Icariin, an Anti-atherosclerotic Drug from Chinese Medicinal Herb Horny Goat Weed

Jian Fang, Yongjun Zhang, Jian Fang, Yongjun Zhang

Abstract

Icariin is a major bioactive pharmaceutical constituent isolated from Chinese medicine Horny Goat Weed (Ying Yang Huo) with potent cardiovascular protective functions. Emerging evidence in the past decade has shown that Icariin possesses multiple atheroprotective functions, through multiple mechanisms, including attenuating DNA damage, correcting endothelial dysfunction, inhibiting the proliferation and migration of smooth muscle cells, repressing macrophage-derived foam cell formation and inflammatory responses, as well as preventing platelet activation. All of these protective effects, combined with its lipid-modulatory effects, contribute to the broad atheroprotective effects of Icariin. In this review, we will summarize the anti-atherosclerotic properties of Icariin and highlight future perspectives in developing Icariin as a promising anti-atherosclerotic drug.

Keywords: atherosclerosis; endothelial function; foam cell; icariin; smooth muscle cell.

Figures

FIGURE 1
FIGURE 1
Anti-atherosclerotic effects of Icariin. EC, endothelial cell; VSMC, vascular smooth muscle cell; Mφ, macrophage. (A) The chemical structure of Icariin obtained from PubChem database. (B) Atheroprotective effects of Icariin.
FIGURE 2
FIGURE 2
Potential molecular targets of Icariin. Nrf2, eNOS, endothelial nitric oxide synthase; NO, nitric oxide; AR, androgen receptor; ADMA, asymmetric dimethylarginine; DDAH, dimethylarginine dimethylaminohydrolase; CD36, cluster of differentiation 36; SR-BI, scavenger receptor B1; COX2, cyclooxygenase 2; iNOS, inducible NO synthase; NF-κB, nuclear factor-kappa B; CX3CR1, SREBP, sterol regulatory element-binding protein; GRP78, glucose regulated protein 78; PCNA, proliferating cell nuclear antigen; PAI-1, plasminogen activator inhibitor-1; t-PA, tissue-type plasminogen activator.

