A Preliminary Study of the Effectiveness of an Allostatic, Closed-Loop, Acoustic Stimulation Neurotechnology in the Treatment of Athletes with Persisting Post-concussion Symptoms

Charles H Tegeler, Catherine L Tegeler, Jared F Cook, Sung W Lee, Lee Gerdes, Hossam A Shaltout, Christopher M Miles, Sean L Simpson, Charles H Tegeler, Catherine L Tegeler, Jared F Cook, Sung W Lee, Lee Gerdes, Hossam A Shaltout, Christopher M Miles, Sean L Simpson

Abstract

Background: Effective interventions are needed for individuals with persisting post-concussion symptoms. High-resolution, relational, resonance-based, electroencephalic mirroring (HIRREM®) is an allostatic, closed-loop, acoustic stimulation neurotechnology, designed to facilitate relaxation and self-optimization of neural oscillations.

Methods: Fifteen athletes (seven females, mean age 18.1 years, SD 2.6) with persisting post-concussion symptoms received 18.7 (SD 6.0) HIRREM sessions over a mean of 29.6 (SD 23.2) days, including 11.3 (SD 4.6) in office days. Pre- and post-HIRREM measures included the Rivermead Post-Concussion Symptoms Questionnaire (RPQ, n = 12), the Insomnia Severity Index (ISI, n = 15), the Center for Epidemiologic Studies Depression Scale (CES-D, n = 10), short-term blood pressure and heart rate recordings for measures of autonomic cardiovascular regulation (n = 15), and reaction time by the drop-stick method (n = 7). All participants were asked about their physical activity level and sports participation status at their post-HIRREM data collection visit and 1 to 3 months afterward.

Results: At the post-HIRREM visit, subjects reported improvements in all three inventories (RPQ mean change 19.7, SD 11.4, Wilcoxon p = 0.001; ISI mean change -4.1, SD 4.1, Wilcoxon p = 0.003; CES-D mean change -12.0, SD 10.0, Wilcoxon p = 0.004), including statistically significant reductions in 14 of the 16 individual items of the RPQ. There were also statistically significant improvements in baroreflex sensitivity, heart rate variability in the time domain (SDNN), and drop-stick reaction testing (baseline mean distance of 23.8 cm, SD 5.6, decreased to 19.8 cm, SD 4.6, Wilcoxon p = 0.016). Within 3 months of the post-HIRREM data collection, all 15 had returned to full exercise and workouts, and ten had returned to full participation in their athletic activity.

Conclusions: The use of HIRREM by a series of athletes with persisting post-concussion symptoms was associated with a range of improvements including, for the majority, return to full participation in their sport. The findings do not appear to be consistent with constituents of the placebo effect. A larger controlled trial is warranted.

Keywords: Allostasis; Baroreflex sensitivity; HIRREM; Heart rate variability; Neurotechnology; Persisting post-concussion symptoms; Post-concussion syndrome; Reaction time; Return to play; Sports concussion.

Figures

Fig. 1
Fig. 1
a, b Example of a FFT spectral display of brain electrical activity, this for a 16-year-old male participant, with frequency (Hz, central Y-axis) plotted against amplitude (μV, X-axis). Color bars represent 1-min averages of amplitudes recorded from the left and right temporal lobes (T3/T4 montage, eyes closed, left/right boxes of each figure, respectively) in ten frequency bins (labeled 00 through 90) from 0 through 55 Hz, at the baseline assessment (2-A) and at the penultimate minute of the 21st session (2-B). High-frequency amplitudes are more symmetrical and of reduced magnitude after HIRREM

