Development of Targeted Alpha Particle Therapy for Solid Tumors

Narges K Tafreshi, Michael L Doligalski, Christopher J Tichacek, Darpan N Pandya, Mikalai M Budzevich, Ghassan El-Haddad, Nikhil I Khushalani, Eduardo G Moros, Mark L McLaughlin, Thaddeus J Wadas, David L Morse, Narges K Tafreshi, Michael L Doligalski, Christopher J Tichacek, Darpan N Pandya, Mikalai M Budzevich, Ghassan El-Haddad, Nikhil I Khushalani, Eduardo G Moros, Mark L McLaughlin, Thaddeus J Wadas, David L Morse

Abstract

Targeted alpha-particle therapy (TAT) aims to selectively deliver radionuclides emitting α-particles (cytotoxic payload) to tumors by chelation to monoclonal antibodies, peptides or small molecules that recognize tumor-associated antigens or cell-surface receptors. Because of the high linear energy transfer (LET) and short range of alpha (α) particles in tissue, cancer cells can be significantly damaged while causing minimal toxicity to surrounding healthy cells. Recent clinical studies have demonstrated the remarkable efficacy of TAT in the treatment of metastatic, castration-resistant prostate cancer. In this comprehensive review, we discuss the current consensus regarding the properties of the α-particle-emitting radionuclides that are potentially relevant for use in the clinic; the TAT-mediated mechanisms responsible for cell death; the different classes of targeting moieties and radiometal chelators available for TAT development; current approaches to calculating radiation dosimetry for TATs; and lead optimization via medicinal chemistry to improve the TAT radiopharmaceutical properties. We have also summarized the use of TATs in pre-clinical and clinical studies to date.

Keywords: chelation; clinical studies; mechanism of cell death; medicinal chemistry; radiation dosimetry; solid tumors; targeted alpha-particle therapy; targeting moieties.

Conflict of interest statement

Doctors Morse, Wadas, McLaughlin and Tafreshi are co-inventors on a patent-pending application for a novel uveal melanoma TAT. The patent pending has been licensed to Modulation Therapeutics Inc. and Dr. McLaughlin is a co-founder of that company. All other authors declare no conflicts of interest.

Figures

Figure 1
Figure 1
68Ga-PSMA-11 PET/CT images of a treatment-naïve patient with extensive bone metastasis at primary diagnosis. A complete remission was observed after three cycles of 225Ac-PSMA-617 with de-escalating activities of 8/7/6 MBq. The patient remained symptom-free with undetectable serum PSA and a negative 68Ga-PSMA-11 PET/CT at 11-month follow-up evaluation. This figure and legend were reproduced from Sathekge, et al. [6].
Figure 2
Figure 2
(A) Linear energy transfer (LET) versus distance in water traveled by typical α-particles emitted by radionuclides in development for α-particle radioimmunotherapy: 225Ac (5.829 MeV)/213Bi (8.375 MeV), 211At (5.867 MeV), 212Bi (6.08 MeV)/212Po (8.78 MeV), 223Ra (5.716 MeV). The range of the α-particle and the position of the Bragg peaks are correlated with the initial energy of the α-particles. LET of α-particles in water was calculated using stopping-power and range tables (continuous slowing down approximation range) for electrons, protons and helium ions from the National Institute of Standards and Technology (NIST). (B) The deposition of heavy ion energy as a function of penetrating depth of (a) a pristine beam and (b) a modulated beam with widened stopping region (spread out Bragg peaks). This figure and legend were reproduced from [19].
Figure 3
Figure 3
Survival of a human kidney T-cell culture irradiated with ionizing particles of different kinds: (1) particles with E = 2.5 MeV, LET = 165 keV/m; (2) particles with E = 27 MeV, LET = 25 keV/m; (3) deuterons with E = 3.0 MeV, LET = 20 keV/m; (4) X-rays with E = 20 keV and LET = 6 keV/m; (5) X-rays with E = 250 keV and LET = 2.5 keV/m; and (6) particles with E = 2.2 MeV, LET = 0.3 keV/m. This figure and legend were reproduced from [21].
Figure 4
Figure 4
The somatostatin mimetic octreotide and its DOTA-containing analogs. Octreotide: R1 = H, R2 = H and R3 = CH2OH; DOTATOC (endotreotide): R1 = DOTA, R2 = OH and R3 = CO2H; DOTATATE (Octreotate): R1 = DOTA, R2 = OH and R3 = CH2OH.
Figure 5
Figure 5
Common metal chelators and binders used to attach radionuclides to targeting ligands.
Figure 6
Figure 6
Common conjugation chemistries used to functionalize biomolecules. Countless other schemes have been well characterized and the reader is directed to Bioconjugates Techniques for a review and protocols [117].

