Virology, Epidemiology, Pathogenesis, and Control of COVID-19

Yuefei Jin, Haiyan Yang, Wangquan Ji, Weidong Wu, Shuaiyin Chen, Weiguo Zhang, Guangcai Duan, Yuefei Jin, Haiyan Yang, Wangquan Ji, Weidong Wu, Shuaiyin Chen, Weiguo Zhang, Guangcai Duan

Abstract

The outbreak of emerging severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) disease (COVID-19) in China has been brought to global attention and declared a pandemic by the World Health Organization (WHO) on March 11, 2020. Scientific advancements since the pandemic of severe acute respiratory syndrome (SARS) in 2002~2003 and Middle East respiratory syndrome (MERS) in 2012 have accelerated our understanding of the epidemiology and pathogenesis of SARS-CoV-2 and the development of therapeutics to treat viral infection. As no specific therapeutics and vaccines are available for disease control, the epidemic of COVID-19 is posing a great threat for global public health. To provide a comprehensive summary to public health authorities and potential readers worldwide, we detail the present understanding of COVID-19 and introduce the current state of development of measures in this review.

Keywords: COVID-19; SARS-CoV-2; epidemiology; pathogenesis; therapeutics.

Conflict of interest statement

The authors declare no conflict of interest. The funders had no role in the design of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the decision to publish the results.

Figures

Figure 1
Figure 1
Geographic location of Wuhan, Hubei Province in China. Hubei Province is located in the central area of China, and the provincial capital is Wuhan.
Figure 2
Figure 2
β-coronavirus particle and genome [9] (A) The β-coronavirus particle. β-coronavirus is an enveloped, nonsegmented, positive-sense single-stranded RNA virus genome in a size ranging from 29.9 kb. The virion has a nucleocapsid composed of genomic RNA and phosphorylated nucleocapsid (N) protein, which is buried inside phospholipid bilayers and covered by the spike glycoprotein trimmer (S). The membrane (M) protein hemagglutinin-esterase (HE) and the envelope (E) protein are located among the S proteins in the virus envelope. (B) 5′ and 3′ terminal sequences of the SARS-CoV-2 genome. The gene order is 5′-replicase ORF1ab-S-envelope(E)-membrane(M)-N-3′. ORF3ab, ORF6, ORF7ab, ORF8, ORF9ab, and ORF10 are located at the predicted positions shown in the picture. 1a, 1b, 3a, 3b, 6, 7a, 7b, 8, 9a, 9b, 10 in the picture represent different ORF genes.
Figure 3
Figure 3
Ecology of emerging coronaviruses SARS-CoV, MERS-CoV, and SARS-CoV-2 are all bat origin coronaviruses, which cause human infections after circulation in animal hosts of civet, camel, and pangolin.
Figure 4
Figure 4
Spatiotemporal distribution of COVID-19. (A) The spread and decline of COVID-19 in mainland China over time. The time point (red words) of “0” new confirmed case first reported in Hubei Province was 18 March, 2020. (B) Distribution of cases with different onset times before 11 February 2020.
Figure 5
Figure 5
Postulated pathogenesis of SARS-CoV-2 infection. Antibody-dependent enhancement (ADE); ACE2: angiotensin-converting enzyme 2; RAS: renin-angiotensin system; ARDS: acute respiratory distress syndrome. Red words represent the important turning points in SARS-CoV-2 infection.

References

    1. Li Q., Guan X., Wu P., Wang X., Zhou L., Tong Y., Ren R., Leung K.S.M., Lau E.H.Y., Wong J.Y., et al. Early Transmission Dynamics in Wuhan, China, of Novel Coronavirus–Infected Pneumonia. N. Engl. J. Med. 2020 doi: 10.1056/NEJMoa2001316.
    1. Zhu N., Zhang D., Wang W., Li X., Yang B., Song J., Zhao X., Huang B., Shi W., Lu R., et al. A Novel Coronavirus from Patients with Pneumonia in China, 2019. N. Engl. J. Med. 2020 doi: 10.1056/NEJMoa2001017.
