Effects of 3% diquafosol sodium ophthalmic solution on higher-order aberrations in patients diagnosed with dry eye after cataract surgery

Yasushi Inoue, Shintarou Ochi, Yasushi Inoue, Shintarou Ochi

Abstract

Purpose: To evaluate the effects of diquafosol sodium ophthalmic solution 3% (DQS) and artificial tears (AT) on higher-order aberrations (HOAs) in patients with dry eye after cataract surgery.

Design: This was a post hoc analysis of a previously conducted randomized clinical study.

Methods: Fifty-nine eyes from 42 patients (17 males and 25 females, aged 72.6±8.0 years) with verified or suspected dry eye at 4 weeks after cataract surgery were evaluated. The dry eye patients were randomly assigned to receive DQS or AT for 4 weeks. Tear breakup time (BUT), corneal and conjunctival fluorescein staining scores, and HOAs were analyzed before and after instillation. HOAs were measured consecutively for 10 seconds with a wavefront analyzer. Average HOAs, HOA fluctuations (fluctuation index [FI]) and changes in HOAs (stability index [SI]) were compared within and between the two groups.

Results: After 4 weeks of instillation, BUT significantly increased (P=0.001) compared with preinstillation values in the DQS group, but not in the AT group. This increase in BUT in the DQS group was significantly greater than in the AT group (P=0.014). Corneal and conjunctival fluorescein staining scores after instillation significantly improved compared with preinstillation values in the DQS group (P=0.018). In HOAs, the cornea aberration changed from an upward curve (a sawtooth pattern) to an almost constant value (a stable pattern) in the DQS group, but not in the AT group. In FI and SI, there were no significant changes in either group; however, FI and SI were significantly lower in the DQS group than in the AT group (both, P=0.004).

Conclusion: The dry eye patients after cataract surgery had a visual dysfunction in HOAs. DQS is effective to treat dry eye disease after cataract surgery with improvement of visual function.

Keywords: cataract surgery; diquafosol ophthalmic solution; dry eye; higher-order aberrations; tear film breakup time.

Conflict of interest statement

YI has received consulting fees and honoraria for lectures from Pfizer, Kaneka Medix, NIDEK, MACHIDA Endoscope, Senju, Nitto Medic, and Kowa. Inoue Eye Clinic, wherein YI is the director and SO is an employee, has received grants for research in ocular diseases from multiple pharmaceutical companies (Santen, Otsuka, Alcon, and AMO). The authors report no other conflicts of interest in this work.

Figures

Figure 1
Figure 1
Temporal changes in higher-order aberrations. Note: DQS or AT was instilled from the visit 4 weeks after cataract surgery for 4 weeks. Abbreviations: AT, artificial tears; DQS, diquafosol sodium ophthalmic solution; RMS, root mean square.