References

    1. Amirkia V., Heinrich M. (2015). Natural products and drug discovery: a survey of stakeholders in industry and academia. Front. Pharmacol. 6:237. 10.3389/fphar.2015.00237
    1. Benjamin E. J., Blaha M. J., Chiuve S. E., Cushman M., Das S. R., Deo R., et al. (2017). Heart disease and stroke statistics-2017 update: a report from the American Heart Association. Circulation 135 e146–e603. 10.1161/CIR.0000000000000485
    1. Chen S. R., Xu X. Z., Wang Y. H., Chen J. W., Xu S. W., Gu L. Q., et al. (2010). Icariin derivative inhibits inflammation through suppression of p38 mitogen-activated protein kinase and nuclear factor-kappaB pathways. Biol. Pharm. Bull. 33 1307–1313. 10.1248/bpb.33.1307
    1. Chen Y., Sun T., Wu J., Kalionis B., Zhang C., Yuan D., et al. (2015). Icariin intervenes in cardiac inflammaging through upregulation of SIRT6 enzyme activity and inhibition of the NF-kappa B pathway. BioMed Res. Int. 2015:895976. 10.1155/2015/895976
    1. Chung B. H., Kim J. D., Kim C. K., Kim J. H., Won M. H., Lee H. S., et al. (2008). Icariin stimulates angiogenesis by activating the MEK/ERK- and PI3K/Akt/eNOS-dependent signal pathways in human endothelial cells. Biochem. Biophys. Res. Commun. 376 404–408. 10.1016/j.bbrc.2008.09.001
    1. Fang J., Little P. J., Xu S. (2017). Atheroprotective effects and molecular targets of tanshinones derived from herbal medicine danshen. Med. Res. Rev. 10.1002/med.21438
    1. Gimbrone M. A., Jr., Garcia-Cardena G. (2016). Endothelial cell dysfunction and the pathobiology of atherosclerosis. Circ. Res. 118 620–636. 10.1161/CIRCRESAHA.115.306301
    1. Han Y. Y., Song M. Y., Hwang M. S., Hwang J. H., Park Y. K., Jung H. W. (2016). Epimedium koreanum Nakai and its main constituent icariin suppress lipid accumulation during adipocyte differentiation of 3T3-L1 preadipocytes. Chin. J. Nat. Med. 14 671–676. 10.1016/S1875-5364(16)30079-6
    1. He W., Sun H., Yang B., Zhang D., Kabelitz D. (1995). Immunoregulatory effects of the herba Epimedium glycoside icariin. Arzneimittelforschung 45 910–913.
    1. Hu Y., Liu K., Yan M., Zhang Y., Wang Y., Ren L. (2015a). Effects and mechanisms of icariin on atherosclerosis. Int. J. Clin. Exp. Med. 8 3585–3589.
    1. Hu Y., Sun B., Liu K., Yan M., Zhang Y., Miao C., et al. (2015b). Icariin attenuates high-cholesterol diet induced atherosclerosis in rats by inhibition of inflammatory response and p38 MAPK signaling pathway. Inflammation 39 228–236. 10.1007/s10753-015-0242-x
    1. Hu Y., Liu K., Yan M., Zhang Y., Wang Y., Ren L. (2016). Icariin inhibits oxidized low-density lipoprotein-induced proliferation of vascular smooth muscle cells by suppressing activation of extracellular signal-regulated kinase 1/2 and expression of proliferating cell nuclear antigen. Mol. Med. Rep. 13 2899–2903. 10.3892/mmr.2016.4813
    1. Huang X., Xiang T., Xu S., Lu S., Liu H., Zhang W. C., et al. (2016). [Icariin reduces S-nitrosogultathione induced endothelial cell apoptosis through modulating AKT/P53 pathway]. Zhonghua Xin Xue Guan Bing Za Zhi 44 707–713. 10.3760/cma.j.issn.0253-3758.2016.08.013
    1. Koizumi H., Yu J., Hashimoto R., Ouchi Y., Okabe T. (2010). Involvement of androgen receptor in nitric oxide production induced by icariin in human umbilical vein endothelial cells. FEBS Lett. 584 2440–2444. 10.1016/j.febslet.2010.04.049
    1. Libby P., Ridker P. M., Hansson G. K. (2011). Progress and challenges in translating the biology of atherosclerosis. Nature 473 317–325. 10.1038/nature10146
