Formation of cortical plasticity in older adults following tDCS and motor training

Alicia M Goodwill, John Reynolds, Robin M Daly, Dawson J Kidgell, Alicia M Goodwill, John Reynolds, Robin M Daly, Dawson J Kidgell

Abstract

Neurodegeneration accompanies the process of natural aging, reducing the ability to perform functional daily activities. Transcranial direct current stimulation (tDCS) alters neuronal excitability and motor performance; however its beneficial effect on the induction of primary motor cortex (M1) plasticity in older adults is unclear. Moreover, little is known as to whether the tDCS electrode arrangement differentially affects M1 plasticity and motor performance in this population. In a double-blinded, cross-over trial, we compared unilateral, bilateral and sham tDCS combined with visuomotor tracking, on M1 plasticity and motor performance of the non-dominant upper limb, immediately post and 30 min following stimulation. We found (a) unilateral and bilateral tDCS decreased tracking error by 12-22% at both time points; with sham decreasing tracking error by 10% at 30 min only, (b) at both time points, motor evoked potentials (MEPs) were facilitated (38-54%) and short-interval intracortical inhibition was released (21-36%) for unilateral and bilateral conditions relative to sham, (c) there were no differences between unilateral and bilateral conditions for any measure. These findings suggest that tDCS modulated elements of M1 plasticity, which improved motor performance irrespective of the electrode arrangement. The results provide preliminary evidence indicating that tDCS is a safe non-invasive tool to preserve or improve neurological function and motor control in older adults.

Keywords: M1 plasticity; corticospinal excitability; inhibition; motor performance; motor training; older adults; tDCS.

Figures

FIGURE 1
FIGURE 1
Schematic representation of the experimental protocol with measures obtained at baseline, immediately after and 30 min after tDCS.
FIGURE 2
FIGURE 2
Average ± SEM tracking error (%) for all conditions across all time points. *p < 0.05 compared to baseline. No significant condition by time interaction p > 0.05.
FIGURE 3
FIGURE 3
Average ± SEM MEP amplitudes (% of MMAX) at 130% AMT for all conditions across all time points. (A) non dominant M1, (B) dominant M1. *p < 0.05 compared to baseline. †p < 0.05 compared with sham.
FIGURE 4
FIGURE 4
MEP amplitude (130% AMT) sweeps recorded from one participant at baseline, immediately post and 30 min post stimulation for sham (A) unilateral (B) and bilateral (C) conditions.
FIGURE 5
FIGURE 5
Average ± SEM SICI ratios (% of the test response) for all conditions across all time points. (A) non dominant M1, (B) dominant M1. *p < 0.05 compared to baseline. †p < 0.05 compared with sham.

