Milk Containing A2 β-Casein ONLY, as a Single Meal, Causes Fewer Symptoms of Lactose Intolerance than Milk Containing A1 and A2 β-Caseins in Subjects with Lactose Maldigestion and Intolerance: A Randomized, Double-Blind, Crossover Trial

Monica Ramakrishnan, Tracy K Eaton, Omer M Sermet, Dennis A Savaiano, Monica Ramakrishnan, Tracy K Eaton, Omer M Sermet, Dennis A Savaiano

Abstract

Acute-feeding and multiple-day studies have demonstrated that milk containing A2 β-casein only causes fewer symptoms of lactose intolerance (LI) than milk containing both A1 and A2 β-caseins. We conducted a single-meal study to evaluate the gastrointestinal (GI) tolerance of milk containing different concentrations of A1 and A2 β-casein proteins. This was a randomized, double-blind, crossover trial in 25 LI subjects with maldigestion and an additional eight lactose maldigesters who did not meet the QLCSS criteria. Subjects received each of four types of milk (milk containing A2 β-casein protein only, Jersey milk, conventional milk, and lactose-free milk) after overnight fasting. Symptoms of GI intolerance and breath hydrogen concentrations were analyzed for 6 h after ingestion of each type of milk. In an analysis of the 25 LI subjects, total symptom score for abdominal pain was lower following consumption of milk containing A2 β-casein only, compared with conventional milk (p = 0.004). Post hoc analysis with lactose maldigesters revealed statistically significantly improved symptom scores (p = 0.04) and lower hydrogen production (p = 0.04) following consumption of milk containing A2 β-casein only compared with conventional milk. Consumption of milk containing A2 β-casein only is associated with fewer GI symptoms than consumption of conventional milk in lactose maldigesters.

Keywords: A1 beta-casein; A2 beta-casein; Qualifying Lactose Challenge Symptom Score; beta-casomorphin; gastrointestinal intolerance; hydrogen breath test; lactose challenge; lactose intolerance symptoms; milk intolerance.

Conflict of interest statement

The authors declare no potential conflicts of interest during the conduct of this study.

Figures

Figure 1
Figure 1
Study enrollment, randomization and analyses. HBT, hydrogen breath test; LI, lactose intolerance/intolerant.
Figure 2
Figure 2
Total symptoms reported during the 6 h after consuming the four milk products in 25 lactose intolerant subjects. ** p = 0.004 for abdominal pain due to milk containing A2 β-casein only vs. conventional milk.
Figure 3
Figure 3
Total symptoms reported during the 6 h after consuming the four milk products in 33 lactose maldigesters. ** p = 0.001 for abdominal pain and * p = 0.04 for total symptoms (abdominal pain + bloating + flatulence + diarrhea) due to milk containing A2 β-casein only vs. conventional milk; † p = 0.05 for bloating due to Jersey milk versus conventional milk.
Figure 4
Figure 4
Total hydrogen produced during the 6 h after consuming the four milk products in 25 lactose intolerant subjects. ppm, parts per million. † p = 0.05, † p = 0.03, † p = 0.01, and † p = 0.05 for Jersey milk vs. commercial milk at 0, 0.5, 2, and 3 h, respectively.
Figure 5
Figure 5
Total hydrogen produced during the 6 h after consuming the four milk products in 33 lactose maldigesters. ppm, parts per million. * p = 0.05, * p = 0.03 for milk containing A2 β-casein only vs. conventional milk at 3 and 4 h, respectively; † p = 0.03 for Jersey milk versus conventional milk at 2 h.

