Non-alcoholic fatty liver disease and diabetes

Jonathan M Hazlehurst, Conor Woods, Thomas Marjot, Jeremy F Cobbold, Jeremy W Tomlinson, Jonathan M Hazlehurst, Conor Woods, Thomas Marjot, Jeremy F Cobbold, Jeremy W Tomlinson

Abstract

Non-alcoholic fatty liver disease (NAFLD) and type 2 diabetes (T2DM) are common conditions that regularly co-exist and can act synergistically to drive adverse outcomes. The presence of both NAFLD and T2DM increases the likelihood of the development of complications of diabetes (including both macro- and micro- vascular complications) as well as augmenting the risk of more severe NAFLD, including cirrhosis, hepatocellular carcinoma and death. The mainstay of NAFLD management is currently to reduce modifiable metabolic risk. Achieving good glycaemic control and optimising weight loss are pivotal to restricting disease progression. Once cirrhosis has developed, it is necessary to screen for complications and minimise the risk of hepatic decompensation. Therapeutic disease modifying options for patients with NAFLD are currently limited. When diabetes and NAFLD co-exist, there are published data that can help inform the clinician as to the most appropriate oral hypoglycaemic agent or injectable therapy that may improve NAFLD, however most of these data are drawn from observations in retrospective series and there is a paucity of well-designed randomised double blind placebo controlled studies with gold-standard end-points. Furthermore, given the heterogeneity of inclusion criteria and primary outcomes, as well as duration of follow-up, it is difficult to draw robust conclusions that are applicable across the entire spectrum of NAFLD and diabetes. In this review, we have summarised and critically evaluated the available data, with the aim of helping to inform the reader as to the most pertinent issues when managing patients with co-existent NAFLD and T2DM.

Keywords: Diabetes; Diabetes complications; Insulin resistance; NAFLD; NASH.

Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

References

    1. Williamson R.M., Price J.F., Glancy S., Perry E., Nee L.D., Hayes P.C. Prevalence of and risk factors for hepatic steatosis and nonalcoholic fatty liver disease in people with type 2 diabetes: the Edinburgh Type 2 Diabetes Study. Diabetes Care. 2011;34:1139–1144.
    1. Targher G., Bertolini L., Padovani R., Rodella S., Tessari R., Zenari L. Prevalence of nonalcoholic fatty liver disease and its association with cardiovascular disease among type 2 diabetic patients. Diabetes Care. 2007;30:1212–1218.
    1. Sanchez P.P., Bril F., Maximos M., Lomonaco R., Biernacki D., Orsak B. High prevalence of nonalcoholic fatty liver disease in patients with type 2 diabetes mellitus and normal plasma aminotransferase levels. J Clin Endocrinol Metab. 2015:jc20151966.
    1. Armstrong M.J., Hazlehurst J.M., Parker R., Koushiappi E., Mann J., Khan S. Severe asymptomatic non-alcoholic fatty liver disease in routine diabetes care; a multi-disciplinary team approach to diagnosis and management. QJM. 2014;107:33–41.
    1. Williamson R.M., Price J.F., Hayes P.C., Glancy S., Frier B.M., Johnston G.I. Prevalence and markers of advanced liver disease in type 2 diabetes. QJM. 2012;105:425–432.
    1. Ryu S., Chang Y., Jung H.-S., Yun K.E., Kwon M.-J., Choi Y. Relationship of sitting time and physical activity with non-alcoholic fatty liver disease. J Hepatol. 2015
    1. Hillenbrand A., Kiebler B., Schwab C., Scheja L., Xu P., Henne-Bruns D. Prevalence of non-alcoholic fatty liver disease in four different weight related patient groups: association with small bowel length and risk factors. BMC Res Notes. 2015;8:290.
    1. Margariti A., Kontogianni M.D., Tileli N., Georgoulis M., Deutsch M., Zafeiropoulou R. Increased abdominal fat levels measured by bioelectrical impedance are associated with histological lesions of nonalcoholic steatohepatitis. Eur J Gastroenterol Hepatol. 2015;27:907–913.
    1. Shibata M., Kihara Y., Taguchi M., Tashiro M., Otsuki M. Nonalcoholic fatty liver disease is a risk factor for type 2 diabetes in middle-aged Japanese men. Diabetes Care. 2007;30:2940–2944.
    1. Kim C.-H., Park J.-Y., Lee K.-U., Kim J.-H., Kim H.-K. Fatty liver is an independent risk factor for the development of type 2 diabetes in Korean adults. Diabet Med. 2008;25:476–481.