References

    1. Antal A., Chaieb L., Moliadze V., Monte-Silva K., Poreisz C., Thirugnanasambandam N., et al. (2010). Brain-derived neurotrophic factor (BDNF) gene polymorphisms shape cortical plasticity in humans. Brain Stimul. 3 230–23710.1016/j.brs.2009.12.003
    1. Armstrong T. J., Chaffin D. B. (1978). An investigation of the relationship between displacements of the finger and wrist joints and the extrinsic finger flexor tendons. J. Biomech. 11 119–12810.1016/0021-9290(78)90004-0
    1. Batsikadze G., Moliadzem V., Paulus W., Kuo M. F., Nitsche M. A. (2013). Partially non-linear stimulation intensity-dependent effects of direct current stimulation on motor cortex excitability in humans. J. Physiol. 591 1987–200010.1113/jphysiol.2012.249730
    1. Baudewig J., Nitsche M. A., Paulus W., Frahm J. (2001). Regional modulation of BOLD MRI responses to human sensorimotor activation by transcranial direct current stimulation. Magn. Reson. Med. 45 196–20110.1002/1522-2594(200102)45:2<196::AID-MRM1026>;2-1
    1. Boggio P. S., Nunes A., Rigonatti S. P., Nitsche M. A., Pascual-Leone A., Fregni F. (2007). Repeated sessions of noninvasive brain DC stimulation is associated with motor function improvement in stroke patients. Restor. Neurol. Neurosci. 25 123–129
    1. Bolam J. P., Hanley J. J., Booth P. A., Bevan M. D. (2000). Synaptic organisation of the basal ganglia. J. Anat. 196 527–54210.1046/j.1469-7580.2000.19640527.x
    1. Bolognini N., Vallar G., Casati C., Latif L. A., El-Nazer R., Williams J., et al. (2011). Neurophysiological and behavioral effects of tDCS combined with constraint-induced movement therapy in poststroke patients. Neural Repair. 25 819–82910.1177/1545968311411056
    1. Cirillo J., Todd G., Semmler J. G. (2011). Corticomotor excitability and plasticity following complex visuomotor training in young and old adults. Eur. J. Neurosci. 34 1847–185610.1111/j.1460-9568.2011.07870.x
    1. Edwards D. J., Krebs H. I., Rykman A., Zipse J., Thickbroom G. W., Mastaglia F. L., et al. (2009). Raised corticomotor excitability of M1 forearm area following anodal tDCS is sustained during robotic wrist therapy in chronic stroke. Restor. Neurol. Neurosci. 27 199–20710.3233/RNN-2009-0470
    1. Fogelholm M., Malmberg J., Suni J., Santtila M., Kyrolainen H., Mantysaari M., et al. (2006). International physical activity questionnaire: validity against fitness. Med. Sci. Sports Exerc. 38 753–76010.1249/01.mss.0000194075.16960.20
    1. Fujiyama H., Garry M. I., Levin O., Swinnen S. P., Summers J. J. (2009). Age-related differences in inhibitory processes during interlimb coordination. Brain Res. 1262 38–4710.1016/j.brainres.2009.01.023
    1. Garry M. I., Kamen G., Nordstrom M. A. (2004). Hemispheric differences in the relationship between corticomotor excitability changes following a fine-motor task and motor learning. J. Neurophysiol. 91 1570–157810.1152/jn.00595.2003
    1. Hess G., Aizenman C. D., Donoghue A. P. (1996). Conditions for the induction of long-term potentiation in laye r II/III horizontal connections of the rat motor cortex. J. Neurophysiol. 75 1765–1778
    1. Hummel F. C., Celnik P., Giraux P., Floel A., Wu W. H., Gerloff C., et al. (2005). Effects of non-invasive cortical stimulation on skilled motor function in chronic stroke. Brain 128 490–49910.1093/brain/awh369
    1. Hummel F. C., Heise K., Celnik P., Floel A., Gerloff C., Cohen L. G. (2010). Facilitating skilled right hand motor function in older subjects by anodal polarization over the left primary motor cortex. Neurobiol. Aging 31 2160–216810.1016/j.neurobiolaging.2008.12.008
    1. Keel J. C., Smith M. J., Wassermann E. M. (2001). A safety screening questionnaire for transcranial magnetic stimulation. Clin. Neurophysiol. 112 72010.1016/S1388-2457(00)00518-6
    1. Kidgell D. J., Goodwill A. M., Frazer A. K., Daly R. M. (2013). Induction of cortical plasticity and improved motor performance following unilateral and bilateral transcranial direct current stimulation of the primary motor cortex. BMC Neurosci. 14:64. 10.1186/1471-2202-14-64