    1. Liu T., Qin X. C., Li W. R., Zhou F., Li G. Y., Xin H., et al. (2011). [Effects of icariin and icariside II on eNOS expression and NOS activity in porcine aorta endothelial cells]. Beijing Da Xue Xue Bao 43 500–504.
    1. Liu Z., Wang J., Huang X., Li Z., Liu P. (2016). Deletion of sirtuin 6 accelerates endothelial dysfunction and atherosclerosis in apolipoprotein E-deficient mice. Transl. Res. 172 18–29.e12. 10.1016/j.trsl.2016.02.005
    1. Liu Z., Xu S., Huang X., Wang J., Gao S., Li H., et al. (2015). Cryptotanshinone, an orally bioactive herbal compound from Danshen, attenuates atherosclerosis in apolipoprotein E-deficient mice: role of lectin-like oxidized LDL receptor-1 (LOX-1). Br. J. Pharmacol. 172 5661–5675. 10.1111/bph.13068
    1. Liu Z. Q., Luo X. Y., Sun Y. X., Wu W., Liu C. M., Liu Z. Q., et al. (2004). The antioxidative effect of icariin in human erythrocytes against free-radical-induced haemolysis. J. Pharm. Pharmacol. 56 1557–1562. 10.1211/0022357044869
    1. Orekhov A. N., Sobenin I. A., Revin V. V., Bobryshev Y. V. (2015). Development of antiatherosclerotic drugs on the basis of natural products using cell model approach. Oxid. Med. Cell. Longev. 2015:463797. 10.1155/2015/463797
    1. Pedersen T. R. (2016). The success story of LDL cholesterol lowering. Circ. Res. 118 721–731. 10.1161/CIRCRESAHA.115.306297
    1. Rader D. J., Daugherty A. (2008). Translating molecular discoveries into new therapies for atherosclerosis. Nature 451 904–913. 10.1038/nature06796
    1. Rosenson R. S. (2004). Statins in atherosclerosis: lipid-lowering agents with antioxidant capabilities. Atherosclerosis 173 1–12. 10.1016/S0021-9150(03)00239-9
    1. Ross R. (1993). The pathogenesis of atherosclerosis: a perspective for the 1990s. Nature 362 801–809. 10.1038/362801a0
    1. Shen B. (2015). A new golden age of natural products drug discovery. Cell 163 1297–1300. 10.1016/j.cell.2015.11.031
    1. Shen C. Y., Jiang J. G., Yang L., Wang D. W., Zhu W. (2017). Anti-ageing active ingredients from herbs and nutraceuticals used in traditional Chinese medicine: pharmacological mechanisms and implications for drug discovery. Br. J. Pharmacol. 174 1395–1425. 10.1111/bph.13631
    1. Shen X., He H. (2009). [Effects of icariin on expression of glucose regulated protein 78 in vascular smooth muscle cell induced by homocysteine]. Zhongguo Zhong Yao Za Zhi 34 1964–1967.
    1. Tabas I., Garcia-Cardena G., Owens G. K. (2015). Recent insights into the cellular biology of atherosclerosis. J. Cell Biol. 209 13–22. 10.1083/jcb.201412052
    1. Wang Y., Wang Y. S., Song S. L., Liang H., Ji A. G. (2016). Icariin inhibits atherosclerosis progress in Apoe null mice by downregulating CX3CR1 in macrophage. Biochem. Biophys. Res. Commun. 470 845–850. 10.1016/j.bbrc.2016.01.118
    1. Wang Y. K., Huang Z. Q. (2005). Protective effects of icariin on human umbilical vein endothelial cell injury induced by H2O2 in vitro. Pharmacol. Res. 52 174–182. 10.1016/j.phrs.2005.02.023
    1. Wu J., Xu H., Wong P. F., Xia S., Xu J., Dong J. (2014). Icaritin attenuates cigarette smoke-mediated oxidative stress in human lung epithelial cells via activation of PI3K-AKT and Nrf2 signaling. Food Chem. Toxicol. 64 307–313. 10.1016/j.fct.2013.12.006
    1. Wu X., Huang H., Tang F., Le K., Xu S., Liu P. (2010). Regulated expression of endothelial lipase in atherosclerosis. Mol. Cell. Endocrinol. 315 233–238. 10.1016/j.mce.2009.11.003
    1. Xiao H. B., Liu Z. K., Lu X. Y., Deng C. N., Luo Z. F. (2015). Icariin regulates PRMT/ADMA/DDAH pathway to improve endothelial function. Pharmacol. Rep. 67 1147–1154. 10.1016/j.pharep.2015.04.017
