Neurobiol. 1992;38:397–421. doi: 10.1016/0301-0082(92)90027-C.
    1. Ringkamp M., Meyer R.A. Physiology of nociceptors. Pain. 2008:97–114.
    1. Simone D.A., Ochoa J. Early and late effects of prolonged topical capsaicin on cutaneous sensibility and neurogenic vasodilatation in humans. Pain. 1991;47:285–294. doi: 10.1016/0304-3959(91)90217-L.
    1. Willis W.D., Coggeshall R.E., editors. Sensory Mechanisms of the Spinal Cord. Primary Afferent Neurons and the Spinal Dorsal Horn. Plenum Press; Berlin, Germany: 2004.
    1. Zou X., Lin Q., Willis W.D. Nmda or non-nmda receptor antagonists attenuate increased fos expression in spinal dorsal horn gabaergic neurons after intradermal injection of capsaicin in rats. Neuroscience. 2001;106:171–182. doi: 10.1016/S0306-4522(01)00175-0.
    1. Millan M.J. Descending control of pain. Prog. Neurobiol. 2002;66:355–474. doi: 10.1016/S0301-0082(02)00009-6.
    1. Doyle M.W., Bailey T.W., Jin Y.H., Andresen M.C. Vanilloid receptors presynaptically modulate cranial visceral afferent synaptic transmission in nucleus tractus solitarius. J. Neurosci. 2002;22:8222–8229.
    1. McGaraughty S., Chu K.L., Bitner R.S., Martino B., El Kouhen R., Han P., Nikkel A.L., Burgard E.C., Faltynek C.R., Jarvis M.F. Capsaicin infused into the pag affects rat tail flick responses to noxious heat and alters neuronal firing in the rvm. J. Neurophysiol. 2003;90:2702–2710. doi: 10.1152/jn.00433.2003.
    1. Palazzo E., de Novellis V., Marabese I., Cuomo D., Rossi F., Berrino L., Rossi F., Maione S. Interaction between vanilloid and glutamate receptors in the central modulation of nociception. Eur. J. Pharmacol. 2002;439:69–75. doi: 10.1016/S0014-2999(02)01367-5.
    1. Starowicz K., Cristino L., Di Marzo V. Trpv1 receptors in the central nervous system: Potential for previously unforeseen therapeutic applications. Curr. Pharm. Des. 2008;14:42–54.
    1. Starowicz K., Maione S., Cristino L., Palazzo E., Marabese I., Rossi F., de Novellis V., Di Marzo V. Tonic endovanilloid facilitation of glutamate release in brainstem descending antinociceptive pathways. J. Neurosci. 2007;27:13739–13749. doi: 10.1523/JNEUROSCI.3258-07.2007.
    1. Palazzo E., Luongo L., de Novellis V., Rossi F., Marabese I., Maione S. Transient receptor potential vanilloid type 1 and pain development. Curr. Opin. Pharmacol. 2012;12:9–17. doi: 10.1016/j.coph.2011.10.022.
    1. Giordano C., Cristino L., Luongo L., Siniscalco D., Petrosino S., Piscitelli F., Marabese I., Gatta L., Rossi F., Imperatore R., et al. Trpv1-dependent and -independent alterations in the limbic cortex of neuropathic mice: Impact on glial caspases and pain perception. Cereb. Cortex. 2012;22:2495–2518. doi: 10.1093/cercor/bhr328.
    1. de Novellis V., Vita D., Gatta L., Luongo L., Bellini G., De Chiaro M., Marabese I., Siniscalco D., Boccella S., Piscitelli F., et al. The blockade of the transient receptor potential vanilloid type 1 and fatty acid amide hydrolase decreases symptoms and central sequelae in the medial prefrontal cortex of neuropathic rats. Mol. Pain. 2011;7:7. doi: 10.1186/1744-8069-7-7.
    1. Avelino A., Cruz C., Nagy I., Cruz F. Vanilloid receptor 1 expression in the rat urinary tract. Neuroscience. 2002;109:787–798. doi: 10.1016/S0306-4522(01)00496-1.
    1. Wang Y., Wang D.H. Protective effect of trpv1 against renal fibrosis via inhibition of tgf-beta/smad signaling in doca-salt hypertension. Mol. Med. 2011;17:1204–1212.
    1. Wang Y., Wang D.H. Aggravated renal inflammatory responses in trpv1 gene knockout mice subjected to doca-salt hypertension. Am. J. Physiol. Ren. Physiol. 2009;297:F1550–F1559. doi: 10.1152/ajprenal.00012.2009.
    1. Conte B., Maggi C.A., Giachetti A., Parlani M., Lopez G., Manzini S. Intraurethral capsaicin produces reflex activation of the striated urethral sphincter in urethane-anesthetized male rats. J. Urol. 1993;150:1271–1277.
    1. Maggi C.A., Giuliani S., Santicioli P., Abelli L., Meli A. Visceromotor responses to calcitonin gene-related peptide (cgrp) in the rat lower urinary tract: Evidence for a transmitter role in the capsaicin-sensitive nerves of the ureter. Eur. J. Pharmacol. 1987;143:73–82. doi: 10.1016/0014-2999(87)90736-9.
    1. Birder L.A. Involvement of the urinary bladder urothelium in signaling in the lower urinary tract. Proc. West. Pharmacol. Soc. 2001;44:85–86.
    1. Lazzeri M., Vannucchi M.G., Zardo C., Spinelli M., Beneforti P., Turini D., Faussone-Pellegrini M.S. Immunohistochemical evidence of vanilloid receptor 1 in normal human urinary bladder. Eur. Urol. 2004;46:792–798. doi: 10.1016/j.eururo.2004.08.007.
    1. Apostolidis A., Brady C.M., Yiangou Y., Davis J., Fowler C.J., Anand P. Capsaicin receptor trpv1 in urothelium of neurogenic human bladders and effect of intravesical resiniferatoxin. Urology. 2005;65:400–405. doi: 10.1016/j.urology.2004.10.007.
    1. Avelino A., Cruz F. Trpv1 (vanilloid receptor) in the urinary tract: Expression, function and clinical applications. Naunyn Schmiedebergs Arch. Pharmacol. 2006;373:287–299. doi: 10.1007/s00210-006-0073-2.