    1. Adams L.A., Waters O.R., Knuiman M.W., Elliott R.R., Olynyk J.K. NAFLD as a risk factor for the development of diabetes and the metabolic syndrome: an eleven-year follow-up study. Am J Gastroenterol. 2009;104:861–867.
    1. Balkau B., Lange C., Vol S., Fumeron F., Bonnet F. Nine-year incident diabetes is predicted by fatty liver indices: the French D.E.S.I.R. study. BMC Gastroenterol. 2010;10:56.
    1. Yamada T., Fukatsu M., Suzuki S., Wada T., Yoshida T., Joh T. Fatty liver predicts impaired fasting glucose and type 2 diabetes mellitus in Japanese undergoing a health checkup. J Gastroenterol Hepatol. 2010;25:352–356.
    1. Sung K.-C., Kim S.H. Interrelationship between fatty liver and insulin resistance in the development of type 2 diabetes. J Clin Endocrinol Metab. 2011;96:1093–1097.
    1. Bae J.C., Rhee E.J., Lee W.Y., Park S.E., Park C.Y., Oh K.W. Combined effect of nonalcoholic fatty liver disease and impaired fasting glucose on the development of type 2 diabetes: a 4-year retrospective longitudinal study. Diabetes Care. 2011;34:727–729.
    1. Chon C.W., Kim B.S., Cho Y.K., Sung K.C., Bae J.C., Kim T.W. Effect of nonalcoholic fatty liver disease on the development of type 2 diabetes in nonobese, nondiabetic Korean men. Gut Liver. 2012;6:368–373.
    1. Sung K.-C., Jeong W.-S., Wild S.H., Byrne C.D. Combined influence of insulin resistance, overweight/obesity, and fatty liver as risk factors for type 2 diabetes. Diabetes Care. 2012;35:717–722.
    1. Choi J.H., Rhee E.J., Bae J.C., Park S.E., Park C.Y., Cho Y.K. Increased risk of type 2 diabetes in subjects with both elevated liver enzymes and ultrasonographically diagnosed nonalcoholic fatty liver disease: a 4-year longitudinal study. Arch Med Res. 2013;44:115–120.
    1. Kotronen A., Laaksonen M.A., Heliövaara M., Reunanen A., Tuomilehto J., Yki-Järvinen H. Fatty liver score and 15-year incidence of type 2 diabetes. Hepatol Int. 2013;7:610–621.
    1. Park S.K., Seo M.H., Shin H.C., Ryoo J.-H. Clinical availability of nonalcoholic fatty liver disease as an early predictor of type 2 diabetes mellitus in Korean men: 5-year prospective cohort study. Hepatology. 2013;57:1378–1383.
    1. Zelber-Sagi S., Lotan R., Shibolet O., Webb M., Buch A., Nitzan-Kaluski D. Non-alcoholic fatty liver disease independently predicts prediabetes during a 7-year prospective follow-up. Liver Int. 2013;33:1406–1412.
    1. Ming J., Xu S., Gao B., Liu G., Ji Y., Yang F. Non-alcoholic fatty liver disease predicts type 2 diabetes mellitus, but not prediabetes, in Xi'an, China: a five-year cohort study. Liver Int. 2015
    1. Jäger S., Jacobs S., Kröger J., Stefan N., Fritsche A., Weikert C. Association between the fatty liver index and risk of type 2 diabetes in the EPIC-potsdam study. PLoS One. 2015;10:e0124749.
    1. Adams L.A., Harmsen S., St Sauver J.L., Charatcharoenwitthaya P., Enders F.B., Therneau T. Nonalcoholic fatty liver disease increases risk of death among patients with diabetes: a community-based cohort study. Am J Gastroenterol. 2010;105:1567–1573.
    1. Yamazaki H., Tsuboya T., Tsuji K., Dohke M., Maguchi H. Independent association between improvement of nonalcoholic fatty liver disease and reduced incidence of type 2 diabetes mellitus. Diabetes Care. 2015
    1. Matsumoto N., Arase Y., Kawamura Y., Ohmoto-Sekine M., Amakawa K., Ogawa K. Significance of oral glucose tolerance tests in non-alcoholic fatty liver disease patients with a fasting plasma glucose level of < 126 mg/dL and HbA1c level of ≤ 6.4% in Japan. Intern Med. 2015;54:875–880.
    1. Jun D.W., Kim H.J., Bae J.H., Lee O.Y. The clinical significance of HbA1c as a predictive factor for abnormal postprandial glucose metabolism in NAFLD patients with an elevated liver chemistry. Hepato-Gastroenterology. 2011;58:1274–1279.