    1. World Health Organization Press Conference The World Health Organization (WHO) Has Officially Named the Disease Caused by the Novel Coronavirus as COVID-19. [(accessed on 11 February 2020)]; Available online: .
    1. Gorbalenya A.E., Baker S.C., Baric R.S., de Groot R.J., Drosten C., Gulyaeva A.A., Haagmans B.L., Lauber C., Leontovich A.M., Neuman B.W., et al. Severe acute respiratory syndrome-related coronavirus: The species and its viruses—A statement of the Coronavirus Study Group. bioRxiv. 2020 doi: 10.1101/2020.02.07.937862.
    1. Huang C., Wang Y., Li X., Ren L., Zhao J., Hu Y., Zhang L., Fan G., Xu J., Gu X., et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet (Lond. Engl.) 2020;395:497–506. doi: 10.1016/S0140-6736(20)30183-5.
    1. Xiong C., Jiang L., Chen Y., Jiang Q. Evolution and variation of 2019-novel coronavirus. bioRxiv. 2020 doi: 10.1101/2020.01.30.926477.
    1. Yu W., Tang G., Zhang L., Corlett R.T. Decoding evolution and transmissions of novel pneumonia coronavirus using the whole genomic data. ChinaXiv. 2020 doi: 10.12074/202002.00033.
    1. Zhou P., Yang X.L., Wang X.G., Hu B., Zhang L., Zhang W., Si H.R., Zhu Y., Li B., Huang C.L., et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature. 2020:1–4. doi: 10.1038/s41586-020-2012-7.
    1. Weiss S.R., Leibowitz J.L. Coronavirus pathogenesis. Adv. Virus Res. 2011;81:85–164. doi: 10.1016/b978-0-12-385885-6.00009-2.
    1. De Wilde A.H., Snijder E.J., Kikkert M., van Hemert M.J. Host Factors in Coronavirus Replication. In: Tripp R.A., Tompkins S.M., editors. Roles of Host Gene and Non-Coding RNA Expression in Virus Infection. Springer International Publishing; Cham, Switzerland: 2018. pp. 1–42.
    1. Lu R., Zhao X., Li J., Niu P., Yang B., Wu H., Wang W., Song H., Huang B., Zhu N., et al. Genomic characterisation and epidemiology of 2019 novel coronavirus: Implications for virus origins and receptor binding. Lancet (Lond. Engl.) 2020;395:565–574. doi: 10.1016/S0140-6736(20)30251-8.
    1. Wu F., Zhao S., Yu B., Chen Y.-M., Wang W., Hu Y., Song Z.-G., Tao Z.-W., Tian J.-H., Pei Y.-Y., et al. Complete genome characterisation of a novel coronavirus associated with severe human respiratory disease in Wuhan, China. bioRxiv. 2020 doi: 10.1101/2020.01.24.919183.
    1. National Microbiology Data Center. [(accessed on 26 March 2020)]; Available online: .
    1. General Office of National Health Commission. General Office of National Administration of Traditional Chinese Medicine [(accessed on 20 February 2020)];Diagnostic and treatment protocol for Novel Coronavirus Pneumonia. (Trial version 6) Available online:
    1. Van Doremalen N., Bushmaker T., Morris D.H., Holbrook M.G., Gamble A., Williamson B.N., Tamin A., Harcourt J.L., Thornburg N.J., Gerber S.I., et al. Aerosol and Surface Stability of SARS-CoV-2 as Compared with SARS-CoV-1. N. Engl. J. Med. 2020 doi: 10.1056/NEJMc2004973.
    1. Li W., Moore M.J., Vasilieva N., Sui J., Wong S.K., Berne M.A., Somasundaran M., Sullivan J.L., Luzuriaga K., Greenough T.C., et al. Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus. Nature. 2003;426:450–454. doi: 10.1038/nature02145.