    1. Xiao H. B., Sui G. G., Lu X. Y. (2017). Icariin improves eNOS/NO pathway to prohibit the atherogenesis of apolipoprotein E-null mice. Can. J. Physiol. Pharmacol. 95 625–633. 10.1139/cjpp-2016-0367
    1. Xiao-Hong D., Chang-Qin X., Jian-Hua H., Wen-Jiang Z., Bing S. (2013). Icariin delays homocysteine-induced endothelial cellular senescence involving activation of the PI3K/AKT-eNOS signaling pathway. Pharm. Biol. 51 433–440. 10.3109/13880209.2012.738332
    1. Xin Z. C., Kim E. K., Lin C. S., Liu W. J., Tian L., Yuan Y. M., et al. (2003). Effects of icariin on cGMP-specific PDE5 and cAMP-specific PDE4 activities. Asian J. Androl. 5 15–18.
    1. Xu C. Q., Liu B. J., Wu J. F., Xu Y. C., Duan X. H., Cao Y. X., et al. (2010). Icariin attenuates LPS-induced acute inflammatory responses: involvement of PI3K/Akt and NF-kappaB signaling pathway. Eur. J. Pharmacol. 642 146–153. 10.1016/j.ejphar.2010.05.012
    1. Xu H. B., Huang Z. Q. (2007). Icariin enhances endothelial nitric-oxide synthase expression on human endothelial cells in vitro. Vascul. Pharmacol. 47 18–24. 10.1016/j.vph.2007.03.002
    1. Xu S. (2017). Transcriptome profiling in systems vascular medicine. Front. Pharmacol. 8:563 10.3389/fphar.2017.00563
    1. Xu S., Bai P., Jin Z. G. (2016a). Sirtuins in cardiovascular health and diseases. Trends Endocrinol. Metab. 27 677–678. 10.1016/j.tem.2016.07.004
    1. Xu S., Liu B., Yin M., Koroleva M., Mastrangelo M., Ture S., et al. (2016b). A novel TRPV4-specific agonist inhibits monocyte adhesion and atherosclerosis. Oncotarget 7 37622–37635. 10.18632/oncotarget.9376
    1. Xu S., Yin M., Koroleva M., Mastrangelo M. A., Zhang W., Bai P., et al. (2016c). SIRT6 protects against endothelial dysfunction and atherosclerosis in mice. Aging 8 1064–1082. 10.18632/aging.100975
    1. Xu S., Bai P., Little P. J., Liu P. (2014a). Poly(ADP-ribose) polymerase 1 (PARP1) in atherosclerosis: from molecular mechanisms to therapeutic implications. Med. Res. Rev. 34 644–675. 10.1002/med.21300
    1. Xu S., Liu Z., Liu P. (2014b). Targeting hydrogen sulfide as a promising therapeutic strategy for atherosclerosis. Int. J. Cardiol. 172 313–317. 10.1016/j.ijcard.2014.01.068
    1. Xu S., Ogura S., Chen J., Little P. J., Moss J., Liu P. (2013). LOX-1 in atherosclerosis: biological functions and pharmacological modifiers. Cell. Mol. Life Sci. 70 2859–2872. 10.1007/s00018-012-1194-z
    1. Yang H., Yan L., Qian P., Duan H., Wu J., Li B., et al. (2015). Icariin inhibits foam cell formation by down-regulating the expression of CD36 and up-regulating the expression of SR-BI. J. Cell. Biochem. 116 580–588. 10.1002/jcb.25009
    1. Ye L. C., Chen J. M. (2001). [Advances in study on pharmacological effects of Epimedium]. Zhongguo Zhong Yao Za Zhi 26 293–295.
    1. Zhang S. Q., Cai W. J., Huang J. H., Wu B., Xia S. J., Chen X. L., et al. (2015). Icariin, a natural flavonol glycoside, extends healthspan in mice. Exp. Gerontol. 69 226–235. 10.1016/j.exger.2015.06.020
    1. Zhang W. P., Bai X. J., Zheng X. P., Xie X. L., Yuan Z. Y. (2013). Icariin attenuates the enhanced prothrombotic state in atherosclerotic rabbits independently of its lipid-lowering effects. Planta Med. 79 731–736. 10.1055/s-0032-1328551
    1. Zhang Z. Q., Ren S. C., Tan Y., Li Z. Z., Tang X., Wang T. T., et al. (2016). Epigenetic regulation of NKG2D ligands is involved in exacerbated atherosclerosis development in Sirt6 heterozygous mice. Sci. Rep. 6:23912. 10.1038/srep23912
    1. Zhao F., Tang Y. Z., Liu Z. Q. (2007). Protective effect of icariin on DNA against radical-induced oxidative damage. J. Pharm. Pharmacol. 59 1729–1732. 10.1211/jpp.59.12.0016

Source: PubMed

3
Abonnieren