    1. Kotronen A., Juurinen L., Hakkarainen A., Westerbacka J., Cornér A., Bergholm R. Liver fat is increased in type 2 diabetic patients and underestimated by serum alanine aminotransferase compared with equally obese nondiabetic subjects. Diabetes Care. 2008;31:165–169.
    1. Bae J.C., Cho Y.K., Lee W.Y., Seo H., II, EJ Rhee, SE Park. Impact of nonalcoholic fatty liver disease on insulin resistance in relation to HbA1c levels in nondiabetic subjects. Am J Gastroenterol. 2010;105:2389–2395.
    1. Wong V.W.S., Hui A.Y., Tsang S.W.C., Chan J.L.Y., Wong G.L.H., Chan A.W.H. Prevalence of undiagnosed diabetes and postchallenge hyperglycaemia in Chinese patients with non-alcoholic fatty liver disease. Aliment Pharmacol Ther. 2006;24:1215–1222.
    1. McPherson S., Hardy T., Henderson E., Burt A.D., Day C.P., Anstee Q.M. Evidence of NAFLD progression from steatosis to fibrosing-steatohepatitis using paired biopsies: implications for prognosis & clinical management. J Hepatol. 2014
    1. Vanni E., Bugianesi E., Kotronen A., De Minicis S., Yki-Järvinen H., Svegliati-Baroni G. From the metabolic syndrome to NAFLD or vice versa? Dig Liver Dis. 2010;42:320–330.
    1. Llauradó G., Sevastianova K., Sädevirta S., Hakkarainen A., Lundbom N., Orho-Melander M. Liver fat content and hepatic insulin sensitivity in overweight patients with type 1 diabetes. J Clin Endocrinol Metab. 2015;100:607–616.
    1. Petit J.M., Pedro L., Guiu B., Duvillard L., Bouillet B., Jooste V. Type 1 diabetes is not associated with an increased prevalence of hepatic steatosis. Diabet Med. 2015
    1. Regnell S.E., Peterson P., Trinh L., Broberg P., Leander P., Lernmark Å. Magnetic resonance imaging reveals altered distribution of hepatic fat in children with type 1 diabetes compared to controls. Metabolism. 2015;64:872–878.
    1. Targher G., Bertolini L., Rodella S., Tessari R., Zenari L., Lippi G. Nonalcoholic fatty liver disease is independently associated with an increased incidence of cardiovascular events in type 2 diabetic patients. Diabetes Care. 2007;30:2119–2121.
    1. Dunn M.A., Behari J., Rogal S.S., O'Connell M.R., Furlan A., Aghayev A. Hepatic steatosis in diabetic patients does not predict adverse liver-related or cardiovascular outcomes. Liver Int. 2013;33:1575–1582.
    1. Athyros V.G., Tziomalos K., Katsiki N., Doumas M., Karagiannis A., Mikhailidis D.P. Cardiovascular risk across the histological spectrum and the clinical manifestations of non-alcoholic fatty liver disease: an update. World J Gastroenterol. 2015;21:6820–6834.
    1. Targher G., Bertolini L., Rodella S., Zoppini G., Lippi G., Day C. Non-alcoholic fatty liver disease is independently associated with an increased prevalence of chronic kidney disease and proliferative/laser-treated retinopathy in type 2 diabetic patients. Diabetologia. 2008;51:444–450.
    1. Ryysy L., Häkkinen A.M., Goto T., Vehkavaara S., Westerbacka J., Halavaara J. Hepatic fat content and insulin action on free fatty acids and glucose metabolism rather than insulin absorption are associated with insulin requirements during insulin therapy in type 2 diabetic patients. Diabetes. 2000;49:749–758.
    1. De Marco R., Locatelli F., Zoppini G., Verlato G., Bonora E., Muggeo M. Cause-specific mortality in type 2 diabetes. The Verona Diabetes Study. Diabetes Care. 1999;22:756–761.
    1. Hossain N., Afendy A., Stepanova M., Nader F., Srishord M., Rafiq N. Independent predictors of fibrosis in patients with nonalcoholic fatty liver disease. Clin Gastroenterol Hepatol. 2009;7:1224–1229. [1229.e1–2]
    1. Younossi Z.M., Gramlich T., Matteoni C.A., Boparai N., McCullough A.J. Nonalcoholic fatty liver disease in patients with type 2 diabetes. Clin Gastroenterol Hepatol. 2004;2:262–265.
    1. Gramlich T., Kleiner D.E., McCullough A.J., Matteoni C.A., Boparai N., Younossi Z.M. Pathologic features associated with fibrosis in nonalcoholic fatty liver disease. Hum Pathol. 2004;35:196–199.