    1. Donoghue M., Hsieh F., Baronas E., Godbout K., Gosselin M., Stagliano N., Donovan M., Woolf B., Robison K., Jeyaseelan R., et al. A novel angiotensin-converting enzyme-related carboxypeptidase (ACE2) converts angiotensin I to angiotensin 1-9. Circ. Res. 2000;87:E1–E9. doi: 10.1161/01.RES.87.5.e1.
    1. Li F. Structure, Function, and Evolution of Coronavirus Spike Proteins. Annu. Rev. Virol. 2016;3:237–261. doi: 10.1146/annurev-virology-110615-042301.
    1. Wrapp D., Wang N., Corbett K.S., Goldsmith J.A., Hsieh C.-L., Abiona O., Graham B.S., McLellan J.S. Cryo-EM Structure of the 2019-nCoV Spike in the Prefusion Conformation. bioRxiv. 2020 doi: 10.1126/science.abb2507.
    1. Zhou Q., Yan R., Zhang Y., Li Y., Xia L. Structure of dimeric full-length human ACE2 in complex with B0AT1. bioRxiv. 2020 doi: 10.1101/2020.02.17.951848.
    1. Vijaykrishna D., Smith G.J., Zhang J.X., Peiris J.S., Chen H., Guan Y. Evolutionary insights into the ecology of coronaviruses. J. Virol. 2007;81:4012–4020. doi: 10.1128/JVI.02605-06.
    1. Corman V.M., Muth D., Niemeyer D., Drosten C. Hosts and Sources of Endemic Human Coronaviruses. Adv. Virus Res. 2018;100:163–188. doi: 10.1016/bs.aivir.2018.01.001.
    1. Ge X.-Y., Li J.-L., Yang X.-L., Chmura A.A., Zhu G., Epstein J.H., Mazet J.K., Hu B., Zhang W., Peng C., et al. Isolation and characterization of a bat SARS-like coronavirus that uses the ACE2 receptor. Nature. 2013;503:535–538. doi: 10.1038/nature12711.
    1. Lau S.K.P., Woo P.C.Y., Li K.S.M., Huang Y., Tsoi H.-W., Wong B.H.L., Wong S.S.Y., Leung S.-Y., Chan K.-H., Yuen K.-Y. Severe acute respiratory syndrome coronavirus-like virus in Chinese horseshoe bats. Proc. Natl. Acad. Sci. USA. 2005;102:14040–14045. doi: 10.1073/pnas.0506735102.
    1. Lam T.T.-Y., Shum M.H.-H., Zhu H.-C., Tong Y.-G., Ni X.-B., Liao Y.-S., Wei W., Cheung W.Y.-M., Li W.-J., Li L.-F., et al. Identification of 2019-nCoV related coronaviruses in Malayan pangolins in southern China. bioRxiv. 2020 doi: 10.1101/2020.02.13.945485.
    1. Tang X., Wu C., Li X., Song Y., Yao X., Wu X., Duan Y., Zhang H., Wang Y., Qian Z., et al. On the origin and continuing evolution of SARS-CoV-2. Natl. Sci. Rev. 2020 doi: 10.1093/nsr/nwaa036.
    1. Hoehl S., Berger A., Kortenbusch M., Cinatl J., Bojkova D., Rabenau H., Behrens P., Böddinghaus B., Götsch U., Naujoks F., et al. Evidence of SARS-CoV-2 Infection in Returning Travelers from Wuhan, China. N. Engl. J. Med. 2020 doi: 10.1056/NEJMc2001899.
    1. Lan L., Xu D., Ye G., Xia C., Wang S., Li Y., Xu H. Positive RT-PCR Test Results in Patients Recovered From COVID-19. JAMA. 2020 doi: 10.1001/jama.2020.2783.
    1. Novel Coronavirus Pneumonia Emergency Response Epidemiology Team The epidemiological characteristics of an outbreak of 2019 novel coronavirus diseases (COVID-19) in China. Zhonghualiuxingbingxuezazhi. 2020;41:145–151. doi: 10.3760/cma.j.issn.0254-6450.2020.02.003.
