Successful use of closed-loop allostatic neurotechnology for post-traumatic stress symptoms in military personnel: self-reported and autonomic improvements

Catherine L Tegeler, Lee Gerdes, Hossam A Shaltout, Jared F Cook, Sean L Simpson, Sung W Lee, Charles H Tegeler, Catherine L Tegeler, Lee Gerdes, Hossam A Shaltout, Jared F Cook, Sean L Simpson, Sung W Lee, Charles H Tegeler

Abstract

Background: Military-related post-traumatic stress (PTS) is associated with numerous symptom clusters and diminished autonomic cardiovascular regulation. High-resolution, relational, resonance-based, electroencephalic mirroring (HIRREM®) is a noninvasive, closed-loop, allostatic, acoustic stimulation neurotechnology that produces real-time translation of dominant brain frequencies into audible tones of variable pitch and timing to support the auto-calibration of neural oscillations. We report clinical, autonomic, and functional effects after the use of HIRREM® for symptoms of military-related PTS.

Methods: Eighteen service members or recent veterans (15 active-duty, 3 veterans, most from special operations, 1 female), with a mean age of 40.9 (SD = 6.9) years and symptoms of PTS lasting from 1 to 25 years, undertook 19.5 (SD = 1.1) sessions over 12 days. Inventories for symptoms of PTS (Posttraumatic Stress Disorder Checklist - Military version, PCL-M), insomnia (Insomnia Severity Index, ISI), depression (Center for Epidemiologic Studies Depression Scale, CES-D), and anxiety (Generalized Anxiety Disorder 7-item scale, GAD-7) were collected before (Visit 1, V1), immediately after (Visit 2, V2), and at 1 month (Visit 3, V3), 3 (Visit 4, V4), and 6 (Visit 5, V5) months after intervention completion. Other measures only taken at V1 and V2 included blood pressure and heart rate recordings to analyze heart rate variability (HRV) and baroreflex sensitivity (BRS), functional performance (reaction and grip strength) testing, blood and saliva for biomarkers of stress and inflammation, and blood for epigenetic testing. Paired t-tests, Wilcoxon signed-rank tests, and a repeated-measures ANOVA were performed.

Results: Clinically relevant, significant reductions in all symptom scores were observed at V2, with durability through V5. There were significant improvements in multiple measures of HRV and BRS [Standard deviation of the normal beat to normal beat interval (SDNN), root mean square of the successive differences (rMSSD), high frequency (HF), low frequency (LF), and total power, HF alpha, sequence all, and systolic, diastolic and mean arterial pressure] as well as reaction testing. Trends were seen for improved grip strength and a reduction in C-Reactive Protein (CRP), Angiotensin II to Angiotensin 1-7 ratio and Interleukin-10, with no change in DNA n-methylation. There were no dropouts or adverse events reported.

Conclusions: Service members or veterans showed reductions in symptomatology of PTS, insomnia, depressive mood, and anxiety that were durable through 6 months after the use of a closed-loop allostatic neurotechnology for the auto-calibration of neural oscillations. This study is the first to report increased HRV or BRS after the use of an intervention for service members or veterans with PTS. Ongoing investigations are strongly warranted.

Trial registration: NCT03230890 , retrospectively registered July 25, 2017.

Keywords: Acoustic stimulation; Allostasis; Autonomic; Baroreflex sensitivity; Closed-loop; HIRREM; Heart rate variability; Military; Neurotechnology; Post-traumatic stress disorder.

Conflict of interest statement

Ethics approval and consent to participate

This study was approved by the Institutional Review Board of Wake Forest University Health Sciences (IRB00028990), with written informed consent from all participants. All participants provided written informed consent in accordance with the Declaration of Helsinki.

Consent for publication

Not applicable

Competing interests

All authors from Wake Forest School of Medicine have no conflicts to report, while SL and LG are employees of Brain State Technologies, Scottsdale, AZ, USA.