    1. Adams L.A., Sanderson S., Lindor K.D., Angulo P. The histological course of nonalcoholic fatty liver disease: a longitudinal study of 103 patients with sequential liver biopsies. J Hepatol. 2005;42:132–138.
    1. Wang C., Wang X., Gong G., Ben Q., Qiu W., Chen Y. Increased risk of hepatocellular carcinoma in patients with diabetes mellitus: a systematic review and meta-analysis of cohort studies. Int J Cancer. 2012;130:1639–1648.
    1. Day C.P., James O.F.W. Steatohepatitis: a tale of two “hits”? Gastroenterology. 1998;114:842–845.
    1. Dowman J.K., Tomlinson J.W., Newsome P.N. Pathogenesis of non-alcoholic fatty liver disease. QJM. 2010;103:71–83.
    1. Cusi K. Role of obesity and lipotoxicity in the development of nonalcoholic steatohepatitis: pathophysiology and clinical implications. Gastroenterology. 2012;142:711–725.e6.
    1. Zarrinpar A., Loomba R. Review article: the emerging interplay among the gastrointestinal tract, bile acids and incretins in the pathogenesis of diabetes and non-alcoholic fatty liver disease. Aliment Pharmacol Ther. 2012;36:909–921.
    1. Abdul-Hai A., Abdallah A., Malnick S.D. Influence of gut bacteria on development and progression of non-alcoholic fatty liver disease. World J Hepatol. 2015;7:1679–1684.
    1. Kantartzis K., Peter A., Machicao F., Machann J., Wagner S., Königsrainer I. Dissociation between fatty liver and insulin resistance in humans carrying a variant of the patatin-like phospholipase 3 gene. Diabetes. 2009;58:2616–2623.
    1. Donnelly K.L., Smith C.I., Schwarzenberg S.J., Jessurun J., Boldt M.D., Parks E.J. Sources of fatty acids stored in liver and secreted via lipoproteins in patients with nonalcoholic fatty liver disease. J Clin Invest. 2005;115:1343–1351.
    1. Schwarz J.-M., Linfoot P., Dare D., Aghajanian K. Hepatic de novo lipogenesis in normoinsulinemic and hyperinsulinemic subjects consuming high-fat, low-carbohydrate and low-fat, high-carbohydrate isoenergetic diets. Am J Clin Nutr. 2003;77:43–50.
    1. Sunny N.E., Parks E.J., Browning J.D., Burgess S.C. Excessive hepatic mitochondrial TCA cycle and gluconeogenesis in humans with nonalcoholic fatty liver disease. Cell Metab. 2011;14:804–810.
    1. Wei Y., Rector R.S., Thyfault J.P., Ibdah J.A. Nonalcoholic fatty liver disease and mitochondrial dysfunction. World J Gastroenterol. 2008;14:193–199.
    1. Wong V.W.-S., Wong G.L.-H., Choi P.C.-L., Chan A.W.-H., Li M.K.-P., Chan H.-Y. Disease progression of non-alcoholic fatty liver disease: a prospective study with paired liver biopsies at 3 years. Gut. 2010;59:969–974.
    1. Sharma M., Mitnala S., Vishnubhotla R.K., Mukherjee R., Reddy D.N., Rao P.N. The riddle of nonalcoholic fatty liver disease: progression from nonalcoholic fatty liver to nonalcoholic steatohepatitis. J Clin Exp Hepatol. 2015;5:147–158.
    1. Garcia-Monzón C., Martín-Pérez E., Iacono O.L., Fernández-Bermejo M., Majano P.L., Apolinario A. Characterization of pathogenic and prognostic factors of nonalcoholic steatohepatitis associated with obesity. J Hepatol. 2000;33:716–724.
    1. Du Plessis J., van Pelt J., Korf H., Mathieu C., van der Schueren B., Lannoo M. Association of adipose tissue inflammation with histological severity of Non-alcoholic fatty liver disease. Gastroenterology. 2015
    1. Choudhary N.S., Saraf N., Saigal S., Gautam D., Lipi L., Rastogi A. Rapid reversal of liver steatosis with life style modification in highly motivated liver donors. J Clin Exp Hepatol. 2015;5:123–126.
    1. Hallsworth K., Thoma C., Hollingsworth K.G., Cassidy S., Anstee Q.M., Day C.P. Modified high-intensity interval training reduces liver fat and improves cardiac function in non-alcoholic fatty liver disease: a randomised controlled trial. Clin Sci (Lond) 2015
    1. Vilar-Gomez E., Martinez-Perez Y., Calzadilla-Bertot L., Torres-Gonzalez A., Gra-Oramas B., Gonzalez-Fabian L. Weight loss via lifestyle modification significantly reduces features of nonalcoholic steatohepatitis. Gastroenterology. 2015;149:367–378.e5.