References

    1. Pouget J.P., Navarro-Teulon I., Bardies M., Chouin N., Cartron G., Pelegrin A., Azria D. Clinical radioimmunotherapy--the role of radiobiology. Nat. Rev. Clin. Oncol. 2011;8:720–734. doi: 10.1038/nrclinonc.2011.160.
    1. Bodet-Milin C., Kraeber-Bodere F., Eugene T., Guerard F., Gaschet J., Bailly C., Mougin M., Bourgeois M., Faivre-Chauvet A., Cherel M., et al. Radioimmunotherapy for Treatment of Acute Leukemia. Semin. Nucl. Med. 2016;46:135–146. doi: 10.1053/j.semnuclmed.2015.10.007.
    1. Sgouros G., Roeske J.C., McDevitt M.R., Palm S., Allen B.J., Fisher D.R., Brill A.B., Song H., Howell R.W., Akabani G., et al. MIRD Pamphlet No. 22 (abridged): Radiobiology and dosimetry of alpha-particle emitters for targeted radionuclide therapy. J. Nucl. Med. 2010;51:311–328. doi: 10.2967/jnumed.108.058651.
    1. Dizdarevic S., Jessop M., Begley P., Main S., Robinson A. (223)Ra-Dichloride in castration-resistant metastatic prostate cancer: Improving outcomes and identifying predictors of survival in clinical practice. Eur. J. Nucl. Med. Mol. Imaging. 2018;45:2264–2273. doi: 10.1007/s00259-018-4083-3.
    1. Kratochwil C., Bruchertseifer F., Rathke H., Hohenfellner M., Giesel F.L., Haberkorn U., Morgenstern A. Targeted alpha-Therapy of Metastatic Castration-Resistant Prostate Cancer with (225)Ac-PSMA-617: Swimmer-Plot Analysis Suggests Efficacy Regarding Duration of Tumor Control. J. Nucl. Med. 2018;59:795–802. doi: 10.2967/jnumed.117.203539.
    1. Sathekge M., Bruchertseifer F., Knoesen O., Reyneke F., Lawal I., Lengana T., Davis C., Mahapane J., Corbett C., Vorster M., et al. (225)Ac-PSMA-617 in chemotherapy-naive patients with advanced prostate cancer: A pilot study. Eur. J. Nucl. Med. Mol. Imaging. 2019;46:129–138. doi: 10.1007/s00259-018-4167-0.
    1. Parker C., Nilsson S., Heinrich D., Helle S.I., O’Sullivan J.M., Fossa S.D., Chodacki A., Wiechno P., Logue J., Seke M., et al. Alpha emitter radium-223 and survival in metastatic prostate cancer. N. Engl. J. Med. 2013;369:213–223. doi: 10.1056/NEJMoa1213755.
    1. Sartor O., Sharma D. Radium and other alpha emitters in prostate cancer. Transl. Urol. 2018;7:436–444. doi: 10.21037/tau.2018.02.07.
    1. Franchet-Beuzit J., Spotheim-Maurizot M., Sabattier R., Blazy-Baudras B., Charlier M. Radiolytic footprinting. Beta rays, gamma photons, and fast neutrons probe DNA-protein interactions. Biochemistry. 1993;32:2104–2110. doi: 10.1021/bi00059a031.
    1. Schulte-Frohlinde D. Mechanism of radiation-induced strand break formation in DNA and polynucleotides. Adv. Space Res. 1986;6:89–96. doi: 10.1016/0273-1177(86)90281-4.
    1. Cox R., Masson W.K. Mutation and inactivation of cultured mammalian cells exposed to beams of accelerated heavy ions. III. Human diploid fibroblasts. Int. J. Radiat. Biol. Relat. Stud. Phys. Chem. Med. 1979;36:149–160. doi: 10.1080/09553007914550901.