Figures

Fig. 1
Fig. 1
Scores for symptom inventories at the baseline study visit (V1) and at subsequent follow-up data collection visits (V2 through V5) following the use of a closed-loop allostatic neurotechnology. Symptom inventories include the PTSD Checklist − Military version (PCL-M), Insomnia Severity Index (ISI), Centers for Epidemiological Studies-Depression (CES-D), and Generalized Anxiety Disorder-7 (GAD-7). Error bars reflect the standard error of the mean. Statistical significance based on a repeated-measures ANOVA for changes between baseline and each follow-up visit is reflected as **, P < 0.01; ***, P ≤ 0.001. V1. baseline study visit; V2-V5. immediately after (V2), and at 1 (V3), 3 (V4), and 6 (V5) months after intervention completion
Fig. 2
Fig. 2
Values for heart rate variability, baroreflex sensitivity, and blood pressure, before and after intervention. Error bars are standard error of the mean (SEM). **, P P < 0.001 vs Visit 1 (V1); RRI. R to R interval; SDNN, Standard deviation of the normal beat to normal beat interval; rMSSD, Root mean square of the successive differences; Seq ALL, Sequence all.; V1. baseline study visit; V2. immediately after intervention completion
Fig. 3
Fig. 3
Spectral power values for heart rate variability before and after intervention. Error bars are standard error of the mean (SEM). *, P < 0.05; **, P < 0.01 vs V1; RRI, R to R interval; V1, Visit 1; V2, Visit 2; HF, High frequency; LF, Low Frequency. V1. baseline study visit; V2. immediately after intervention completion
Fig. 4
Fig. 4
Grip strength before and after intervention, Error bars are standard error of the mean (SEM); V1. baseline study visit; V2. immediately after intervention completion
Fig. 5
Fig. 5
Reaction testing before and after intervention. Error bars are standard error of the mean (SEM). *, P < 0.05 vs V1; V1. baseline study visit; V2. immediately after intervention completion