References

    1. McCrory P, Meeuwisse W, Aubry M, Cantu B, Dvorak J, Echemendia RJ, et al. Consensus statement on concussion in sport—the 4th International Conference on Concussion in Sport held in Zurich, November 2012. Clin J Sport Med. 2013;23(2):89–117. doi: 10.1097/JSM.0b013e31828b67cf.
    1. Harmon KG, Drezner JA, Gammons M, Guskiewicz KM, Halstead M, Herring SA, et al. American Medical Society for Sports Medicine position statement: concussion in sport. Br J Sports Med. 2013;47(1):15–26. doi: 10.1136/bjsports-2012-091941.
    1. McCrea M, Guskiewicz K, Randolph C, Barr WB, Hammeke TA, Marshall SW, et al. Incidence, clinical course, and predictors of prolonged recovery time following sport-related concussion in high school and college athletes. J Int Neuropsychol Soc. 2013;19(1):22–33. doi: 10.1017/S1355617712000872.
    1. Makdissi M, Cantu RC, Johnston KM, McCrory P, Meeuwisse WH. The difficult concussion patient: what is the best approach to investigation and management of persistent (>10 days) postconcussive symptoms? Br J Sports Med. 2013;47(5):308–13. doi: 10.1136/bjsports-2013-092255.
    1. Rees CA. Lost among the trees? The autonomic nervous system and paediatrics. Arch Dis Child. 2014;99(6):552–62. doi: 10.1136/archdischild-2012-301863.
    1. Leddy JJ, Kozlowski K, Fung M, Pendergast DR, Willer B. Regulatory and autoregulatory physiological dysfunction as a primary characteristic of post concussion syndrome: implications for treatment. NeuroRehabilitation. 2007;22(3):199–205.
    1. Gall B, Parkhouse W, Goodman D. Heart rate variability of recently concussed athletes at rest and exercise. Med Sci Sports Exerc. 2004;36(8):1269–74. doi: 10.1249/01.MSS.0000135787.73757.4D.
    1. Hilz MJ, DeFina PA, Anders S, Koehn J, Lang CJ, Pauli E, et al. Frequency analysis unveils cardiac autonomic dysfunction after mild traumatic brain injury. J Neurotrauma. 2011;28(9):1727–38. doi: 10.1089/neu.2010.1497.
    1. Perkes I, Baguley IJ, Nott MT, Menon DK. A review of paroxysmal sympathetic hyperactivity after acquired brain injury. Ann Neurol. 2010;68(2):126–35. doi: 10.1002/ana.22066.
    1. Meyer KS. Understanding paroxysmal sympathetic hyperactivity after traumatic brain injury. Surg Neurol Int. 2014;5(Suppl 13):S490–2. doi: 10.4103/2152-7806.144632.
    1. Junger EC, Newell DW, Grant GA, Avellino AM, Ghatan S, Douville CM, et al. Cerebral autoregulation following minor head injury. J Neurosurg. 1997;86(3):425–32. doi: 10.3171/jns.1997.86.3.0425.
    1. Strebel S, Lam AM, Matta BF, Newell DW. Impaired cerebral autoregulation after mild brain injury. Surg Neurol. 1997;47(2):128–31. doi: 10.1016/S0090-3019(96)00459-4.
    1. Len TK, Neary JP. Cerebrovascular pathophysiology following mild traumatic brain injury. Clin Physiol Funct Imaging. 2011;31(2):85–93.
    1. Gerdes L, Gerdes P, Lee SW, Tegeler CH. HIRREM: a noninvasive, allostatic methodology for relaxation and auto-calibration of neural oscillations. Brain Behav. 2013;3(2):193–205. doi: 10.1002/brb3.116.
    1. Sterling P. Allostasis: a model of predictive regulation. Physiol Behav. 2012;106(1):5–15. doi: 10.1016/j.physbeh.2011.06.004.
    1. Sterling P. Homeostasis vs allostasis: implications for brain function and mental disorders. JAMA Psychiatry. 2014;71(10):1192–3. doi: 10.1001/jamapsychiatry.2014.1043.
    1. Zamrini EY, Meador KJ, Loring DW, Nichols FT, Lee GP, Figueroa RE, et al. Unilateral cerebral inactivation produces differential left/right heart rate responses. Neurology. 1990;40(9):1408–11. doi: 10.1212/WNL.40.9.1408.
    1. Oppenheimer SM, Gelb A, Girvin JP, Hachinski VC. Cardiovascular effects of human insular cortex stimulation. Neurology. 1992;42(9):1727–32. doi: 10.1212/WNL.42.9.1727.
    1. Hilz MJ, Dutsch M, Perrine K, Nelson PK, Rauhut U, Devinsky O. Hemispheric influence on autonomic modulation and baroreflex sensitivity. Ann Neurol. 2001;49(5):575–84. doi: 10.1002/ana.1006.
    1. Lee SW, Gerdes L, Tegeler CL, Shaltout HA, Tegeler CH. A bihemispheric autonomic model for traumatic stress effects on health and behavior. Front Psychol. 2014;5:843.
    1. McCrea M, Prichep L, Powell MR, Chabot R, Barr WB. Acute effects and recovery after sport-related concussion: a neurocognitive and quantitative brain electrical activity study. J Head Trauma Rehabil. 2010;25(4):283–92. doi: 10.1097/HTR.0b013e3181e67923.