    1. Charrua A., Reguenga C., Cordeiro J.M., Correiade-Sa P., Paule C., Nagy I., Cruz F., Avelino A. Functional transient receptor potential vanilloid 1 is expressed in human urothelial cells. J. Urol. 2009;182:2944–2950. doi: 10.1016/j.juro.2009.08.022.
    1. Ost D., Roskams T., van Der Aa F., de Ridder D. Topography of the vanilloid receptor in the human bladder: More than just the nerve fibers. J. Urol. 2002;168:293–297. doi: 10.1016/S0022-5347(05)64910-5.
    1. Sui G.P., Wu C., Fry C.H. Electrical characteristics of suburothelial cells isolated from the human bladder. J. Urol. 2004;171:938–943. doi: 10.1097/01.ju.0000108120.28291.eb.
    1. Dinis P., Charrua A., Avelino A., Yaqoob M., Bevan S., Nagy I., Cruz F. Anandamide-evoked activation of vanilloid receptor 1 contributes to the development of bladder hyperreflexia and nociceptive transmission to spinal dorsal horn neurons in cystitis. J. Neurosci. 2004;24:11253–11263. doi: 10.1523/JNEUROSCI.2657-04.2004.
    1. Cruz F., Guimaraes M., Silva C., Reis M. Suppression of bladder hyperreflexia by intravesical resiniferatoxin. Lancet. 1997;350:640–641. doi: 10.1016/S0140-6736(05)63330-2.
    1. Cruz F., Guimaraes M., Silva C., Rio M.E., Coimbra A., Reis M. Desensitization of bladder sensory fibers by intravesical capsaicin has long lasting clinical and urodynamic effects in patients with hyperactive or hypersensitive bladder dysfunction. J. Urol. 1997;157:585–589. doi: 10.1016/S0022-5347(01)65211-X.
    1. Cruz C.D., Charrua A., Vieira E., Valente J., Avelino A., Cruz F. Intrathecal delivery of resiniferatoxin (rtx) reduces detrusor overactivity and spinal expression of trpv1 in spinal cord injured animals. Exp. Neurol. 2008;214:301–308. doi: 10.1016/j.expneurol.2008.08.016.
    1. Avelino A., Cruz F. Peptide immunoreactivity and ultrastructure of rat urinary bladder nerve fibers after topical desensitization by capsaicin or resiniferatoxin. Auton Neurosci. 2000;86:37–46. doi: 10.1016/S1566-0702(00)00204-6.
    1. Avelino A., Charrua A., Frias B., Cruz C., Boudes M., de Ridder D., Cruz F. Transient receptor potential channels in bladder function. Acta Physiol. (Oxf.) 2013;207:110–122. doi: 10.1111/apha.12021.
    1. Charrua A., Cruz C.D., Cruz F., Avelino A. Transient receptor potential vanilloid subfamily 1 is essential for the generation of noxious bladder input and bladder overactivity in cystitis. J. Urol. 2007;177:1537–1541. doi: 10.1016/j.juro.2006.11.046.
    1. Mukerji G., Yiangou Y., Agarwal S.K., Anand P. Transient receptor potential vanilloid receptor subtype 1 in painful bladder syndrome and its correlation with pain. J. Urol. 2006;176:797–801. doi: 10.1016/j.juro.2006.03.074.
    1. Jaggar S.I., Scott H.C., James I.F., Rice A.S. The capsaicin analogue sdz249–665 attenuates the hyper-reflexia and referred hyperalgesia associated with inflammation of the rat urinary bladder. Pain. 2001;89:229–235. doi: 10.1016/S0304-3959(00)00366-3.
    1. Urban L., Campbell E.A., Panesar M., Patel S., Chaudhry N., Kane S., Buchheit K., Sandells B., James I.F. In vivo pharmacology of sdz 249–665, a novel, non-pungent capsaicin analogue. Pain. 2000;89:65–74. doi: 10.1016/S0304-3959(00)00349-3.
    1. Birder L.A., Nakamura Y., Kiss S., Nealen M.L., Barrick S., Kanai A.J., Wang E., Ruiz G., de Groat W.C., Apodaca G., et al. Altered urinary bladder function in mice lacking the vanilloid receptor trpv1. Nat. Neurosci. 2002;5:856–860. doi: 10.1038/nn902.
    1. Avelino A., Cruz F., Coimbra A. Intravesical resiniferatoxin desensitizes rat bladder sensory fibres without causing intense noxious excitation. A c-fos study. Eur. J. Pharmacol. 1999;378:17–22. doi: 10.1016/S0014-2999(99)00451-3.
    1. Vizzard M.A. Alterations in spinal cord fos protein expression induced by bladder stimulation following cystitis. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2000;278:R1027–R1039.
    1. Brady C.M., Apostolidis A.N., Harper M., Yiangou Y., Beckett A., Jacques T.S., Freeman A., Scaravilli F., Fowler C.J., Anand P. Parallel changes in bladder suburothelial vanilloid receptor trpv1 and pan-neuronal marker pgp9.5 immunoreactivity in patients with neurogenic detrusor overactivity after intravesical resiniferatoxin treatment. BJU Int. 2004;93:770–776. doi: 10.1111/j.1464-410X.2003.04722.x.
    1. Andersson P.O., Malmgren A., Uvelius B. Functional responses of different muscle types of the female rat urethra in vitro. Acta Physiol. Scand. 1990;140:365–372. doi: 10.1111/j.1748-1716.1990.tb09011.x.
    1. Maggi C.A., Santicioli P., Abelli L., Parlani M., Capasso M., Conte B., Giuliani S., Meli A. Regional differences in the effects of capsaicin and tachykinins on motor activity and vascular permeability of the rat lower urinary tract. Naunyn Schmiedebergs Arch. Pharmacol. 1987;335:636–645. doi: 10.1007/BF00166980.
    1. Patterson L.M., Zheng H., Ward S.M., Berthoud H.R. Vanilloid receptor (vr1) expression in vagal afferent neurons innervating the gastrointestinal tract. Cell Tissue Res. 2003;311:277–287.
    1. Ward S.M., Bayguinov J., Won K.J., Grundy D., Berthoud H.R. Distribution of the vanilloid receptor (vr1) in the gastrointestinal tract. J. Comp. Neurol. 2003;465:121–135. doi: 10.1002/cne.10801.