References

    1. Association AP: Diagnostic and statistical manual of mental disorders: DSM-5 5th edn. Arlington, VA: American Psychiatric Association; 2013.
    1. Sripada RK, Henry J, Yosef M, Levine DS, Bohnert KM, Miller E, Zivin K: Occupational functioning and employment services use among VA primary care patients with posttraumatic stress disorder. Psychol Trauma. 2016; doi:10.1037/tra0000241.
    1. Kline A, Weiner MD, Ciccone DS, Interian A, St Hill L, Losonczy M. Increased risk of alcohol dependency in a cohort of National Guard troops with PTSD: a longitudinal study. J Psychiatr Res. 2014;50:18–25. doi: 10.1016/j.jpsychires.2013.11.007.
    1. Ramsawh HJ, Fullerton CS, Mash HB, Ng TH, Kessler RC, Stein MB, Ursano RJ. Risk for suicidal behaviors associated with PTSD, depression, and their comorbidity in the U.S. Army. J Affect Disord. 2014;161:116–122. doi: 10.1016/j.jad.2014.03.016.
    1. Beristianos MH, Yaffe K, Cohen B, Byers AL. PTSD and risk of incident cardiovascular disease in aging veterans. Am J Geriatr Psychiatry. 2016;24:192–200. doi: 10.1016/j.jagp.2014.12.003.
    1. Heppner PS, Lohr JB, Kash TP, Jin H, Wang H, Baker DG. Metabolic syndrome: relative risk associated with post-traumatic stress disorder (PTSD) severity and antipsychotic medication use. Psychosomatics. 2012;53:550–558. doi: 10.1016/j.psym.2012.05.005.
    1. Schlenger WE, Corry NH, Williams CS, Kulka RA, Mulvaney-Day N, DeBakey S, Murphy CM, Marmar CR. A prospective study of mortality and trauma-related risk factors among a nationally representative sample of Vietnam veterans. Am J Epidemiol. 2015;182:980–990.
    1. Eftekhari A, Ruzek JI, Crowley JJ, Rosen CS, Greenbaum MA, Karlin BE. Effectiveness of national implementation of prolonged exposure therapy in veterans affairs care. JAMA Psychiatry. 2013;70:949–955. doi: 10.1001/jamapsychiatry.2013.36.
    1. Najavits LM: The problem of dropout from "gold standard" PTSD therapies. F1000Prime Rep 2015, 7:43.
    1. Pruiksma KE, Wachen JS, Peterson AL, Borah EV, Litz BT, Resick PA. Residual sleep disturbances following PTSD treatment in active duty military personnel. Psychol Trauma. 2016;8:697–701. doi: 10.1037/tra0000150.
    1. Nash WPSC, Litz B. The historic origins of military and veteran mental health stigma and the stress injury model as a means to reduce it. Psychiatr Ann. 2009;39:789. doi: 10.3928/00485713-20090728-05.
    1. Brown NB, Bruce SE. Stigma, career worry, and mental illness symptomatology: factors influencing treatment-seeking for operation enduring freedom and operation Iraqi freedom soldiers and veterans. Psychol Trauma. 2016;8:276–283. doi: 10.1037/tra0000082.
    1. Sterling P. Principles of allostasis: optimal design, predictive regulation, pathophysiology, and rational therapeutics. In: Schulkin J, editor. Allostasis, homeostasis, and the costs of physiological adaptation. New York: Cambridge University Press; 2004.
    1. Sterling P. Allostasis: a model of predictive regulation. Physiol Behav. 2012;106:5–15. doi: 10.1016/j.physbeh.2011.06.004.
    1. McEwen BS. Brain on stress: how the social environment gets under the skin. Proc Natl Acad Sci. 2012;109:17180–17185. doi: 10.1073/pnas.1121254109.
    1. Gerdes L, Gerdes P, Lee SW, Tegeler CH. HIRREM: a noninvasive, allostatic methodology for relaxation and auto-calibration of neural oscillations. Brain Behav. 2013;3:193–205. doi: 10.1002/brb3.116.
    1. Sterling P. Homeostasis vs allostasis: implications for brain function and mental disorders. JAMA Psychiatry. 2014;71:1192–1193. doi: 10.1001/jamapsychiatry.2014.1043.
    1. Tsuji H, Larson MG, Venditti FJ, Jr, Manders ES, Evans JC, Feldman CL, Levy D. Impact of reduced heart rate variability on risk for cardiac events. The Framingham Heart Study. Circulation. 1996;94:2850–2855. doi: 10.1161/01.CIR.94.11.2850.
    1. Dekker JM, Schouten EG, Klootwijk P, Pool J, Swenne CA, Kromhout D. Heart rate variability from short electrocardiographic recordings predicts mortality from all causes in middle-aged and elderly men. The Zutphen Study. Am J Epidemiol. 1997;145:899–908. doi: 10.1093/oxfordjournals.aje.a009049.
    1. Beauchaine TP, Thayer JF. Heart rate variability as a transdiagnostic biomarker of psychopathology. Int J Psychophysiol. 2015;98:338–350. doi: 10.1016/j.ijpsycho.2015.08.004.