    1. Tegeler CH, Shaltout HA, Tegeler CL, Gerdes L, Lee SW. Rightward dominance in temporal high-frequency electrical asymmetry corresponds to higher resting heart rate and lower baroreflex sensitivity in a heterogeneous population. Brain Behav. 2015;1:5(6).
    1. Korn A, Golan H, Melamed I, Pascual-Marqui R, Friedman A. Focal cortical dysfunction and blood-brain barrier disruption in patients with postconcussion syndrome. J Clin Neurophysiol. 2005;22(1):1–9. doi: 10.1097/01.WNP.0000150973.24324.A7.
    1. King NS, Crawford S, Wenden FJ, Moss NE, Wade DT. The Rivermead Post Concussion Symptoms Questionnaire: a measure of symptoms commonly experienced after head injury and its reliability. J Neurol. 1995;242(9):587–92. doi: 10.1007/BF00868811.
    1. Morin CM, Barlow DH, Dement WC. Insomnia: psychological assessment and management. New York: Guilford Press; 1993.
    1. Bastien CH, Vallieres A, Morin CM. Validation of the Insomnia Severity Index as an outcome measure for insomnia research. Sleep Med. 2001;2(4):297–307. doi: 10.1016/S1389-9457(00)00065-4.
    1. Radloff LS. The CES-D scale: a self-report depression scale for research in the general population. Appl Psychol Meas. 1977;1(3):385–401. doi: 10.1177/014662167700100306.
    1. Devins GM, Orme CM, Costello G, Binik YM, Frizzel B, Stam HJ, et al. Measuring depressive symptoms in illness populations: reliability and factorial composition of the center for epidemiological studies depression (CES-D) scale. Psychol Health. 1988;2:139–56. doi: 10.1080/08870448808400349.
    1. Hann D, Winter K, Jacobsen P. Measurement of depressive symptoms in cancer patients: evaluation of the Center for Epidemiological Studies Depression Scale (CES-D) J Psychosom Res. 1999;46(5):437–43. doi: 10.1016/S0022-3999(99)00004-5.
    1. Parati G, Frattola A, Di RM, Castiglioni P, Pedotti A, Mancia G. Effects of aging on 24-h dynamic baroreceptor control of heart rate in ambulant subjects. Am J Physiol. 1995;268(4 Pt 2):H1606–12.
    1. Maestri R, Pinna GD, Robbi E, Capomolla S, La Rovere MT. Noninvasive measurement of blood pressure variability: accuracy of the Finometer monitor and comparison with the Finapres device. Physiol Meas. 2005;26(6):1125–36. doi: 10.1088/0967-3334/26/6/021.
    1. Eckner JT, Kutcher JS, Richardson JK. Pilot evaluation of a novel clinical test of reaction time in national collegiate athletic association division I football players. J Athl Train. 2010;45(4):327–32. doi: 10.4085/1062-6050-45.4.327.
    1. Schedlowski M, Enck P, Rief W, Bingel U. Neuro-bio-behavioral mechanisms of placebo and nocebo responses: implications for clinical trials and clinical practice. Pharmacol Rev. 2015;67(3):697–730. doi: 10.1124/pr.114.009423.
    1. Tator CH, Davis HS, Dufort PA, Tartaglia MC, Davis KD, Ebraheem A, et al. Postconcussion syndrome: demographics and predictors in 221 patients. J Neurosurg. 2016;26:1–11. doi: 10.3171/2015.6.JNS15664.
    1. Miller RS, Weaver LK, Bahraini N, Churchill S, Price RC, Skiba V, et al. Effects of hyperbaric oxygen on symptoms and quality of life among service members with persistent postconcussion symptoms: a randomized clinical trial. JAMA Intern Med. 2015;175(1):43–52. doi: 10.1001/jamainternmed.2014.5479.
    1. Hrobjartsson A, Gotzsche PC. Is the placebo powerless? An analysis of clinical trials comparing placebo with no treatment. N Engl J Med. 2001;344(21):1594–602. doi: 10.1056/NEJM200105243442106.
    1. Leddy JJ, Kozlowski K, Donnelly JP, Pendergast DR, Epstein LH, Willer B. A preliminary study of subsymptom threshold exercise training for refractory post-concussion syndrome. Clin J Sport Med. 2010;20(1):21–7. doi: 10.1097/JSM.0b013e3181c6c22c.
    1. Kurowski BG, Hugentobler J, Quatman-Yates C, Taylor J, Gubanich PJ, Altaye M, et al. Aerobic exercise for adolescents with prolonged symptoms after mild traumatic brain injury: an exploratory randomized clinical trial. J Head Trauma Rehabil. 2016. Epub ahead of print
    1. Gagnon I, Galli C, Friedman D, Grilli L, Iverson GL. Active rehabilitation for children who are slow to recover following sport-related concussion. Brain Inj. 2009;23(12):956–64. doi: 10.3109/02699050903373477.
    1. Leddy J, Hinds A, Sirica D, Willer B. The role of controlled exercise in concussion management. PM R. 2016;8(3 Suppl):S91–100. doi: 10.1016/j.pmrj.2015.10.017.
    1. Tan CO, Meehan WP, III, Iverson GL, Taylor JA. Cerebrovascular regulation, exercise, and mild traumatic brain injury. Neurology. 2014;83(18):1665–72. doi: 10.1212/WNL.0000000000000944.

Source: PubMed

3
Abonnieren