    1. Holzer P. Trpv1 and the gut: From a tasty receptor for a painful vanilloid to a key player in hyperalgesia. Eur. J. Pharmacol. 2004;500:231–241. doi: 10.1016/j.ejphar.2004.07.028.
    1. Bartho L., Benko R., Patacchini R., Petho G., Holzer-Petsche U., Holzer P., Lazar Z., Undi S., Illenyi L., Antal A., et al. Effects of capsaicin on visceral smooth muscle: A valuable tool for sensory neurotransmitter identification. Eur. J. Pharmacol. 2004;500:143–157. doi: 10.1016/j.ejphar.2004.07.020.
    1. Jones R.C., 3rd, Xu L., Gebhart G.F. The mechanosensitivity of mouse colon afferent fibers and their sensitization by inflammatory mediators require transient receptor potential vanilloid 1 and acid-sensing ion channel 3. J. Neurosci. 2005;25:10981–10989. doi: 10.1523/JNEUROSCI.0703-05.2005.
    1. Rong W., Hillsley K., Davis J.B., Hicks G., Winchester W.J., Grundy D. Jejunal afferent nerve sensitivity in wild-type and trpv1 knockout mice. J. Physiol. 2004;560:867–881. doi: 10.1113/jphysiol.2004.071746.
    1. Banerjee B., Medda B.K., Lazarova Z., Bansal N., Shaker R., Sengupta J.N. Effect of reflux-induced inflammation on transient receptor potential vanilloid one (trpv1) expression in primary sensory neurons innervating the oesophagus of rats. Neurogastroenterol. Motil. 2007;19:681–691. doi: 10.1111/j.1365-2982.2007.00947.x.
    1. Matsumoto K., Hosoya T., Ishikawa E., Tashima K., Amagase K., Kato S., Murayama T., Horie S. Distribution of transient receptor potential cation channel subfamily v member 1-expressing nerve fibers in mouse esophagus. Histochem. Cell Biol. 2014;142:635–644. doi: 10.1007/s00418-014-1246-6.
    1. Blackshaw L.A., Page A.J., Partosoedarso E.R. Acute effects of capsaicin on gastrointestinal vagal afferents. Neuroscience. 2000;96:407–416. doi: 10.1016/S0306-4522(99)00547-3.
    1. Schicho R., Florian W., Liebmann I., Holzer P., Lippe I.T. Increased expression of trpv1 receptor in dorsal root ganglia by acid insult of the rat gastric mucosa. Eur. J. Neurosci. 2004;19:1811–1818. doi: 10.1111/j.1460-9568.2004.03290.x.
    1. Peles S., Medda B.K., Zhang Z., Banerjee B., Lehmann A., Shaker R., Sengupta J.N. Differential effects of transient receptor vanilloid one (trpv1) antagonists in acid-induced excitation of esophageal vagal afferent fibers of rats. Neuroscience. 2009;161:515–525. doi: 10.1016/j.neuroscience.2009.03.040.
    1. Blackshaw L.A. Transient receptor potential cation channels in visceral sensory pathways. Br. J. Pharmacol. 2014;171:2528–2536. doi: 10.1111/bph.12641.
    1. Fujino K., de la Fuente S.G., Takami Y., Takahashi T., Mantyh C.R. Attenuation of acid induced oesophagitis in vr-1 deficient mice. Gut. 2006;55:34–40. doi: 10.1136/gut.2005.066795.
    1. Cheng L., de la Monte S., Ma J., Hong J., Tong M., Cao W., Behar J., Biancani P., Harnett K.M. Hcl-activated neural and epithelial vanilloid receptors (trpv1) in cat esophageal mucosa. Am. J. Physiol. Gastrointest. Liver Physiol. 2009;297:G135–G143. doi: 10.1152/ajpgi.90386.2008.
    1. Matthews P.J., Aziz Q., Facer P., Davis J.B., Thompson D.G., Anand P. Increased capsaicin receptor trpv1 nerve fibres in the inflamed human oesophagus. Eur. J. Gastroenterol. Hepatol. 2004;16:897–902. doi: 10.1097/00042737-200409000-00014.
    1. Shieh K.R., Yi C.H., Liu T.T., Tseng H.L., Ho H.C., Hsieh H.T., Chen C.L. Evidence for neurotrophic factors associating with trpv1 gene expression in the inflamed human esophagus. Neurogastroenterol. Motil. 2010;22:971–977, e252. doi: 10.1111/j.1365-2982.2010.01530.x.
    1. Bhat Y.M., Bielefeldt K. Capsaicin receptor (trpv1) and non-erosive reflux disease. Eur. J. Gastroenterol. Hepatol. 2006;18:263–270. doi: 10.1097/00042737-200603000-00006.
    1. Sharrad D.F., Hibberd T.J., Kyloh M.A., Brookes S.J., Spencer N.J. Quantitative immunohistochemical co-localization of trpv1 and cgrp in varicose axons of the murine oesophagus, stomach and colorectum. Neurosci. Lett. 2015;599:164–171. doi: 10.1016/j.neulet.2015.05.020.
    1. Horie S., Michael G.J., Priestley J.V. Co-localization of trpv1-expressing nerve fibers with calcitonin-gene-related peptide and substance p in fundus of rat stomach. Inflammopharmacology. 2005;13:127–137. doi: 10.1163/156856005774423854.
    1. Faussone-Pellegrini M.S., Taddei A., Bizzoco E., Lazzeri M., Vannucchi M.G., Bechi P. Distribution of the vanilloid (capsaicin) receptor type 1 in the human stomach. Histochem. Cell Biol. 2005;124:61–68. doi: 10.1007/s00418-005-0025-9.
    1. Kato S., Aihara E., Nakamura A., Xin H., Matsui H., Kohama K., Takeuchi K. Expression of vanilloid receptors in rat gastric epithelial cells: Role in cellular protection. Biochem. Pharmacol. 2003;66:1115–1121. doi: 10.1016/S0006-2952(03)00461-1.
    1. Lamb K., Kang Y.M., Gebhart G.F., Bielefeldt K. Gastric inflammation triggers hypersensitivity to acid in awake rats. Gastroenterology. 2003;125:1410–1418. doi: 10.1016/j.gastro.2003.07.010.