    1. Tang A., Rabasa-Lhoret R., Castel H., Wartelle-Bladou C., Gilbert G., Massicotte-Tisluck K. Effects of insulin glargine and liraglutide therapy on liver fat as measured by magnetic resonance in patients with type 2 diabetes: a randomized trial. Diabetes Care. 2015;38:1339–1346.
    1. Lingvay I., Raskin P., Szczepaniak L.S. Effect of insulin–metformin combination on hepatic steatosis in patients with type 2 diabetes. J Diabetes Complications. 2007;21:137–142.
    1. Juurinen L., Tiikkainen M., Häkkinen A.-M., Hakkarainen A., Yki-Järvinen H. Effects of insulin therapy on liver fat content and hepatic insulin sensitivity in patients with type 2 diabetes. Am J Physiol Endocrinol Metab. 2007;292:E829–E835.
    1. Topping D.L., Mayes P.A. The immediate effects of insulin and fructose on the metabolism of the perfused liver. Changes in lipoprotein secretion, fatty acid oxidation and esterification, lipogenesis and carbohydrate metabolism. Biochem J. 1972;126:295–311.
    1. Zammit V.A. Use of in vivo and in vitro techniques for the study of the effects of insulin on hepatic triacylglycerol secretion in different insulinaemic states. Biochem Soc Trans. 2000;28:103–109.
    1. Goh G., Pagadala M. Diabetes mellitus, insulin, sulfonylurea and advanced fibrosis in non-alcoholic fatty liver disease. J Diabetes Metab. 2014;5:1–5.
    1. Singh S., Singh P.P., Singh A.G., Murad M.H., Sanchez W. Anti-diabetic medications and the risk of hepatocellular cancer: a systematic review and meta-analysis. Am J Gastroenterol. 2013;108:881–891. [quiz 892]
    1. Tiikkainen M., Häkkinen A.-M., Korsheninnikova E., Nyman T., Mäkimattila S., Yki-Järvinen H. Effects of rosiglitazone and metformin on liver fat content, hepatic insulin resistance, insulin clearance, and gene expression in adipose tissue in patients with type 2 diabetes. Diabetes. 2004;53:2169–2176.
    1. Ford R.J., Fullerton M.D., Pinkosky S.L., Day E.A., Scott J.W., Oakhill J.S. Metformin and salicylate synergistically activate liver AMPK, inhibit lipogenesis and improve insulin sensitivity. Biochem J. 2015;468:125–132.
    1. Zhou G., Myers R., Li Y., Chen Y., Shen X., Fenyk-Melody J. Role of AMP-activated protein kinase in mechanism of metformin action. J Clin Invest. 2001;108:1167–1174.
    1. Musso G., Cassader M., Rosina F., Gambino R. Impact of current treatments on liver disease, glucose metabolism and cardiovascular risk in non-alcoholic fatty liver disease (NAFLD): a systematic review and meta-analysis of randomised trials. Diabetologia. 2012;55:885–904.
    1. Zhang X., Harmsen W.S., Mettler T.A., Kim W.R., Roberts R.O., Therneau T.M. Continuation of metformin use after a diagnosis of cirrhosis significantly improves survival of patients with diabetes. Hepatology. 2014;60:2008–2016.
    1. Chen H.-P., Shieh J.-J., Chang C.-C., Chen T.-T., Lin J.-T., Wu M.-S. Metformin decreases hepatocellular carcinoma risk in a dose-dependent manner: population-based and in vitro studies. Gut. 2013;62:606–615.
    1. Bhat M., Chaiteerakij R., Harmsen W.S., Schleck C.D., Yang J.D., Giama N.H. Metformin does not improve survival in patients with hepatocellular carcinoma. World J Gastroenterol. 2014;20:15750–15755.
    1. Chen T.-M., Lin C.-C., Huang P.-T., Wen C.-F. Metformin associated with lower mortality in diabetic patients with early stage hepatocellular carcinoma after radiofrequency ablation. J Gastroenterol Hepatol. 2011;26:858–865.
    1. Svegliati-Baroni G., Ridolfi F., Di Sario A., Casini A., Marucci L., Gaggiotti G. Insulin and insulin-like growth factor-1 stimulate proliferation and type I collagen accumulation by human hepatic stellate cells: differential effects on signal transduction pathways. Hepatology. 1999;29:1743–1751.
    1. Belcher G., Schernthaner G. Changes in liver tests during 1-year treatment of patients with type 2 diabetes with pioglitazone, metformin or gliclazide. Diabet Med. 2005;22:973–979.