    1. Lang N., Nitsche M. A., Paulus W., Rothwell J. C., Lemon R. N. (2004). Effects of transcranial direct current stimulation over the human motor cortex on corticospinal and transcallosal excitability. Exp. Brain. Res. 156 439–44310.1007/s00221-003-1800-2
    1. Lefebvre S., Laloux P., Peeters A., Desfontaines P., Jamart J., Vandermeeren Y. (2012). Dual-tDCS enhances online motor skill learning and long-term retention in chronic stroke patients. Front. Hum. Neurosci. 6:343. 10.3389/fnhum.2012.00343
    1. Liebetanz D., Nitsche M. A., Tergau F., Paulus W. (2002). Pharmacological approach to the mechanisms of transcranial DC-stimulation-induced after-effects of human motor cortex excitability. Brain 125 2238–224710.1093/brain/awf238
    1. Lindenberg R., Nachtigall L., Meinzer M., Sieg M. M, Flöel A. (2013). Differential effects of dual and unihemispheric motor cortex stimulation in older adults. J. Neurosci. 21 9176–918310.1523/JNEUROSCI.0055-13.2013
    1. Lindenberg R., Renga V., Zhu L. L., Nair D., Schlaug G. (2010). Bihemispheric brain stimulation facilitates motor recovery in chronic stroke patients. Neurology 75 2176–218410.1212/WNL.0b013e318202013a
    1. Marneweck M., Loftus A., Hammond G. (2011). Short-interval intracortical inhibition and manual dexterity in healthy aging. Neurosci. Res. 70 408–41410.1016/j.neures.2011.04.004
    1. Mora F., Segovia G., Del Arco A. (2008). Glutamate-dopamine-GABA interactions in the aging basal ganglia. Brain Res. Rev. 58 340–35310.1016/j.brainresrev.2007.10.006
    1. Mordillo-Mateos L., Turpin-Fenoll L., Millán-Pascual J., Núñez-Pérez N., Panyavin I., Gómez-Argüelles J. M., et al. (2012). Effects of simultaneous bilateral tDCS of the human motor cortex. Brain. Stimul. 5 214–22210.1016/j.brs.2011.05.001
    1. Nielsen J. B., Cohen L. G. (2008). The olympic brain. Does corticospinal plasticity play a role in acquisition of skills required for high-performance sports? J. Physiol. 586 65–7010.1113/jphysiol.2007.142661
    1. Nitsche M. A., Cohen L. G., Wassermann E. M., Priori A., Lang N., Antal A., et al. (2008). Transcranial direct current stimulation: state of the art 2008. Brain. Stimul. 1 206–22310.1016/j.brs.2008.06.004
    1. Nitsche M. A., Fricke K., Henschke U., Schlitterlau A., Liebetanz D., Lang N., et al. (2003). Pharmacological modulation of cortical excitability shifts induced by transcranial direct current stimulation in humans. J. Physiol. 553 293–30110.1113/jphysiol.2003.049916
    1. Nitsche M. A., Paulus W. (2000). Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation. J. Physiol. 527 633–63910.1111/j.1469-7793.2000.t01-1-00633.x
    1. Nitsche M. A., Paulus W. (2001). Sustained excitability elevations induced by transcranial DC motor cortex stimulation in humans. Neurology 57 1899–190110.1212/WNL.57.10.1899
    1. Nitsche M. A., Seeber A., Frommann K., Klein C. C., Rochford C., Nitsche M. S., et al. (2005). Modulating parameters of excitability during and after transcranial direct current stimulation of the human motor cortex. J. Physiol. 568 291–30310.1113/jphysiol.2005.092429
    1. Oldfield R. C. (1971). The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia 9 97–11310.1016/0028-3932(71)90067-4
    1. Perez M. A., Lundbye-Jensen J., Nielsen J. B. (2006). Changes in corticospinal drive to spinal motoneurones following visuo-motor skill learning in humans. J. Physiol. 573 843–85510.1113/jphysiol.2006.105361
    1. Perez M. A., Lungholt B. K., Nyborg K., Nielsen J. B. (2004). Motor skill training induces changes in the excitability of the leg cortical area in healthy humans. Exp. Brain Res. 159 197–20510.1007/s00221-004-1947-5
    1. Reis J., Schambra H. M., Cohen L. G., Buch E. R., Fritsch B., Zarahn E., et al. (2009). Noninvasive cortical stimulation enhances motor skill acquisition over multiple days through an effect on consolidation. Proc. Natl. Acad. Sci. U.S.A. 106 1590–159510.1073/pnas.0805413106
    1. Rioult-Pedotti M. S., Friedman D., Donoghue J. P. (2000). Learning-induced LTP in neocortex. Science 290 533–53610.1126/science.290.5491.533