References

    1. Hardten DR. Dry eye disease in patients after cataract surgery. Cornea. 2008;27(7):855.
    1. Li XM, Hu L, Hu J, Wang W. Investigation of dry eye disease and analysis of the pathogenic factors in patients after cataract surgery. Cornea. 2007;26(Suppl 1):S16–S20.
    1. Koh S, Maeda N, Hirohara Y, et al. Serial measurements of higher-order aberrations after blinking in patients with dry eye. Invest Ophthalmol Vis Sci. 2008;49(1):133–138.
    1. Kaido M, Matsumoto Y, Shigeno Y, Ishida R, Dogru M, Tsubota K. Corneal fluorescein staining correlates with visual function in dry eye patients. Invest Ophthalmol Vis Sci. 2011;52(13):9516–9522.
    1. Koh S, Maeda N, Ikeda C, et al. Effect of diquafosol ophthalmic solution on the optical quality of the eyes in patients with aqueous-deficient dry eye. Acta Ophthalmol. 2014;92(8):e671–e675.
    1. Kaido M, Uchino M, Kojima T, Dogru M, Tsubota K. Effects of diquafosol tetrasodium administration on visual function in short break-up time dry eye. J Ocul Pharmacol Ther. 2013;29(6):595–603.
    1. Baek J, Doh SH, Chung SK. The Effect of Topical Diquafosol Tetrasodium 3% on Dry Eye After Cataract Surgery. Curr Eye Res. 2016;41(10):1281–1285.
    1. Lee JH, Song IS, Kim KL, Yoon SY. Effectiveness and Optical Quality of Topical 3.0% Diquafosol versus 0.05% Cyclosporine A in Dry Eye Patients following Cataract Surgery. J Ophthalmol. 2016;2016:8150757.
    1. Park DH, Chung JK, Seo du R, Lee SJ. Clinical Effects and Safety of 3% Diquafosol Ophthalmic Solution for Patients With Dry Eye After Cataract Surgery: A Randomized Controlled Trial. Am J Ophthalmol. 2016;163:122–131.
    1. Shimazaki J, Tsubota K, Kinoshita S, Ohashi Y. Definition and diagnosis of dry eye 2006. Atarashii Ganka. 2007;24:181–184. Japanese.
    1. Koh S, Maeda N, Hirohara Y, et al. Serial measurements of higher-order aberrations after blinking in normal subjects. Invest Ophthalmol Vis Sci. 2006;47(8):3318–3324.
    1. Oh T, Jung Y, Chang D, Kim J, Kim H. Changes in the tear film and ocular surface after cataract surgery. Jpn J Ophthalmol. 2012;56(2):113–118.
    1. Luchs JI, Nelinson DS, Macy JI, LAC-07-01 Study Group Efficacy of hydroxypropyl cellulose ophthalmic inserts (LACRISERT) in subsets of patients with dry eye syndrome: findings from a patient registry. Cornea. 2010;29(12):1417–1427.
    1. Cho YK, Kim MS. Dry eye after cataract surgery and associated intraoperative risk factors. Korean J Ophthalmol. 2009;23(2):65–73.
    1. Vital MC, Belloso M, Prager TC, Lanier JD. Classifying the severity of corneal ulcers by using the “1, 2, 3” rule. Cornea. 2007;26(1):16–20.
    1. Khanal S, Tomlinson A, Esakowitz L, et al. Changes in corneal sensitivity and tear physiology after phacoemulsification. Ophthalmic Physiol Opt. 2008;28(2):127–134.
    1. Sitompul R, Sancoyo GS, Hutauruk JA, Gondhowiardjo TD. Sensitivity change in cornea and tear layer due to incision difference on cataract surgery with either manual small-incision cataract surgery or phacoemulsification. Cornea. 2008;27(Suppl 1):S13–S18.
    1. Rieger G. The importance of the precorneal tear film for the quality of optical imaging. Br J Ophthalmol. 1992;76(3):157–158.
    1. Koh S, Maeda N, Ninomiya S, et al. Paradoxical increase of visual impairment with punctal occlusion in a patient with mild dry eye. J Cataract Refract Surg. 2006;32(4):689–691.
    1. Montes-Mico R, Caliz A, Alio JL. Wavefront analysis of higher order aberrations in dry eye patients. J Refrac Surg. 2004;20(3):243–247.
    1. Koh S, Maeda N, Hori Y, et al. Effects of suppression of blinking on quality of vision in borderline cases of evaporative dry eye. Cornea. 2008;27(3):275–278.
    1. Fujihara T, Murakami T, Nagano T, Nakamura M, Nakata K. INS365 suppresses loss of corneal epithelial integrity by secretion of mucin-like glycoprotein in a rabbit short-term dry eye model. J Ocul Pharmacol Ther. 2002;18(4):363–370.
    1. Fujihara T, Murakami T, Fujita H, Nakamura M, Nakata K. Improvement of corneal barrier function by the P2Y(2) agonist INS365 in a rat dry eye model. Invest Ophthalmol Vis Sci. 2001;42(1):96–100.

Source: PubMed

3
Abonnieren