    1. Minowa S., Ishihara S., Tsuchiya S., Horie S., Murayama T. Capsaicin- and anandamide-induced gastric acid secretion via vanilloid receptor type 1 (trpv1) in rat brain. Brain Res. 2005;1039:75–83. doi: 10.1016/j.brainres.2005.01.048.
    1. Minowa S., Tsuchiya S., Horie S., Watanabe K., Murayama T. Stimulatory effect of centrally injected capsaicin, an agonist of vanilloid receptors, on gastric acid secretion in rats. Eur. J. Pharmacol. 2001;428:349–356. doi: 10.1016/S0014-2999(01)01365-6.
    1. Lee K.J., Vos R., Tack J. Effects of capsaicin on the sensorimotor function of the proximal stomach in humans. Aliment. Pharmacol. Ther. 2004;19:415–425. doi: 10.1046/j.1365-2036.2004.01823.x.
    1. Hammer J., Vogelsang H. Characterization of sensations induced by capsaicin in the upper gastrointestinal tract. Neurogastroenterol. Motil. 2007;19:279–287. doi: 10.1111/j.1365-2982.2007.00900.x.
    1. Tan L.L., Bornstein J.C., Anderson C.R. Distinct chemical classes of medium-sized transient receptor potential channel vanilloid 1-immunoreactive dorsal root ganglion neurons innervate the adult mouse jejunum and colon. Neuroscience. 2008;156:334–343. doi: 10.1016/j.neuroscience.2008.06.071.
    1. Kadowaki M., Kuramoto H., Takaki M. Combined determination with functional and morphological studies of origin of nerve fibers expressing transient receptor potential vanilloid 1 in the myenteric plexus of the rat jejunum. Auton Neurosci. 2004;116:11–18. doi: 10.1016/j.autneu.2004.08.005.
    1. Laird J.M., Martinez-Caro L., Garcia-Nicas E., Cervero F. A new model of visceral pain and referred hyperalgesia in the mouse. Pain. 2001;92:335–342. doi: 10.1016/S0304-3959(01)00275-5.
    1. Schmidt B., Hammer J., Holzer P., Hammer H.F. Chemical nociception in the jejunum induced by capsaicin. Gut. 2004;53:1109–1116. doi: 10.1136/gut.2003.029793.
    1. Hammer J. Effect of repeated capsaicin ingestion on intestinal chemosensation and mechanosensation. Aliment. Pharmacol. Ther. 2006;24:679–686. doi: 10.1111/j.1365-2036.2006.03022.x.
    1. Drewes A.M., Schipper K.P., Dimcevski G., Petersen P., Gregersen H., Funch-Jensen P., Arendt-Nielsen L. Gut pain and hyperalgesia induced by capsaicin: A human experimental model. Pain. 2003;104:333–341. doi: 10.1016/S0304-3959(03)00039-3.
    1. Brierley S.M., Jones R.C., 3rd, Xu L., Gebhart G.F., Blackshaw L.A. Activation of splanchnic and pelvic colonic afferents by bradykinin in mice. Neurogastroenterol. Motil. 2005;17:854–862. doi: 10.1111/j.1365-2982.2005.00710.x.
    1. Matsumoto K., Hosoya T., Tashima K., Namiki T., Murayama T., Horie S. Distribution of transient receptor potential vanilloid 1 channel-expressing nerve fibers in mouse rectal and colonic enteric nervous system: Relationship to peptidergic and nitrergic neurons. Neuroscience. 2011;172:518–534. doi: 10.1016/j.neuroscience.2010.10.024.
    1. Matsumoto K., Kurosawa E., Terui H., Hosoya T., Tashima K., Murayama T., Priestley J.V., Horie S. Localization of trpv1 and contractile effect of capsaicin in mouse large intestine: High abundance and sensitivity in rectum and distal colon. Am. J. Physiol. Gastrointest. Liver Physiol. 2009;297:G348–G360. doi: 10.1152/ajpgi.90578.2008.
    1. Christianson J.A., Traub R.J., Davis B.M. Differences in spinal distribution and neurochemical phenotype of colonic afferents in mouse and rat. J. Comp. Neurol. 2006;494:246–259. doi: 10.1002/cne.20816.
    1. Malin S.A., Christianson J.A., Bielefeldt K., Davis B.M. Tprv1 expression defines functionally distinct pelvic colon afferents. J. Neurosci. 2009;29:743–752. doi: 10.1523/JNEUROSCI.3791-08.2009.
    1. Kimball E.S., Wallace N.H., Schneider C.R., D'Andrea M.R., Hornby P.J. Vanilloid receptor 1 antagonists attenuate disease severity in dextran sulphate sodium-induced colitis in mice. Neurogastroenterol. Motil. 2004;16:811–818. doi: 10.1111/j.1365-2982.2004.00549.x.
    1. Chan C.L., Facer P., Davis J.B., Smith G.D., Egerton J., Bountra C., Williams N.S., Anand P. Sensory fibres expressing capsaicin receptor trpv1 in patients with rectal hypersensitivity and faecal urgency. Lancet. 2003;361:385–391. doi: 10.1016/S0140-6736(03)12392-6.
    1. Kihara N., de la Fuente S.G., Fujino K., Takahashi T., Pappas T.N., Mantyh C.R. Vanilloid receptor-1 containing primary sensory neurones mediate dextran sulphate sodium induced colitis in rats. Gut. 2003;52:713–719. doi: 10.1136/gut.52.5.713.
    1. Miranda A., Nordstrom E., Mannem A., Smith C., Banerjee B., Sengupta J.N. The role of transient receptor potential vanilloid 1 in mechanical and chemical visceral hyperalgesia following experimental colitis. Neuroscience. 2007;148:1021–1032. doi: 10.1016/j.neuroscience.2007.05.034.
    1. Plourde V., St-Pierre S., Quirion R. Calcitonin gene-related peptide in viscerosensitive response to colorectal distension in rats. Am. J. Physiol. 1997;273:G191–G196.
    1. Delafoy L., Raymond F., Doherty A.M., Eschalier A., Diop L. Role of nerve growth factor in the trinitrobenzene sulfonic acid-induced colonic hypersensitivity. Pain. 2003;105:489–497. doi: 10.1016/S0304-3959(03)00266-5.