    1. Dourakis S., Tzemanakis E. Gliclazide-induced acute hepatitis. Eur J Gastroenterol Hepatol. 2000;12:119–121.
    1. Bowker S.L., Majumdar S.R., Veugelers P., Johnson J.A. Increased cancer-related mortality for patients with type 2 diabetes who use sulfonylureas or insulin. Diabetes Care. 2006;29:254–258.
    1. Yki-Jävinen H. Thiazolidinediones. N Engl J Med. 2004;351:1106–1118.
    1. Yki-Järvinen H. Thiazolidinediones and the liver in humans. Curr Opin Lipidol. 2009;20:477–483.
    1. Pettinelli P., Videla L.A. Up-regulation of PPAR-gamma mRNA expression in the liver of obese patients: an additional reinforcing lipogenic mechanism to SREBP-1c induction. J Clin Endocrinol Metab. 2011;96:1424–1430.
    1. Souza-Mello V. Peroxisome proliferator-activated receptors as targets to treat non-alcoholic fatty liver disease. World J Hepatol. 2015;7:1012–1019.
    1. Fernández-Miranda C., Pérez-Carreras M., Colina F., López-Alonso G., Vargas C., Solís-Herruzo J.A. A pilot trial of fenofibrate for the treatment of non-alcoholic fatty liver disease. Dig Liver Dis. 2008;40:200–205.
    1. Yan F., Wang Q., Xu C., Cao M., Zhou X., Wang T. Peroxisome proliferator-activated receptor α activation induces hepatic steatosis, suggesting an adverse effect. PLoS One. 2014;9:e99245.
    1. Lewis J.D., Habel L.A., Quesenberry C.P., Strom B.L., Peng T., Hedderson M.M. Pioglitazone use and risk of bladder cancer and other common cancers in persons with diabetes. JAMA. 2015;314:265–277.
    1. Aubert R.E., Herrera V., Chen W., Haffner S.M., Pendergrass M. Rosiglitazone and pioglitazone increase fracture risk in women and men with type 2 diabetes. Diabetes Obes Metab. 2010;12:716–721.
    1. Ratziu V., Giral P., Jacqueminet S., Charlotte F., Hartemann-Heurtier A., Serfaty L. Rosiglitazone for nonalcoholic steatohepatitis: one-year results of the randomized placebo-controlled fatty liver improvement with rosiglitazone therapy (FLIRT) trial. Gastroenterology. 2008;135:100–110.
    1. Ratziu V., Charlotte F., Bernhardt C., Giral P., Halbron M., Lenaour G. Long-term efficacy of rosiglitazone in nonalcoholic steatohepatitis: results of the Fatty Liver Improvement by Rosiglitazone Therapy (FLIRT 2) extension trial. Hepatology. 2010;51:445–453.
    1. Belfort R., Harrison S.A., Brown K., Darland C., Finch J., Hardies J. A placebo-controlled trial of pioglitazone in subjects with nonalcoholic steatohepatitis. N Engl J Med. 2006;355:2297–2307.
    1. Aithal G.P., Thomas J.A., Kaye P.V., Lawson A., Ryder S.D., Spendlove I. Randomized, placebo-controlled trial of pioglitazone in nondiabetic subjects with nonalcoholic steatohepatitis. Gastroenterology. 2008;135:1176–1184.
    1. Sanyal A.J., Chalasani N., Kowdley K.V., McCullough A., Diehl A.M., Bass N.M. Pioglitazone, vitamin E, or placebo for nonalcoholic steatohepatitis. N Engl J Med. 2010;362:1675–1685.
    1. Polyzos S.A., Kountouras J., Zavos C., Tsiaousi E. The role of adiponectin in the pathogenesis and treatment of non-alcoholic fatty liver disease. Diabetes Obes Metab. 2010;12:365–383.
    1. Balaban Y.H., Korkusuz P., Simsek H., Gokcan H., Gedikoglu G., Pinar A. Dipeptidyl peptidase IV (DDP IV) in NASH patients. Ann Hepatol. 2007;6:242–250.
    1. KH Williams, AJ Vieira De Ribeiro, Prakoso E., A-S Veillard, NA Shackel, Brooks B. Circulating dipeptidyl peptidase-4 activity correlates with measures of hepatocyte apoptosis and fibrosis in non-alcoholic fatty liver disease in type 2 diabetes mellitus and obesity: a dual cohort cross-sectional study. J Diabetes. 2014
    1. Kern M., Klöting N., Niessen H.G., Thomas L., Stiller D., Mark M. Linagliptin improves insulin sensitivity and hepatic steatosis in diet-induced obesity. PLoS One. 2012;7:e38744.