    1. Lee EA, Bissett JK, Carter MA, Cowan PA, Pyne JM, Speck PM, Theus SA, Tolley EA. Preliminary findings of the relationship of lower heart rate variability with military sexual trauma and presumed posttraumatic stress disorder. J Trauma Stress. 2013;26:249–256. doi: 10.1002/jts.21797.
    1. Shah AJ, Lampert R, Goldberg J, Veledar E, Bremner JD, Vaccarino V. Posttraumatic stress disorder and impaired autonomic modulation in male twins. Biol Psychiatry. 2013;73:1103–1110. doi: 10.1016/j.biopsych.2013.01.019.
    1. Minassian A, Geyer MA, Baker DG, Nievergelt CM, O'Connor DT, Risbrough VB. Heart rate variability characteristics in a large group of active-duty marines and relationship to posttraumatic stress. Psychosom Med. 2014;76:292–301. doi: 10.1097/PSY.0000000000000056.
    1. Park J, Marvar PJ, Liao P, Kankam ML, Norrholm SD, Downey RM, McCullough SA, Le NA, Rothbaum BO. Baroreflex dysfunction and augmented sympathetic nerve responses during mental stress in veterans with post-traumatic stress disorder. J Physiol. 2017;595:4893–4908. doi: 10.1113/JP274269.
    1. Park JE, Lee JY, Kang SH, Choi JH, Kim TY, So HS, Yoon IY. Heart rate variability of chronic posttraumatic stress disorder in the Korean veterans. Psychiatry Res. 2017;255:72–77. doi: 10.1016/j.psychres.2017.05.011.
    1. Minassian A, Maihofer AX, Baker DG, Nievergelt CM, Geyer MA, Risbrough VB. Association of Predeployment Heart Rate Variability with Risk of Postdeployment posttraumatic stress disorder in active-duty marines. JAMA Psychiatry. 2015;72:979–986. doi: 10.1001/jamapsychiatry.2015.0922.
    1. Pyne JM, Constans JI, Wiederhold MD, Gibson DP, Kimbrell T, Kramer TL, Pitcock JA, Han X, Williams DK, Chartrand D, et al. Heart rate variability: pre-deployment predictor of post-deployment PTSD symptoms. Biol Psychol. 2016;121:91–98. doi: 10.1016/j.biopsycho.2016.10.008.
    1. Lee SW, Gerdes L, Tegeler CL, Shaltout HA, Tegeler CH. A bihemispheric autonomic model for traumatic stress effects on health and behavior. Front Psychol. 2014;5:843.
    1. Tegeler C, Tegeler C, Cook J, Lee S, Shaltout H, Laurienti P. Military personnel with traumatic stress show changes in large-scale brain networks after use of a closed-loop Neurotechnology (I7.009). Neurology. 2016;86
    1. Tegeler CH, Laurienti PJ, Tegeler CL, Cook JF, Wistermayer PR, Lee SW, Shaltout HA. Military personnel with traumatic stress demonstrate changes in the default mode network after use of a closed-loop Neurotechnology. Ann Neurol. 2015;78:S22–2.
    1. Weathers FW, Huska JA, Keane TM: The PTSD checklist military version (PCL-M). National Center for PTSD 1991, 42.
    1. Weathers FW, Litz BT, Herman DS, Huska JA, Keane TM: The PTSD Checklist (PCL): reliability, validity, and diagnostic utility. In 9th annual meeting of the International Society for Traumatic Stress Studies. 1993.
    1. Bliese PD, Wright KM, Adler AB, Cabrera O, Castro CA, Hoge CW. Validating the primary care posttraumatic stress disorder screen and the posttraumatic stress disorder checklist with soldiers returning from combat. J Consult Clin Psychol. 2008;76:272–281. doi: 10.1037/0022-006X.76.2.272.
    1. Monson CM, Gradus JL, Young-Xu Y, Schnurr PP, Price JL, Schumm JA. Change in posttraumatic stress disorder symptoms: do clinicians and patients agree? Psychol Assess. 2008;20:131–138. doi: 10.1037/1040-3590.20.2.131.
    1. Morin CM, Barlow DH, Dement WC. Insomnia: psychological assessment and management. New York: Guilford Press; 1993.
    1. Morin CM, Belleville G, Belanger L, Ivers H. The insomnia severity index: psychometric indicators to detect insomnia cases and evaluate treatment response. Sleep. 2011;34:601–608. doi: 10.1093/sleep/34.5.601.
    1. Yang M, Morin CM, Schaefer K, Wallenstein GV. Interpreting score differences in the insomnia severity index: using health-related outcomes to define the minimally important difference. Curr Med Res Opin. 2009;25:2487–2494. doi: 10.1185/03007990903167415.
    1. Radloff LS: The CES-D scale: a self-report depression scale for research in the general population. Appl Psychol Meas. 1977;1(3):385–401. .
    1. Smarr KL. Measures of depression and depressive symptoms: the Beck depression inventory (BDI), Center for Epidemiological Studies-Depression Scale (CES-D), geriatric depression scale (GDS), hospital anxiety and depression scale (HADS), and primary care evaluation of mental disorders-mood module (PRIME-MD) Arthritis Care Res. 2003;49:S134–S146. doi: 10.1002/art.11410.