    1. Hughes P.A., Brierley S.M., Martin C.M., Brookes S.J., Linden D.R., Blackshaw L.A. Post-inflammatory colonic afferent sensitisation: Different subtypes, different pathways and different time courses. Gut. 2009;58:1333–1341. doi: 10.1136/gut.2008.170811.
    1. Akbar A., Yiangou Y., Facer P., Brydon W.G., Walters J.R., Anand P., Ghosh S. Expression of the trpv1 receptor differs in quiescent inflammatory bowel disease with or without abdominal pain. Gut. 2010;59:767–774. doi: 10.1136/gut.2009.194449.
    1. Facer P., Knowles C.H., Tam P.K., Ford A.P., Dyer N., Baecker P.A., Anand P. Novel capsaicin (vr1) and purinergic (p2x3) receptors in hirschsprung's intestine. J. Pediatr. Surg. 2001;36:1679–1684. doi: 10.1053/jpsu.2001.27959.
    1. Fasanella K.E., Christianson J.A., Chanthaphavong R.S., Davis B.M. Distribution and neurochemical identification of pancreatic afferents in the mouse. J. Comp. Neurol. 2008;509:42–52. doi: 10.1002/cne.21736.
    1. Wick E.C., Hoge S.G., Grahn S.W., Kim E., Divino L.A., Grady E.F., Bunnett N.W., Kirkwood K.S. Transient receptor potential vanilloid 1, calcitonin gene-related peptide, and substance p mediate nociception in acute pancreatitis. Am. J. Physiol. Gastrointest. Liver Physiol. 2006;290:G959–G969. doi: 10.1152/ajpgi.00154.2005.
    1. Liddle R.A. The role of transient receptor potential vanilloid 1 (trpv1) channels in pancreatitis. Biochim. Biophys. Acta. 2007;1772:869–878. doi: 10.1016/j.bbadis.2007.02.012.
    1. Wick E.C., Pikios S., Grady E.F., Kirkwood K.S. Calcitonin gene-related peptide partially mediates nociception in acute experimental pancreatitis. Surgery. 2006;139:197–201. doi: 10.1016/j.surg.2005.08.024.
    1. Figini M., Emanueli C., Grady E.F., Kirkwood K., Payan D.G., Ansel J., Gerard C., Geppetti P., Bunnett N. Substance p and bradykinin stimulate plasma extravasation in the mouse gastrointestinal tract and pancreas. Am. J. Physiol. 1997;272:G785–G793.
    1. Bhatia M., Saluja A.K., Hofbauer B., Frossard J.L., Lee H.S., Castagliuolo I., Wang C.C., Gerard N., Pothoulakis C., Steer M.L. Role of substance p and the neurokinin 1 receptor in acute pancreatitis and pancreatitis-associated lung injury. Proc. Natl. Acad. Sci. USA. 1998;95:4760–4765. doi: 10.1073/pnas.95.8.4760.
    1. Nathan J.D., Peng R.Y., Wang Y., McVey D.C., Vigna S.R., Liddle R.A. Primary sensory neurons: A common final pathway for inflammation in experimental pancreatitis in rats. Am. J. Physiol. Gastrointest. Liver Physiol. 2002;283:G938–G946. doi: 10.1152/ajpgi.00105.2002.
    1. Nathan J.D., Patel A.A., McVey D.C., Thomas J.E., Prpic V., Vigna S.R., Liddle R.A. Capsaicin vanilloid receptor-1 mediates substance p release in experimental pancreatitis. Am. J. Physiol. Gastrointest. Liver Physiol. 2001;281:G1322–G1328.
    1. Hoogerwerf W.A., Zou L., Shenoy M., Sun D., Micci M.A., Lee-Hellmich H., Xiao S.Y., Winston J.H., Pasricha P.J. The proteinase-activated receptor 2 is involved in nociception. J. Neurosci. 2001;21:9036–9042.
    1. Watanabe N., Horie S., Michael G.J., Spina D., Page C.P., Priestley J.V. Immunohistochemical localization of vanilloid receptor subtype 1 (trpv1) in the guinea pig respiratory system. Pulm. Pharmacol. Ther. 2005;18:187–197. doi: 10.1016/j.pupt.2004.12.002.
    1. Watanabe N., Horie S., Michael G.J., Keir S., Spina D., Page C.P., Priestley J.V. Immunohistochemical co-localization of transient receptor potential vanilloid (trpv)1 and sensory neuropeptides in the guinea-pig respiratory system. Neuroscience. 2006;141:1533–1543. doi: 10.1016/j.neuroscience.2006.04.073.
    1. Pingle S.C., Matta J.A., Ahern G.P. Transient Receptor Potential (TRP) Channels. Springer; Berlin, Germany: 2007. Capsaicin receptor: Trpv1 a promiscuous trp channel; pp. 155–171.
    1. Jia Y., McLeod R.L., Hey J.A. Trpv1 receptor: A target for the treatment of pain, cough, airway disease and urinary incontinence. Drug News Perspect. 2005;18:165–171. doi: 10.1358/dnp.2005.18.3.892761.
    1. Stein R.J., Santos S., Nagatomi J., Hayashi Y., Minnery B.S., Xavier M., Patel A.S., Nelson J.B., Futrell W.J., Yoshimura N., et al. Cool (trpm8) and hot (trpv1) receptors in the bladder and male genital tract. J. Urol. 2004;172:1175–1178. doi: 10.1097/.
    1. Auzanneau C., Norez C., Antigny F., Thoreau V., Jougla C., Cantereau A., Becq F., Vandebrouck C. Transient receptor potential vanilloid 1 (trpv1) channels in cultured rat sertoli cells regulate an acid sensing chloride channel. Biochem. Pharmacol. 2008;75:476–483. doi: 10.1016/j.bcp.2007.09.004.
    1. Mizrak S.C., Gadella B.M., Erdost H., Ozer A., van Pelt A.M., van Dissel-Emiliani F.M. Spermatogonial stem cell sensitivity to capsaicin: An in vitro study. Reprod. Biol. Endocrinol. 2008;6:52. doi: 10.1186/1477-7827-6-52.
    1. Dinis P., Charrua A., Avelino A., Nagy I., Quintas J., Ribau U., Cruz F. The distribution of sensory fibers immunoreactive for the trpv1 (capsaicin) receptor in the human prostate. Eur. Urol. 2005;48:162–167. doi: 10.1016/j.eururo.2005.01.009.