    1. Lu X., Zhang L., Du H., Zhang J., Li Y.Y., Qu J., Zhang W., Wang Y., Bao S., Li Y., et al. SARS-CoV-2 Infection in Children. N. Engl. J. Med. 2020 doi: 10.1056/NEJMc2005073.
    1. Yang Y., Lu Q., Liu M., Wang Y., Zhang A., Jalali N., Dean N., Longini I., Halloran M.E., Xu B., et al. Epidemiological and clinical features of the 2019 novel coronavirus outbreak in China. medRxiv. 2020 doi: 10.1101/2020.02.10.20021675.
    1. National Health Commission of People’s Republic of China An Update of Novel Coronavirus Pneumonia Outbreak as of 24:00 on February 12. [(accessed on 13 February 2020)]; Available online: .
    1. National Health Commission of People’s Republic of China An Update of Novel Coronavirus Pneumonia Outbreak as of 24:00 on February 25. [(accessed on 26 February 2020)]; Available online: .
    1. National Health Commission of People’s Republic of China An Update of Novel Coronavirus Pneumonia Outbreak as of 24:00 on March 23. [(accessed on 24 March 2020)]; Available online: .
    1. World Health Organization [(accessed on 24 March 2020)];Severe Acute Respiratory Syndrome (SARS) Available online:
    1. World Health Organization [(accessed on 23 March 2020)];Middle East Respiratory Syndrome Coronavirus (MERS-CoV) Available online:
    1. World Health Organization [(accessed on 23 March 2020)];Coronavirus Disease (COVID-2019) Situation Reports. Update on 24:00 of March 23. Available online:
    1. World Health Organization [(accessed on 23 March 2020)];Novel Coronavirus (2019-nCoV) Advice for the Public: Myth Buster. Available online: .
    1. Liang W., Guan W., Chen R., Wang W., Li J., Xu K., Li C., Ai Q., Lu W., Liang H., et al. Cancer patients in SARS-CoV-2 infection: A nationwide analysis in China. LancetOncol. 2020 doi: 10.1016/S1470-2045(20)30096-6.
    1. Zou X., Chen K., Zou J., Han P., Hao J., Han Z. The single-cell RNA-seq data analysis on the receptor ACE2 expression reveals the potential risk of different human organs vulnerable to Wuhan 2019-nCoV infection. Front. Med. 2020:1–8. doi: 10.1007/s11684-020-0754-0.
    1. Jia X., Yin C., Lu S., Chen Y., Liu Q., Bai J., Lu Y. Two Things about COVID-19 Might Need Attention. Preprints. 2020 doi: 10.20944/preprints202002.0315.v1.
    1. National Health Commission. Ministry of Human Resources and Social Security. Ministry of Finance [(accessed on 21 February 2020)];Measures to Improve Working Conditions of and Care for Physical and Mental Health of Healthcare Workers. Available online: .
    1. China Food and Drug Administration China Food and Drug Administration Emergency Approval of New Coronavirus Nucleic Acid Detection Reagents. [(accessed on 23 February 2020)]; Available online: .
    1. Daily H. [(accessed on 16 February 2020)];Academician Zhang Gaiping’s Team has Achieved a Number of Staged Results on Novel Coronavirus. Available online:
    1. Nankai University News Network [(accessed on 15 February 2020)];Nankai University Team has Developed a Rapid Antibody Detection Kit for Novel Coronavirus Within 15 Minutes. Available online:
    1. Xiamen University News Network Xiamen University and Shenzhen Third Hospital Successfully Developed a Novel Coronavirus Antibody Detection kit, Which Can Improve the Clinical Diagnosis. [(accessed on 24 February 2020)]; Available online:
    1. Myhrvold C., Freije C.A., Gootenberg J.S., Abudayyeh O.O., Metsky H.C., Durbin A.F., Kellner M.J., Tan A.L., Paul L.M., Parham L.A. Field-deployable viral diagnostics using CRISPR-Cas13. Science. 2018;360:444–448. doi: 10.1126/science.aas8836.