References

    1. Phelan M., Aherne A., Fitzgerald R.J., O’Brien N.M. Casein-derived bioactive peptides: Biological effects, industrial uses, safety aspects and regulatory status. Int. Dairy J. 2009;19:643–654. doi: 10.1016/j.idairyj.2009.06.001.
    1. Formaggioni P., Summer A., Malacarne M., Mariani P. Milk protein polymorphism: Detection and diffusion of the genetic variants in Bos genus. Ann. Fac. Med. Vet. Univ. Parma. 1999;19:127–165. doi: 10.3168/jds.2009-2461.
    1. Ng-Kwai-Hang K.F., Grosclaude F. Genetic polymorphism of milk proteins. In: Fox P.F., McSweeney P.L.H., editors. Advanced Dairy Chemistry—1 Proteins. Springer; Boston, MA, USA: 2003. pp. 739–816.
    1. Bradley D.G., MacHugh D.E., Cunningham P., Loftus R.T. Mitochondrial diversity and the origins of African and European cattle. Proc. Natl. Acad. Sci. USA. 1996;93:5131–5135. doi: 10.1073/pnas.93.10.5131.
    1. MacHugh D.E., Shriver M.D., Loftus R.T., Cunningham P., Bradley D.G. Microsatellite DNA variation and the evolution, domestication and phylogeography of taurine and zebu cattle (Bos taurus and Bos indicus) Genetics. 1997;146:1071–1086.
    1. De Noni I. Release of β-casomorphins 5 and 7 during simulated gastrointestinal digestion of bovine β-casein variants and milk-based infant formulas. Food Chem. 2008;110:897–903. doi: 10.1016/j.foodchem.2008.02.077.
    1. De Noni I., Cattaneo S. Occurrence of β-casomorphins 5 and 7 in commercial dairy products and in their digests following in vitro simulated gastrointestinal digestion. Food Chem. 2010;119:560–566. doi: 10.1016/j.foodchem.2009.06.058.
    1. Jinsmaa Y., Yoshikawa M. Enzymatic release of neocasomorphin and beta-casomorphin from bovine beta-casein. Peptides. 1999;20:957–962. doi: 10.1016/S0196-9781(99)00088-1.
    1. Ul Haq M.R., Kapila R., Kapila S. Release of beta-casomorphin-7/5 during simulated gastrointestinal digestion of milk beta-casein variants from Indian crossbred cattle (Karan Fries) Food Chem. 2015;168:70–79. doi: 10.1016/j.foodchem.2014.07.024.
    1. Boutrou R., Gaudichon C., Dupont D., Jardin J., Airinei G., Marsset-Baglieri A., Benamouzig R., Tome D., Leonil J. Sequential release of milk protein-derived bioactive peptides in the jejunum in healthy humans. Am. J. Clin. Nutr. 2013;97:1314–1323. doi: 10.3945/ajcn.112.055202.
    1. Ul Haq M.R., Kapila R., Shandilya U.K., Kapila S. Impact of milk derived β-casomorphins on physiological functions and trends in research: A review. Int. J. Food Prop. 2014;17:1726–1741. doi: 10.1080/10942912.2012.712077.
    1. Brooke-Taylor S., Dwyer K., Woodford K., Kost N. Systematic review of the gastrointestinal effects of A1 compared with A2 beta-casein. Adv. Nutr. 2017;8:739–748. doi: 10.3945/an.116.013953.
    1. Deth R., Clarke A., Ni J., Trivedi M. Clinical evaluation of glutathione concentrations after consumption of milk containing different subtypes of beta-casein: Results from a randomized, cross-over clinical trial. Nutr. J. 2016;15:82. doi: 10.1186/s12937-016-0201-x.
    1. Pizzorno J. Glutathione! Integr. Med. (Encinitas) 2014;13:8–12.
    1. He M., Sun J., Jiang Z.Q., Yang Y.X. Effects of cow’s milk beta-casein variants on symptoms of milk intolerance in Chinese adults: A multicentre, randomised controlled study. Nutr. J. 2017;16:72. doi: 10.1186/s12937-017-0275-0.
    1. Ho S., Woodford K., Kukuljan S., Pal S. Comparative effects of A1 versus A2 beta-casein on gastrointestinal measures: A blinded randomised cross-over pilot study. Eur. J. Clin. Nutr. 2014;68:994–1000. doi: 10.1038/ejcn.2014.127.
    1. Jianqin S., Leiming X., Lu X., Yelland G.W., Ni J., Clarke A.J. Effects of milk containing only A2 beta casein versus milk containing both A1 and A2 beta casein proteins on gastrointestinal physiology, symptoms of discomfort, and cognitive behavior of people with self-reported intolerance to traditional cows’ milk. Nutr. J. 2015;15:35. doi: 10.1186/s12937-016-0147-z.