    1. Goodhead D.T., Munson R.J., Thacker J., Cox R. Mutation and inactivation of cultured mammalian cells exposed to beams of accelerated heavy ions. IV. Biophysical interpretation. Int. J. Radiat. Biol. Relat. Stud. Phys. Chem. Med. 1980;37:135–167. doi: 10.1080/09553008014550201.
    1. Munson R.J., Bance D.A., Stretch A., Goodhead D.T. Mutation and inactivation of cultured mammalian cells exposed to beams of accelerated heavy ions. I. Irradiation facilities and methods. Int. J. Radiat. Biol. Relat. Stud. Phys. Chem. Med. 1979;36:127–136. doi: 10.1080/09553007914550881.
    1. Thacker J., Stretch A., Stephens M.A. Mutation and inactivation of cultured mammalian cells exposed to beams of accelerated heavy ions. II. Chinese hamster V79 cells. Int. J. Radiat. Biol. Relat. Stud. Phys. Chem. Med. 1979;36:137–148. doi: 10.1080/09553007914550891.
    1. Pouget J.P., Mather S.J. General aspects of the cellular response to low- and high-LET radiation. Eur. J. Nucl. Med. 2001;28:541–561. doi: 10.1007/s002590100484.
    1. Galluzzi L., Vitale I., Aaronson S.A., Abrams J.M., Adam D., Agostinis P., Alnemri E.S., Altucci L., Amelio I., Andrews D.W., et al. Molecular mechanisms of cell death: Recommendations of the Nomenclature Committee on Cell Death 2018. Cell Death Differ. 2018;25:486–541. doi: 10.1038/s41418-017-0012-4.
    1. Dagogo-Jack I., Shaw A.T. Tumour heterogeneity and resistance to cancer therapies. Nat. Rev. Clin. Oncol. 2018;15:81–94. doi: 10.1038/nrclinonc.2017.166.
    1. Sgouros G. Alpha-particles for targeted therapy. Adv. Drug Deliv. Rev. 2008;60:1402–1406. doi: 10.1016/j.addr.2008.04.007.
    1. Song H., Senthamizhchelvan S., Hobbs R.F., Sgouros G. Alpha Particle Emitter Radiolabeled Antibody for Metastatic Cancer: What Can We Learn from Heavy Ion Beam Radiobiology? Antibodies. 2012;1:124–148. doi: 10.3390/antib1020124.
    1. Lawrence J.H., Tobias C.A., Born J.L., Linfoot J.A., Kling R.P., Gottschalk A. Alpha and Proton Heavy Particles and the Bragg Peak in Therapy. Trans. Am. Clin. Clim. Assoc. 1964;75:111–116.
    1. Kudryashow Y.B. Radiation Biophysics (Ionization Radiation) Nova Science Publishers Inc.; Hauppauge, NY, USA: 2006.
    1. Hall E.J., Giaccia A.J. Radiobiology for the Radiologist. Lippincott Williams & Wilkins; Philadelphia, PA, USA: 2006.
    1. Elgqvist J., Andersson H., Back T., Hultborn R., Jensen H., Karlsson B., Lindegren S., Palm S., Warnhammar E., Jacobsson L. Therapeutic efficacy and tumor dose estimations in radioimmunotherapy of intraperitoneally growing OVCAR-3 cells in nude mice with (211)At-labeled monoclonal antibody MX35. J. Nucl. Med. 2005;46:1907–1915.
    1. Thomlinson R.H., Gray L.H. The histological structure of some human lung cancers and the possible implications for radiotherapy. Br. J. Cancer. 1955;9:539–549. doi: 10.1038/bjc.1955.55.