    1. Kanne J.P. Chest CT Findings in 2019 Novel Coronavirus (2019-nCoV) Infections from Wuhan, China: Key Points for the Radiologist. Radiology. 2020:200241. doi: 10.1148/radiol.2020200241.
    1. Wang S., Kang B., Ma J., Zeng X., Xiao M., Guo J., Cai M., Yang J., Li Y., Meng X., et al. A deep learning algorithm using CT images to screen for Corona Virus Disease (COVID-19) medRxiv. 2020 doi: 10.1101/2020.02.14.20023028.
    1. Xiao F., Tang M., Zheng X., Li C., He J., Hong Z., Huang S., Zhang Z., Lin X., Fang Z., et al. Evidence for gastrointestinal infection of SARS-CoV-2. medRxiv. 2020 doi: 10.1053/j.gastro.2020.02.055.
    1. Cheng Y., Luo R., Wang K., Zhang M., Wang Z., Dong L., Li J., Yao Y., Ge S., Xu G. Kidney impairment is associated with in-hospital death of COVID-19 patients. medRxiv. 2020 doi: 10.1101/2020.02.18.20023242.
    1. Guan G.W., Gao L., Wang J.W., Wen X.J., Mao T.H., Peng S.W., Zhang T., Chen X.M., Lu F.M. Exploring the mechanism of liver enzyme abnormalities in patients with novel coronavirus-infected pneumonia. Chin. J. Hepatol. 2020;28:E002. doi: 10.3760/cma.j.issn.1007-3418.2020.02.002.
    1. Wang D., Hu B., Hu C., Zhu F., Liu X., Zhang J., Wang B., Xiang H., Cheng Z., Xiong Y., et al. Clinical Characteristics of 138 Hospitalized Patients With 2019 Novel Coronavirus-Infected Pneumonia in Wuhan, China. JAMA. 2020 doi: 10.1001/jama.2020.1585.
    1. Fan C., Li K., Ding Y., Lu W.L., Wang J. ACE2 Expression in Kidney and Testis May Cause Kidney and Testis Damage After 2019-nCoV Infection. medRxiv. 2020 doi: 10.1101/2020.02.12.20022418.
    1. Xu Z., Shi L., Wang Y., Zhang J., Huang L., Zhang C., Liu S., Zhao P., Liu H., Zhu L., et al. Pathological findings of COVID-19 associated with acuterespiratory distress syndrome. Lancet Respir. Med. 2020 doi: 10.1016/S2213-2600(20)30076-X.
    1. Ding Y., Wang H., Shen H., Li Z., Geng J., Han H., Cai J., Li X., Kang W., Weng D., et al. The clinical pathology of severe acute respiratory syndrome (SARS): A report from China. J. Pathol. 2003;200:282–289. doi: 10.1002/path.1440.
    1. Ng D.L., Al Hosani F., Keating M.K., Gerber S.I., Jones T.L., Metcalfe M.G., Tong S., Tao Y., Alami N.N., Haynes L.M., et al. Clinicopathologic, Immunohistochemical, and Ultrastructural Findings of a Fatal Case of Middle East Respiratory Syndrome Coronavirus Infection in the United Arab Emirates, April 2014. Am. J. Pathol. 2016;186:652–658. doi: 10.1016/j.ajpath.2015.10.024.
    1. Liu Q., Qu G., Wang Y., Liu P., Zhu Y., Fei G., Ren L., Zhou Y., Liu L. Anatomy of a COVID-19 Death Corpse System. J. Forensic Med. 2020;36:21–23. doi: 10.12116/j.issn.1004-5619.2020.01.005.
    1. Thompson B.T., Chambers R.C., Liu K.D. Acute Respiratory Distress Syndrome. N. Engl. J. Med. 2017;377:562–572. doi: 10.1056/NEJMra1608077.