    1. Kaji K., Yoshiji H., Ikenaka Y., Noguchi R., Aihara Y., Douhara A. Dipeptidyl peptidase-4 inhibitor attenuates hepatic fibrosis via suppression of activated hepatic stellate cell in rats. J Gastroenterol. 2014;49:481–491.
    1. Arase Y., Kawamura Y., Seko Y., Kobayashi M., Suzuki F., Suzuki Y. Efficacy and safety in sitagliptin therapy for diabetes complicated by non-alcoholic fatty liver disease. Hepatol Res. 2013;43:1163–1168.
    1. Iwasaki T., Yoneda M., Inamori M., Shirakawa J., Higurashi T., Maeda S. Sitagliptin as a novel treatment agent for non-alcoholic fatty liver disease patients with type 2 diabetes mellitus. Hepatogastroenterology. 2011;58:2103–2105.
    1. Macauley M., Hollingsworth K.G., Smith F.E., Thelwall P.E., Al-Mrabeh A., Schweizer A. Effect of vildagliptin on hepatic steatosis. J Clin Endocrinol Metab. 2015;100:1578–1585.
    1. Derosa G., Bonaventura A., Bianchi L., Romano D., Fogari E., D'Angelo A. Vildagliptin compared to glimepiride on post-prandial lipemia and on insulin resistance in type 2 diabetic patients. Metabolism. 2014;63:957–967.
    1. Scheen A.J. A review of gliptins for 2014. Expert Opin Pharmacother. 2015;16:43–62.
    1. Baggio L.L., Drucker D.J. Biology of incretins: GLP-1 and GIP. Gastroenterology. 2007;132:2131–2157.
    1. Astrup A., Rössner S., Van Gaal L., Rissanen A., Niskanen L., Al Hakim M. Effects of liraglutide in the treatment of obesity: a randomised, double-blind, placebo-controlled study. Lancet (Lond, Engl) 2009;374:1606–1616.
    1. Ding X., Saxena N.K., Lin S., Gupta N.A., Gupta N., Anania F.A. Exendin-4, a glucagon-like protein-1 (GLP-1) receptor agonist, reverses hepatic steatosis in ob/ob mice. Hepatology. 2006;43:173–181.
    1. Trevaskis J.L., Griffin P.S., Wittmer C., Neuschwander-Tetri B.A., Brunt E.M., Dolman C.S. Glucagon-like peptide-1 receptor agonism improves metabolic, biochemical, and histopathological indices of nonalcoholic steatohepatitis in mice. Am J Physiol Gastrointest Liver Physiol. 2012;302:G762–G772.
    1. Ben-Shlomo S., Zvibel I., Shnell M., Shlomai A., Chepurko E., Halpern Z. Glucagon-like peptide-1 reduces hepatic lipogenesis via activation of AMP-activated protein kinase. J Hepatol. 2011;54:1214–1223.
    1. Körner M., Stöckli M., Waser B., Reubi J.C. GLP-1 receptor expression in human tumors and human normal tissues: potential for in vivo targeting. J Nucl Med. 2007;48:736–743.
    1. Gupta N.A., Mells J., Dunham R.M., Grakoui A., Handy J., Saxena N.K. Glucagon-like peptide-1 receptor is present on human hepatocytes and has a direct role in decreasing hepatic steatosis in vitro by modulating elements of the insulin signaling pathway. Hepatology. 2010;51:1584–1592.
    1. Armstrong M.J., Houlihan D.D., Rowe I.A., Clausen W.H.O., Elbrønd B., Gough S.C.L. Safety and efficacy of liraglutide in patients with type 2 diabetes and elevated liver enzymes: individual patient data meta-analysis of the LEAD program. Aliment Pharmacol Ther. 2013;37:234–242.
    1. Armstrong M., Gaunt P., Aithal G., Parker R. Abstr G01, EASL. 2015. Liraglutide is effective in the histological clearance of non-alcoholic steatohepatitis in a multicentre, doubleblinded, randomised, placebocontrolled phase.
    1. Armstrong M.J., Hull D., Guo K., Barton D., Hazlehurst J.M., Gathercole L.L. Glucagon-like peptide 1 decreases lipotoxicity in non-alcoholic steatophepatitis. J Hepatol. 2015
    1. Whalen K., Miller S., Onge E.S. The role of sodium-glucose co-transporter 2 inhibitors in the treatment of type 2 diabetes. Clin Ther. 2015;37:1150–1166.