    1. Litwin M.S., McNaughton-Collins M., Fowler F.J., Jr., Nickel J.C., Calhoun E.A., Pontari M.A., Alexander R.B., Farrar J.T., O'Leary M.P. The national institutes of health chronic prostatitis symptom index: Development and validation of a new outcome measure. Chronic prostatitis collaborative research network. J. Urol. 1999;162:369–375. doi: 10.1016/S0022-5347(05)68562-X.
    1. Turini D., Beneforti P., Spinelli M., Malagutti S., Lazzeri M. Heat/burning sensation induced by topical application of capsaicin on perineal cutaneous area: New approach in diagnosis and treatment of chronic prostatitis/chronic pelvic pain syndrome? Urology. 2006;67:910–913. doi: 10.1016/j.urology.2005.11.028.
    1. Czifra G., Varga A., Nyeste K., Marincsak R., Toth B.I., Kovacs I., Kovacs L., Biro T. Increased expressions of cannabinoid receptor-1 and transient receptor potential vanilloid-1 in human prostate carcinoma. J. Cancer Res. Clin. Oncol. 2009;135:507–514. doi: 10.1007/s00432-008-0482-3.
    1. Sanchez M.G., Sanchez A.M., Collado B., Malagarie-Cazenave S., Olea N., Carmena M.J., Prieto J.C., Diaz-Laviada I.I. Expression of the transient receptor potential vanilloid 1 (trpv1) in lncap and pc-3 prostate cancer cells and in human prostate tissue. Eur. J. Pharmacol. 2005;515:20–27. doi: 10.1016/j.ejphar.2005.04.010.
    1. Wang H.P., Pu X.Y., Wang X.H. Distribution profiles of transient receptor potential melastatin-related and vanilloid-related channels in prostatic tissue in rat. Asian J. Androl. 2007;9:634–640. doi: 10.1111/j.1745-7262.2007.00291.x.
    1. Pierce A.N., Zhang Z., Fuentes I.M., Wang R., Ryals J.M., Christianson J.A. Neonatal vaginal irritation results in long-term visceral and somatic hypersensitivity and increased hypothalamic-pituitary-adrenal axis output in female mice. Pain. 2015;156:2021–2031. doi: 10.1097/j.pain.0000000000000264.
    1. Tong C., Conklin D., Clyne B.B., Stanislaus J.D., Eisenach J.C. Uterine cervical afferents in thoracolumbar dorsal root ganglia express transient receptor potential vanilloid type 1 channel and calcitonin gene-related peptide, but not p2x3 receptor and somatostatin. Anesthesiology. 2006;104:651–657. doi: 10.1097/00000542-200604000-00007.
    1. Yan T., Liu B., Du D., Eisenach J.C., Tong C. Estrogen amplifies pain responses to uterine cervical distension in rats by altering transient receptor potential-1 function. Anesth. Analg. 2007;104:1246–1250. doi: 10.1213/01.ane.0000263270.39480.a2. tables of contents.
    1. Peng H.Y., Chang H.M., Lee S.D., Huang P.C., Chen G.D., Lai C.H., Lai C.Y., Chiu C.H., Tung K.C., Lin T.B. Trpv1 mediates the uterine capsaicin-induced nmda nr2b-dependent cross-organ reflex sensitization in anesthetized rats. Am. J. Physiol. Renal Physiol. 2008;295:F1324–F1335. doi: 10.1152/ajprenal.00126.2008.
    1. Tingaker B.K., Ekman-Ordeberg G., Facer P., Irestedt L., Anand P. Influence of pregnancy and labor on the occurrence of nerve fibers expressing the capsaicin receptor trpv1 in human corpus and cervix uteri. Reprod Biol. Endocrinol. 2008;6:8. doi: 10.1186/1477-7827-6-8.
    1. Coelho A., Wolf-Johnston A.S., Shinde S., Cruz C.D., Cruz F., Avelino A., Birder L.A. Urinary bladder inflammation induces changes in urothelial nerve growth factor and trpv1 channels. Br. J. Pharmacol. 2015;172:1691–1699. doi: 10.1111/bph.12958.
    1. Fioravanti B., De Felice M., Stucky C.L., Medler K.A., Luo M.C., Gardell L.R., Ibrahim M., Malan T.P., Jr., Yamamura H.I., Ossipov M.H., et al. Constitutive activity at the cannabinoid cb1 receptor is required for behavioral response to noxious chemical stimulation of trpv1: Antinociceptive actions of cb1 inverse agonists. J. Neurosci. 2008;28:11593–11602. doi: 10.1523/JNEUROSCI.3322-08.2008.
    1. Ferrini F., Salio C., Lossi L., Gambino G., Merighi A. Modulation of inhibitory neurotransmission by the vanilloid receptor type 1 (trpv1) in organotypically cultured mouse substantia gelatinosa neurons. Pain. 2010;150:128–140. doi: 10.1016/j.pain.2010.04.016.
    1. Lao L.J., Song B., Marvizon J.C. Neurokinin release produced by capsaicin acting on the central terminals and axons of primary afferents: Relationship with n-methyl-d-aspartate and gaba(b) receptors. Neuroscience. 2003;121:667–680. doi: 10.1016/S0306-4522(03)00501-3.
    1. Merighi A. Costorage and coexistence of neuropeptides in the mammalian cns. Prog. Neurobiol. 2002;66:161–190. doi: 10.1016/S0301-0082(01)00031-4.
    1. Kanai Y., Nakazato E., Fujiuchi A., Hara T., Imai A. Involvement of an increased spinal trpv1 sensitization through its up-regulation in mechanical allodynia of cci rats. Neuropharmacology. 2005;49:977–984. doi: 10.1016/j.neuropharm.2005.05.003.
    1. Pan Y.Z., Pan H.L. Primary afferent stimulation differentially potentiates excitatory and inhibitory inputs to spinal lamina ii outer and inner neurons. J. Neurophysiol. 2004;91:2413–2421. doi: 10.1152/jn.01242.2003.
    1. Chen M., Gu J.G. A p2x receptor-mediated nociceptive afferent pathway to lamina i of the spinal cord. Mol. Pain. 2005;1:4. doi: 10.1186/1744-8069-1-4.