    1. Meyer N.J., Christie J.D. Genetic heterogeneity and risk of acute respiratory distress syndrome. Semin. Respir. Crit. Care Med. 2013;34:459–474. doi: 10.1055/s-0033-1351121.
    1. Fu Y., Cheng Y., Wu Y. Understanding SARS-CoV-2-Mediated Inflammatory Responses: From Mechanisms to Potential Therapeutic Tools. Virol. Sin. 2020 doi: 10.1007/s12250-020-00207-4.
    1. Gu J., Gong E., Zhang B., Zheng J., Gao Z., Zhong Y., Zou W., Zhan J., Wang S., Xie Z., et al. Multiple organ infection and the pathogenesis of SARS. J. Exp. Med. 2005;202:415–424. doi: 10.1084/jem.20050828.
    1. Yang M. Cell Pyroptosis, a Potential Pathogenic Mechanism of 2019-nCoV Infection. SSRN. 2020 doi: 10.2139/ssrn.3527420.
    1. Imai Y., Kuba K., Penninger J.M. The discovery of angiotensin-converting enzyme 2 and its role in acute lung injury in mice. Exp. Physiol. 2008;93:543–548. doi: 10.1113/expphysiol.2007.040048.
    1. Takada A., Kawaoka Y. Antibody-dependent enhancement of viral infection: Molecular mechanisms and in vivo implications. Rev. Med. Virol. 2003;13:387–398. doi: 10.1002/rmv.405.
    1. Scagnolari C., Vicenzi E., Bellomi F., Stillitano M.G., Pinna D., Poli G., Clementi M., Dianzani F., Antonelli G. Increased sensitivity of SARS-coronavirus to a combination of human type I and type II interferons. Antivir. Ther. 2004;9:1003–1011.
    1. Chen F., Chan K.H., Jiang Y., Kao R.Y., Lu H.T., Fan K.W., Cheng V.C., Tsui W.H., Hung I.F., Lee T.S., et al. In vitro susceptibility of 10 clinical isolates of SARS coronavirus to selected antiviral compounds. J. Clin. Virol. Off. Publ. Pan. Am. Soc. Clin. Virol. 2004;31:69–75. doi: 10.1016/j.jcv.2004.03.003.
    1. Morgenstern B., Michaelis M., Baer P.C., Doerr H.W., Cinatl J., Jr. Ribavirin and interferon-beta synergistically inhibit SARS-associated coronavirus replication in animal and human cell lines. Biochem. Biophys. Res. Commun. 2005;326:905–908. doi: 10.1016/j.bbrc.2004.11.128.
    1. Wenzel R.P., Edmond M.B. Managing SARS amidst uncertainty. N. Engl. J. Med. 2003;348:1947–1948. doi: 10.1056/NEJMp030072.
    1. Chu C.M., Cheng V.C., Hung I.F., Wong M.M., Chan K.H., Chan K.S., Kao R.Y., Poon L.L., Wong C.L., Guan Y., et al. Role of lopinavir/ritonavir in the treatment of SARS: Initial virological and clinical findings. Thorax. 2004;59:252–256. doi: 10.1136/thorax.2003.012658.
    1. Kim U.J., Won E.J., Kee S.J., Jung S.I., Jang H.C. Combination therapy with lopinavir/ritonavir, ribavirin and interferon-alpha for Middle East respiratory syndrome. Antivir. Ther. 2016;21:455–459. doi: 10.3851/IMP3002.
    1. Agostini M.L., Andres E.L., Sims A.C., Graham R.L., Sheahan T.P., Lu X., Smith E.C., Case J.B., Feng J.Y., Jordan R., et al. Coronavirus Susceptibility to the Antiviral Remdesivir (GS-5734) Is Mediated by the Viral Polymerase and the Proofreading Exoribonuclease. MBIO. 2018;9 doi: 10.1128/mBio.00221-18.
    1. Wang M., Cao R., Zhang L., Yang X., Liu J., Xu M., Shi Z., Hu Z., Zhong W., Xiao G. Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. Cell Res. 2020 doi: 10.1038/s41422-020-0282-0.