    1. Hayashizaki-Someya Y., Kurosaki E., Takasu T., Mitori H., Yamazaki S., Koide K. Ipragliflozin, an SGLT2 inhibitor, exhibits a prophylactic effect on hepatic steatosis and fibrosis induced by choline-deficient l-amino acid-defined diet in rats. Eur J Pharmacol. 2015;754:19–24.
    1. Tahara A., Kurosaki E., Yokono M., Yamajuku D., Kihara R., Hayashizaki Y. Effects of SGLT2 selective inhibitor ipragliflozin on hyperglycemia, hyperlipidemia, hepatic steatosis, oxidative stress, inflammation, and obesity in type 2 diabetic mice. Eur J Pharmacol. 2013;715:246–255.
    1. Kern M., Klöting N., Grempler R., Mayoux E., Mark M., Klein T. Tofogliflozin improves insulin resistance as well as glucose tolerance by ameliorating fatty liver and obesity. Diabetes. 2013;62(Supp1):A285.
    1. Vasilakou D., Karagiannis T., Athanasiadou E., Mainou M., Liakos A., Bekiari E. Sodium-glucose cotransporter 2 inhibitors for type 2 diabetes: a systematic review and meta-analysis. Ann Intern Med. 2013;159:262–274.
    1. Bolinder J., Ljunggren Ö., Kullberg J., Johansson L., Wilding J., Langkilde A.M. Effects of dapagliflozin on body weight, total fat mass, and regional adipose tissue distribution in patients with type 2 diabetes mellitus with inadequate glycemic control on metformin. J Clin Endocrinol Metab. 2012;97:1020–1031.
    1. Courcoulas A.P., Belle S.H., Neiberg R.H., Pierson S.K., Eagleton J.K., Kalarchian M.A. Three-year outcomes of bariatric surgery vs lifestyle intervention for type 2 diabetes mellitus treatment: a randomized clinical trial. JAMA Surg. 2015
    1. Bower G., Toma T., Harling L., Jiao L.R., Efthimiou E., Darzi A. Bariatric surgery and Non-alcoholic fatty liver disease: a systematic review of liver biochemistry and histology. Obes Surg. 2015
    1. Laferrère B., Heshka S., Wang K., Khan Y., McGinty J., Teixeira J. Incretin levels and effect are markedly enhanced 1 month after Roux-en-Y gastric bypass surgery in obese patients with type 2 diabetes. Diabetes Care. 2007;30:1709–1716.
    1. Clark J.M., Alkhuraishi A.R.A., Solga S.F., Alli P., Diehl A.M., Magnuson T.H. Roux-en-Y gastric bypass improves liver histology in patients with non-alcoholic fatty liver disease. Obes Res. 2005;13:1180–1186.
    1. Xourafas D., Ardestani A., Ashley S.W., Tavakkoli A. Impact of weight-loss surgery and diabetes status on serum ALT levels. Obes Surg. 2012;22:1540–1547.
    1. Pappachan J.M., Viswanath A.K. Metabolic surgery: a paradigm shift in type 2 diabetes management. World J Diabetes. 2015;6:990–998.
    1. Obesity: identification, assessment and management of overweight and obesity in children, young people and adults. Guidance and guidelines. NICE. 2014
    1. Ferslew B.C., Xie G., Johnston C.K., Su M., Stewart P.W., Jia W. Altered bile acid metabolome in patients with nonalcoholic steatohepatitis. Dig Dis Sci. 2015
    1. Penney N.C., Kinross J., Newton R.C., Purkayastha S. The role of bile acids in reducing the metabolic complications of obesity after bariatric surgery: a systematic review. Int J Obes. 2015
    1. Cole A.J., Teigen L.M., Jahansouz C., Earthman C.P., Sibley S.D. The influence of bariatric surgery on serum bile acids in humans and potential metabolic and hormonal implications: a systematic review. Curr Obes Rep. 2015
    1. Neuschwander-Tetri B.A., Loomba R., Sanyal A.J., Lavine J.E., Van Natta M.L., Abdelmalek M.F. Farnesoid X nuclear receptor ligand obeticholic acid for non-cirrhotic, non-alcoholic steatohepatitis (FLINT): a multicentre, randomised, placebo-controlled trial. Lancet. 2015;385:956–965.
    1. Quercia I., Dutia R., Kotler D.P., Belsley S., Laferrère B. Gastrointestinal changes after bariatric surgery. Diabetes Metab. 2014;40:87–94.
    1. Troke R.C., Tan T.M., Bloom S.R. The future role of gut hormones in the treatment of obesity. Ther Adv Chronic Dis. 2014;5:4–14.

Source: PubMed

3
Abonnieren