    1. Kawasaki Y., Kohno T., Zhuang Z.Y., Brenner G.J., Wang H., Van Der Meer C., Befort K., Woolf C.J., Ji R.R. Ionotropic and metabotropic receptors, protein kinase a, protein kinase c, and src contribute to c-fiber-induced erk activation and camp response element-binding protein phosphorylation in dorsal horn neurons, leading to central sensitization. J. Neurosci. 2004;24:8310–8321. doi: 10.1523/JNEUROSCI.2396-04.2004.
    1. Ferrini F., Russo A., Salio C. Fos and perk immunoreactivity in spinal cord slices: Comparative analysis of in vitro models for testing putative antinociceptive molecules. Ann. Anat. 2014;196:217–223. doi: 10.1016/j.aanat.2013.11.005.
    1. Salio C., Ferrini F., Muthuraju S., Merighi A. Presynaptic modulation of spinal nociceptive transmission by glial cell line-derived neurotrophic factor (gdnf) J. Neurosci. 2014;34:13819–13833. doi: 10.1523/JNEUROSCI.0808-14.2014.
    1. Merighi A., Bardoni R., Salio C., Lossi L., Ferrini F., Prandini M., Zonta M., Gustincich S., Carmignoto G. Presynaptic functional trkb receptors mediate the release of excitatory neurotransmitters from primary afferent terminals in lamina ii (substantia gelatinosa) of postnatal rat spinal cord. Dev. Neurobiol. 2008;68:457–475. doi: 10.1002/dneu.20605.
    1. Ikeda H., Kiritoshi T., Murase K. Effect of excitatory and inhibitory agents and a glial inhibitor on optically-recorded primary-afferent excitation. Mol. Pain. 2008;4:39. doi: 10.1186/1744-8069-4-39.
    1. Qutenza Official website of qutenza (trademarked) patch. [(accessed on 17 June 2016)]. Avaliable online: .
    1. Kulkantrakorn K., Lorsuwansiri C., Meesawatsom P. 0.025% capsaicin gel for the treatment of painful diabetic neuropathy: A randomized, double-blind, crossover, placebo-controlled trial. Pain Pract. 2013;13:497–503. doi: 10.1111/papr.12013.
    1. Derry S., Moore R.A. Topical capsaicin (low concentration) for chronic neuropathic pain in adults. Cochrane Database Syst. Rev. 2012;9:CD010111.
    1. Teixeira M.J., Menezes L.M., Silva V., Galhardoni R., Sasson J., Okada M., Duarte K.P., Yeng L.T., Andrade D.C. Liposomal topical capsaicin in post-herpetic neuralgia: A safety pilot study. Arq. Neuropsiquiatr. 2015;73:237–240. doi: 10.1590/0004-282X20140232.
    1. Casanueva B., Rodero B., Quintial C., Llorca J., Gonzalez-Gay M.A. Short-term efficacy of topical capsaicin therapy in severely affected fibromyalgia patients. Rheumatol. Int. 2013;33:2665–2670. doi: 10.1007/s00296-012-2490-5.
    1. Griebeler M.L., Morey-Vargas O.L., Brito J.P., Tsapas A., Wang Z., Carranza Leon B.G., Phung O.J., Montori V.M., Murad M.H. Pharmacologic interventions for painful diabetic neuropathy: An umbrella systematic review and comparative effectiveness network meta-analysis. Ann. Intern. Med. 2014;161:639–649. doi: 10.7326/M14-0511.
    1. Altman R.D., Barthel H.R. Topical therapies for osteoarthritis. Drugs. 2011;71:1259–1279. doi: 10.2165/11592550-000000000-00000.
    1. Bischoff J.M., Ringsted T.K., Petersen M., Sommer C., Uceyler N., Werner M.U. A capsaicin (8%) patch in the treatment of severe persistent inguinal postherniorrhaphy pain: A randomized, double-blind, placebo-controlled trial. PLoS ONE. 2014;9:e109144. doi: 10.1371/journal.pone.0109144.
    1. Hartrick C.T., Pestano C., Carlson N., Hartrick S. Capsaicin instillation for postoperative pain following total knee arthroplasty: A preliminary report of a randomized, double-blind, parallel-group, placebo-controlled, multicentre trial. Clin. Drug Investig. 2011;31:877–882. doi: 10.1007/BF03256925.
    1. Bortolotti M., Porta S. Effect of red pepper on symptoms of irritable bowel syndrome: Preliminary study. Dig. Dis. Sci. 2011;56:3288–3295. doi: 10.1007/s10620-011-1740-9.
    1. Salat K., Jakubowska A., Kulig K. Zucapsaicin for the treatment of neuropathic pain. Expert Opin. Investig. Drugs. 2014;23:1433–1440. doi: 10.1517/13543784.2014.956079.
    1. Maihofner C., Heskamp M.L. Prospective, non-interventional study on the tolerability and analgesic effectiveness over 12 weeks after a single application of capsaicin 8% cutaneous patch in 1044 patients with peripheral neuropathic pain: First results of the quepp study. Curr. Med. Res. Opin. 2013;29:673–683. doi: 10.1185/03007995.2013.792246.
    1. Brown S., Simpson D.M., Moyle G., Brew B.J., Schifitto G., Larbalestier N., Orkin C., Fisher M., Vanhove G.F., Tobias J.K. Ngx-4010, a capsaicin 8% patch, for the treatment of painful hiv-associated distal sensory polyneuropathy: Integrated analysis of two phase iii, randomized, controlled trials. AIDS Res. Ther. 2013;10:5. doi: 10.1186/1742-6405-10-5.
    1. Simpson D.M., Brown S., Tobias J.K., Vanhove G.F., Group N.-C.S. Ngx-4010, a capsaicin 8% dermal patch, for the treatment of painful hiv-associated distal sensory polyneuropathy: Results of a 52-week open-label study. Clin. J. Pain. 2014;30:134–142. doi: 10.1097/AJP.0b013e318287a32f.
    1. Clifford D.B., Simpson D.M., Brown S., Moyle G., Brew B.J., Conway B., Tobias J.K., Vanhove G.F., Group N.-C.S. A randomized, double-blind, controlled study of ngx-4010, a capsaicin 8% dermal patch, for the treatment of painful hiv-associated distal sensory polyneuropathy. J. Acquir. Immune Defic. Syndr. 2012;59:126–133. doi: 10.1097/QAI.0b013e31823e31f7.