    1. Spitzer RL, Kroenke K, Williams JB, Lowe B. A brief measure for assessing generalized anxiety disorder: the GAD-7. Arch Intern Med. 2006;166:1092–1097. doi: 10.1001/archinte.166.10.1092.
    1. King NS, Crawford S, Wenden FJ, Moss NE, Wade DT. The Rivermead post concussion symptoms questionnaire: a measure of symptoms commonly experienced after head injury and its reliability. J Neurol. 1995;242:587–592. doi: 10.1007/BF00868811.
    1. Fortunato JE, Tegeler CL, Gerdes L, Lee SW, Pajewski NM, Franco ME, Cook JF, Shaltout HA, Tegeler CH. Use of an allostatic neurotechnology by adolescents with postural orthostatic tachycardia syndrome (POTS) is associated with improvements in heart rate variability and changes in temporal lobe electrical activity. ExpBrain Res. 2016;234:791–798.
    1. Eckner JT, Kutcher JS, Richardson JK. Pilot evaluation of a novel clinical test of reaction time in national collegiate athletic association division I football players. J Athl Train. 2010;45:327–332. doi: 10.4085/1062-6050-45.4.327.
    1. Roberts HC, Denison HJ, Martin HJ, Patel HP, Syddall H, Cooper C, Sayer AA. A review of the measurement of grip strength in clinical and epidemiological studies: towards a standardised approach. Age Ageing. 2011;40:423–429. doi: 10.1093/ageing/afr051.
    1. Tegeler CH, Cook JF, Tegeler CL, Hirsch JR, Shaltout HA, Simpson SL, Fidali BC, Gerdes L, Lee SW. Clinical, hemispheric, and autonomic changes associated with use of closed-loop, allostatic neurotechnology by a case series of individuals with self-reported symptoms of post-traumatic stress. BMC Psychiatry. 2017;17:141. doi: 10.1186/s12888-017-1299-x.
    1. Tegeler CH, Tegeler CL, Cook JF, Lee SW, Gerdes L, Shaltout HA, Miles CM, Simpson SL. A preliminary study of the effectiveness of an allostatic, closed-loop, acoustic stimulation neurotechnology in the treatment of athletes with persisting post-concussion symptoms. Sports Med Open. 2016;2:39. doi: 10.1186/s40798-016-0063-y.
    1. Krook-Magnuson E, Gelinas JN, Soltesz I, Buzsaki G. Neuroelectronics and biooptics: closed-loop technologies in neurological disorders. JAMA Neurol. 2015;72:823–829. doi: 10.1001/jamaneurol.2015.0608.
    1. Widge AS, Ellard KK, Paulk AC, Basu I, Yousefi A, Zorowitz S, Gilmour A, Afzal A, Deckersbach T, Cash SS, et al. Treating refractory mental illness with closed-loop brain stimulation: progress towards a patient-specific transdiagnostic approach. Exp Neurol. 2017;287:461–472. doi: 10.1016/j.expneurol.2016.07.021.
    1. Ngo HV, Martinetz T, Born J, Molle M. Auditory closed-loop stimulation of the sleep slow oscillation enhances memory. Neuron. 2013;78:545–553. doi: 10.1016/j.neuron.2013.03.006.
    1. Bellesi M, Riedner BA, Garcia-Molina GN, Cirelli C, Tononi G. Enhancement of sleep slow waves: underlying mechanisms and practical consequences. Front Syst Neurosci. 2014;8:208. doi: 10.3389/fnsys.2014.00208.
    1. Ramaswamy S, Selvaraj V, Driscoll D, Madabushi JS, Bhatia SC, Yeragani V. Effects of Escitalopram on autonomic function in posttraumatic stress disorder among veterans of operations enduring freedom and Iraqi freedom (OEF/OIF) Innov Clin Neurosci. 2015;12:13–19.
    1. Wahbeh H, Goodrich E, Goy E, Oken BS. Mechanistic pathways of mindfulness meditation in combat veterans with posttraumatic stress disorder. J Clin Psychol. 2016;72:365–383. doi: 10.1002/jclp.22255.
    1. Del Rossi G, Malaguti A, Del Rossi S. Practice effects associated with repeated assessment of a clinical test of reaction time. J Athl Train. 2014;49:356–359. doi: 10.4085/1062-6059-49.2.04.
    1. Hrobjartsson A, Gotzsche PC. Is the placebo powerless? An analysis of clinical trials comparing placebo with no treatment. N Engl J Med. 2001;344:1594–1602. doi: 10.1056/NEJM200105243442106.
    1. Cox RC, Tuck BM, Olatunji BO. Sleep disturbance in posttraumatic stress disorder: epiphenomenon or causal factor? Curr Psychiatry Rep. 2017;19(4):22. doi: 10.1007/s11920-017-0773-y.
    1. Elder GA, Mitsis EM, Ahlers ST, Cristian A. Blast-induced mild traumatic brain injury. Psychiatr Clin North Am. 2010;33:757–781. doi: 10.1016/j.psc.2010.08.001.
    1. Technology to regulate circadian rhythm for health and performance. US Army STTR Phase One Award, A14A:T009. [.]
    1. Lee SW, Gerdes L, Tegeler CH: Sleep quality as a modifiable risk factor for primary prevention of PTSD. In Military Health System Research Symposium; Kissimmee FL. 2016.

Source: PubMed

3
Abonnieren