    1. Sheng X., Li Z., Ni J., Yelland G. Effects of conventional milk versus milk containing only A2 beta-casein on digestion in Chinese children: A randomized study. J. Pediatr. Gastroenterol. Nutr. 2019;69:375–382. doi: 10.1097/MPG.0000000000002437.
    1. Suarez F.L., Savaiano D.A., Levitt M.D. A comparison of symptoms after the consumption of milk or lactose-hydrolyzed milk by people with self-reported severe lactose intolerance. N. Engl. J. Med. 1995;333:1–4. doi: 10.1056/NEJM199507063330101.
    1. Milan A.M., Shrestha A., Karlström H.J., Martinsson J.A., Nilsson N.J., Perry J.K., Day L., Barnett M.P.G., Cameron-Smith D. Comparison of the impact of bovine milk β-casein variants on digestive comfort in females self-reporting dairy intolerance: A randomized controlled trial. Am. J. Clin. Nutr. 2020;111:149–160. doi: 10.1093/ajcn/nqz279.
    1. Misselwitz B., Butter M., Verbeke K., Fox M.R. Update on lactose malabsorption and intolerance: Pathogenesis, diagnosis and clinical management. Gut. 2019;68:2080–2091. doi: 10.1136/gutjnl-2019-318404.
    1. Di Costanzo M., Berni Canani R. Lactose Intolerance: Common misunderstandings. Ann. Nutr. Metab. 2018;73(Suppl. 4):30–37. doi: 10.1159/000493669.
    1. Hertzler S.R., Savaiano D.A. Colonic adaptation to daily lactose feeding in lactose maldigesters reduces lactose intolerance. Am. J. Clin. Nutr. 1996;64:232–236. doi: 10.1093/ajcn/64.2.232.
    1. Savaiano D.A., Ritter A.J., Klaenhammer T.R., James G.M., Longcore A.T., Chandler J.R., Walker W.A., Foyt H.L. Improving lactose digestion and symptoms of lactose intolerance with a novel galacto-oligosaccharide (RP-G28): A randomized, double-blind clinical trial. Nutr. J. 2013;12:160. doi: 10.1186/1475-2891-12-160.
    1. Rezaie A., Buresi M., Lembo A., Lin H., McCallum R., Rao S., Schmulson M., Valdovinos M., Zakko S., Pimentel M. Hydrogen and methane-based breath testing in gastrointestinal disorders: The North American consensus. Am. J. Gastroenterol. 2017;112:775–784. doi: 10.1038/ajg.2017.46.
    1. Wilt T.J., Shaukat A., Shamliyan T., Taylor B.C., MacDonald R., Tacklind J., Rutks I., Schwarzenberg S.J., Kane R.L., Levitt M. Lactose intolerance and health. Evid. Rep. Technol. Assess (Full Rep.) 2010;192:410.
    1. AOAC International . Official Methods of Analysis of AOAC International. 18th ed. AOAC International; Gaithersburg, MD, USA: 2005. Methods 989.05, 932.05, 986.25, 945.48B, 968.06 and 992.15.
    1. Mason B.S., Slover H.T. A Gas chromatographic method for the determination of sugars in foods. J. Agric. Food Chem. 1971;19:551–554. doi: 10.1021/jf60175a006.
    1. Brobst K.M. Gas-Liquid Chromatography of Trimethylsilyl Derivatives, Methods in Carbohydrate Chemistry. Volume 6. Academic Press; New York, NY, USA: 1972. pp. 3–8.
    1. Barnett M.P., McNabb W.C., Roy N.C., Woodford K.B., Clarke A.J. Dietary A1 beta-casein affects gastrointestinal transit time, dipeptidyl peptidase-4 activity, and inflammatory status relative to A2 beta-casein in Wistar rats. Int. J. Food Sci. Nutr. 2014;65:720–727. doi: 10.3109/09637486.2014.898260.
    1. Trivedi M.S., Shah J.S., Al-Mughairy S., Hodgson N.W., Simms B., Trooskens G.A., Van Criekinge W., Deth R.C. Food-derived opioid peptides inhibit cysteine uptake with redox and epigenetic consequences. J. Nutr. Biochem. 2014;25:1011–1018. doi: 10.1016/j.jnutbio.2014.05.004.
    1. Yadav S., Yadav N.D.S., Gheware A., Kulshreshtha A., Sharma P., Singh V.P. Oral feeding of cow milk containing A1 variant of β casein induces pulmonary inflammation in male Balb/c mice. Sci. Rep. 2020;10:8053. doi: 10.1038/s41598-020-64997-z.

Source: PubMed

3
Abonnieren