    1. Yamamoto N., Yang R., Yoshinaka Y., Amari S., Nakano T., Cinatl J., Rabenau H., Doerr H.W., Hunsmann G., Otaka A., et al. HIV protease inhibitor nelfinavir inhibits replication of SARS-associated coronavirus. Biochem. Biophys. Res. Commun. 2004;318:719–725. doi: 10.1016/j.bbrc.2004.04.083.
    1. Khamitov R.A., Loginova S., Shchukina V.N., Borisevich S.V., Maksimov V.A., Shuster A.M. Antiviral activity of arbidol and its derivatives against the pathogen of severe acute respiratory syndrome in the cell cultures. Vopr. Virusol. 2008;53:9–13.
    1. Savarino A., Boelaert J.R., Cassone A., Majori G., Cauda R. Effects of chloroquine on viral infections: An old drug against today’s diseases? Lancet Infect. Dis. 2003;3:722–727. doi: 10.1016/S1473-3099(03)00806-5.
    1. Li H., Wang Y.M., Xu J.Y., Cao B. Potential antiviral therapeutics for 2019 Novel Coronavirus. Chin. J. Tuberc. Respir. Dis. 2020;43:E002. doi: 10.3760/cma.j.issn.1001-0939.2020.0002.
    1. Duan J., Yan X., Guo X., Cao W., Han W., Qi C., Feng J., Yang D., Gao G., Jin G. A human SARS-CoV neutralizing antibody against epitope on S2 protein. Biochem. Biophys. Res. Commun. 2005;333:186–193. doi: 10.1016/j.bbrc.2005.05.089.
    1. Leng Z., Zhu R., Hou W., Feng Y., Liu H., Jin R., Jin K., Zhao R.C. Transplantation of ACE2- mesenchymal stem cells improves the outcome of patients with COVID-19 pneumonia. Aging Dis. 2020;11:216–228.
    1. Zhang D., Wu K., Zhang X., Deng S., Peng B. In silico screening of Chinese herbal medicines with the potential to directly inhibit 2019 novel coronavirus. J. Integr. Med. 2020 doi: 10.1016/j.joim.2020.02.005.
    1. Sun C., Chen L., Yang J., Luo C., Zhang Y., Li J., Yang J., Zhang J., Xie L. SARS-CoV-2 and SARS-CoV Spike-RBD Structure and Receptor Binding Comparison and Potential Implications on Neutralizing Antibody and Vaccine Development. bioRxiv. 2020 doi: 10.1101/2020.02.16.951723.
    1. Abdelmageed M.I., Abdelmoneim A.H., Mustafa M.I., Elfadol N.M., Murshed N.S., Shantier S.W., Makhawi A.M. Design of multi epitope-based peptide vaccine against E protein of human 2019-nCoV: An immunoinformatics approach. bioRxiv. 2020 doi: 10.1101/2020.02.04.934232.
    1. NhuThao T.T., Labroussaa F., Ebert N., V’kovski P., Stalder H., Portmann J., Kelly J., Steiner S., Holwerda M., Kratzel A., et al. Rapid reconstruction of SARS-CoV-2 using a synthetic genomics platform. bioRxiv. 2020 doi: 10.1101/2020.02.21.959817.
    1. Bao L., Deng W., Huang B., Gao H., Liu J., Ren L., Wei Q., Yu P., Xu Y., Qi F., et al. The Pathogenicity of SARS-CoV-2 in hACE2 Transgenic Mice. bioRxiv. 2020 doi: 10.1101/2020.02.07.939389.
    1. Ministry of National Defense of the People’s Republic of China The Military Successfully Developed a Recombinant SARS-CoV-2 Vaccine. [(accessed on 17 March 2020)]; Available online:
    1. American Moderna Vaccine enters Clinical Trial. [(accessed on 23 March 2020)]; Available online: .

Source: PubMed

3
Abonnieren