    1. Rogasch N. C., Dartnall T. J., Cirillo J., Nordstrom M. A., Semmler J. G. (2009). Corticomotor plasticity and learning of a ballistic thumb training task are diminished in older adults. J. Appl. Physiol. 107 1874–188310.1152/japplphysiol.00443.2009
    1. Rothwell J. C., Day B. L., Thompson P. D., Kujirai T. (2009). Short latency intracortical inhibition: one of the most popular tools in human motor neurophysiology. J. Physiol. 587 11–1210.1113/jphysiol.2008.162461
    1. Ryu J. Y., Cooney W. P., III, Askew L. J., An K. N., Chao E. Y. (1991). Functional ranges of motion of the wrist joint. J. Hand. Surg. Am. 16 409–41910.1016/0363-5023(91)90006-W
    1. Sale M. V., Semmler J. G. (2005). Age-related differences in corticospinal control during functional isometric contractions in left and right hands. J. Appl. Physiol. 99 1483–149310.1152/japplphysiol.00371.2005
    1. Sanes J. N., Donoghue J. P. (2000). Plasticity and primary motor cortex. Annu. Rev. Neurosci. 23 393–41510.1146/annurev.neuro.23.1.393
    1. Sawaki L., Yaseen Z., Kopylev L., Cohen L. G. (2003). Age-dependent changes in the ability to encode a novel elementary motor memory. Ann. Neurol. 53 521–52410.1002/ana.10529
    1. Segovia G., Mora F. (2005). Dopamine and GABA increases produced by activation of glutamate receptors in the nucleus accumbens are decreased during aging. Neurobiol. Aging 26 91–10110.1016/j.neurobiolaging.2004.02.023
    1. Shirota Y., Hamada M., Terao Y., Matsumoto H., Ohminami S., Furubayashi T., et al. (2010). Influence of short-interval intracortical inhibition on short-interval intracortical facilitation in human primary motor cortex. J. Neurophysiol. 104 1382–139110.1152/jn.00164.2010
    1. Villares J. C., Stavale J. N. (2001). Age-related changes in the N-methyl-D-aspartate receptor binding sites within the human basal ganglia. Exp. Neurol. 171 391–40410.1006/exnr.2001.7737
    1. Vines B., Cerruti C., Schlaug G. (2008). Dual-hemisphere tDCS facilitates greater improvements for healthy subjects’ non-dominant hand compared to uni-hemisphere stimulation. BMC Neurosci. 9:103 10.1186/1471-2202-9-103
    1. Vines B. W., Nair D. G., Schlaug G. (2006). Contralateral and ipsilateral motor effects after transcranial direct current stimulation. Neuroreport 17 671–67410.1097/00001756-200604240-00023
    1. Ward N. S, Frackowiak R. S. J. (2003). Age-related changes in the neural correlates of motor performance. Brain 126 873–88810.1093/brain/awg071
    1. Williams J. A., Pascual-Leone A., Fregni F. (2010). Interhemispheric modulation induced by cortical stimulation and motor training. Phys. Ther. 90 398–41010.2522/ptj.20090075
    1. Ziemann U., Chen R., Cohen L. G., Hallett M. (1998). Dextromethorphan decreases the excitability of the human motor cortex. Neurology 51 1320–132410.1212/WNL.51.5.1320
    1. Ziemann U., Ilic T. V., Pauli C., Meintzschel F., Ruge D. (2004). Learning modifies subsequent induction of long-term potentiation-like and long-term depression-like plasticity in human motor cortex. J. Neurosci. 24 1666–167210.1523/JNEUROSCI.5016-03.2004
    1. Ziemann U., Muellbacher W., Hallett M., Cohen L. G. (2001). Modulation of practice-dependent plasticity in human motor cortex. Brain 124 1171–1181 10.1093/brain/124.6.1171
    1. Zimerman M., Hummel F. C. (2010). Non-ivasive brain stimulation: enhancing motor and cognitive functions in healthy old subjects. Front. Aging. Neurosci. 2:14910.3389/fnagi.2010.00149
    1. Zimerman M., Nitsche M. A., Giraux P., Gerloff C., Cohen L. G., Hummel F. C. (2012). Neuroenhancement of the aging brain: restoring skill acquisition in old subjects. Ann. Neurol. 73 10–15 10.1002/ana.23761
    1. Zoghi M., Nordstrom M. (2007). Progressive suppression of intracortical inhibition during graded isometric contraction of a hand muscle is not influenced by hand preference. Exp. Brain Res. 177 266–27410.1007/s00221-006-0669-2
    1. Zoghi M., Pearce S. L., Nordstrom M. A. (2003). Differential modulation of intracortical inhibition in human motor cortex during selective activation of an intrinsic hand muscle. J. Physiol. 550 933–94610.1113/jphysiol.2003.042606

Source: PubMed

3
Abonnieren