    1. Irving G., Backonja M., Rauck R., Webster L.R., Tobias J.K., Vanhove G.F. Ngx-4010, a capsaicin 8% dermal patch, administered alone or in combination with systemic neuropathic pain medications, reduces pain in patients with postherpetic neuralgia. Clin. J. Pain. 2012;28:101–107. doi: 10.1097/AJP.0b013e318227403d.
    1. Maihofner C.G., Heskamp M.L. Treatment of peripheral neuropathic pain by topical capsaicin: Impact of pre-existing pain in the quepp-study. Eur. J. Pain. 2014;18:671–679. doi: 10.1002/j.1532-2149.2013.00415.x.
    1. Martini C.H., Yassen A., Krebs-Brown A., Passier P., Stoker M., Olofsen E., Dahan A. A novel approach to identify responder subgroups and predictors of response to low- and high-dose capsaicin patches in postherpetic neuralgia. Eur. J. Pain. 2013;17:1491–1501. doi: 10.1002/j.1532-2149.2013.00329.x.
    1. Mou J., Paillard F., Turnbull B., Trudeau J., Stoker M., Katz N.P. Qutenza (capsaicin) 8% patch onset and duration of response and effects of multiple treatments in neuropathic pain patients. Clin. J. Pain. 2014;30:286–294. doi: 10.1097/AJP.0b013e31829a4ced.
    1. Mou J., Paillard F., Turnbull B., Trudeau J., Stoker M., Katz N.P. Efficacy of qutenza(r) (capsaicin) 8% patch for neuropathic pain: A meta-analysis of the qutenza clinical trials database. Pain. 2013;154:1632–1639. doi: 10.1016/j.pain.2013.04.044.
    1. Hoper J., Helfert S., Heskamp M.L., Maihofner C.G., Baron R. High concentration capsaicin for treatment of peripheral neuropathic pain: Effect on somatosensory symptoms and identification of treatment responders. Curr. Med. Res. Opin. 2014;30:565–574. doi: 10.1185/03007995.2013.869491.
    1. Webster L.R., Peppin J.F., Murphy F.T., Lu B., Tobias J.K., Vanhove G.F. Efficacy, safety, and tolerability of ngx-4010, capsaicin 8% patch, in an open-label study of patients with peripheral neuropathic pain. Diabetes Res. Clin. Pract. 2011;93:187–197. doi: 10.1016/j.diabres.2011.04.010.
    1. Jensen T.S., Hoye K., Fricova J., Vanelderen P., Ernault E., Siciliano T., Marques S. Tolerability of the capsaicin 8% patch following pretreatment with lidocaine or tramadol in patients with peripheral neuropathic pain: A multicentre, randomized, assessor-blinded study. Eur. J. Pain. 2014;18:1240–1247. doi: 10.1002/j.1532-2149.2014.00479.x.
    1. Treede R.D., Wagner T., Kern K.U., Husstedt I.W., Arendt G., Birklein F., Cegla T., Freynhagen R., Gockel H.H., Heskamp M.L., et al. Mechanism- and experience-based strategies to optimize treatment response to the capsaicin 8% cutaneous patch in patients with localized neuropathic pain. Curr. Med. Res. Opin. 2013;29:527–538. doi: 10.1185/03007995.2013.781019.
    1. Derry S., Sven-Rice A., Cole P., Tan T., Moore R.A. Topical capsaicin (high concentration) for chronic neuropathic pain in adults. Cochrane Database Syst. Rev. 2013;2:CD007393.
    1. Finnerup N.B., Attal N., Haroutounian S., McNicol E., Baron R., Dworkin R.H., Gilron I., Haanpaa M., Hansson P., Jensen T.S., et al. Pharmacotherapy for neuropathic pain in adults: A systematic review and meta-analysis. Lancet Neurol. 2015;14:162–173. doi: 10.1016/S1474-4422(14)70251-0.
    1. Remadevi R., Szallisi A. Adlea (algrx-4975), an injectable capsaicin (trpv1 receptor agonist) formulation for longlasting pain relief. IDrugs. 2008;11:120–132.
    1. Diamond E., Richards P., Miller T. Algrx 4975 reduces pain of intermetatarsal neuroma: Preliminary results from a randomized, double-blind, placebo-controlled, phase ii multicenter clinical trial. J. Pain. 2006;7:S41. doi: 10.1016/j.jpain.2006.01.162.
    1. Richards P., Vasko G., Stasko I., Lacko M., Hewson G. Algrx 4975 reduces pain of acute lateral epicondylitis: Preliminary results from a randomized, double-blind, placebo-controlled, phase ii multicenter clinical trial. J. Pain. 2006;7:S3. doi: 10.1016/j.jpain.2006.01.416.
    1. Cantillon M., Vause E., Sykes D., Russel R., Moon A., Hughes S. Preliminary safety, tolerability and efficacy of algrx 4975 in osteoarthristis (oa) of the knee. J. Pain. 2005;6:S39.
    1. Silberberg A., Moeller-Bertram T., Wallace M.S. A randomized, double-blind, crossover study to evaluate the depth response relationship of intradermal capsaicin-induced pain and hyperalgesia in healthy adult volunteers. Pain Med. 2015;16:745–752. doi: 10.1111/pme.12639.
    1. De Petrocellis L., Guida F., Moriello A.S., De Chiaro M., Piscitelli F., de Novellis V., Maione S., Di Marzo V. N-palmitoyl-vanillamide (palvanil) is a non-pungent analogue of capsaicin with stronger desensitizing capability against the trpv1 receptor and anti-hyperalgesic activity. Pharmacol. Res. 2011;63:294–299. doi: 10.1016/j.phrs.2010.12.019.
    1. Luongo L., Costa B., D'Agostino B., Guida F., Comelli F., Gatta L., Matteis M., Sullo N., De Petrocellis L., de Novellis V., et al. Palvanil, a non-pungent capsaicin analogue, inhibits inflammatory and neuropathic pain with little effects on bronchopulmonary function and body temperature. Pharmacol. Res. 2012;66:243–250. doi: 10.1016/j.phrs.2012.05.005.

Source: PubMed

3
Abonnieren