    1. Mothersill C., Seymour C. Radiation-induced bystander effects: Evidence for an adaptive response to low dose exposures? Dose Response. 2006;4:283–290. doi: 10.2203/dose-response.06-111.Mothersill.
    1. Sawal H.A., Asghar K., Bureik M., Jalal N. Bystander signaling via oxidative metabolism. Onco. Target. 2017;10:3925–3940. doi: 10.2147/OTT.S136076.
    1. Ludgate C.M. Optimizing cancer treatments to induce an acute immune response: Radiation Abscopal effects, PAMPs, and DAMPs. Clin. Cancer Res. 2012;18:4522–4525. doi: 10.1158/1078-0432.CCR-12-1175.
    1. Williams L.E., DeNardo G.L., Meredith R.F. Targeted radionuclide therapy. Med. Phys. 2008;35:3062–3068. doi: 10.1118/1.2938520.
    1. Jadvar H., Quinn D.I. Targeted alpha-particle therapy of bone metastases in prostate cancer. Clin. Nucl. Med. 2013;38:966–971. doi: 10.1097/RLU.0000000000000290.
    1. Miederer M., Scheinberg D.A., McDevitt M.R. Realizing the potential of the Actinium-225 radionuclide generator in targeted alpha particle therapy applications. Adv. Drug Deliv. Rev. 2008;60:1371–1382. doi: 10.1016/j.addr.2008.04.009.
    1. Allen B.J., Huang C.Y., Clarke R.A. Targeted alpha anticancer therapies: Update and future prospects. Biologics. 2014;8:255–267. doi: 10.2147/BTT.S29947.
    1. Marusyk A., Polyak K. Tumor heterogeneity: Causes and consequences. Biochim. Biophys. Acta. 2010;1805:105–117. doi: 10.1016/j.bbcan.2009.11.002.
    1. Imam S.K. Advancements in cancer therapy with alpha-emitters: A review. Int. J. Radiat Oncol. Biol. Phys. 2001;51:271–278. doi: 10.1016/S0360-3016(01)01585-1.
    1. Elgqvist J., Frost S., Pouget J.P., Albertsson P. The potential and hurdles of targeted alpha therapy—Clinical trials and beyond. Front. Oncol. 2014;3:324. doi: 10.3389/fonc.2013.00324.
    1. McDevitt M.R., Ma D., Lai L.T., Simon J., Borchardt P., Frank R.K., Wu K., Pellegrini V., Curcio M.J., Miederer M., et al. Tumor therapy with targeted atomic nanogenerators. Science. 2001;294:1537–1540. doi: 10.1126/science.1064126.
    1. Pozzi O., Guatelli S., Allen B., Barbet J., Cherel M., Bardies M., Bruchertseifer F., Seidl C., Bombardieri E., Bilewicz A., et al. Report: Technical Meeting on “Alpha emitting radionuclides and radiopharmaceuticals for therapy”. [(accessed on 25 September 2019)]; Available online: .
    1. Kim Y.S., Brechbiel M.W. An overview of targeted alpha therapy. Tumour Biol. 2012;33:573–590. doi: 10.1007/s13277-011-0286-y.
    1. McDevitt M.R., Finn R.D., Ma D., Larson S.M., Scheinberg D.A. Preparation of alpha-emitting 213Bi-labeled antibody constructs for clinical use. J. Nucl. Med. 1999;40:1722–1727.
    1. Couturier O., Supiot S., Degraef-Mougin M., Faivre-Chauvet A., Carlier T., Chatal J.F., Davodeau F., Cherel M. Cancer radioimmunotherapy with alpha-emitting nuclides. Eur. J. Nucl. Med. Mol. Imaging. 2005;32:601–614. doi: 10.1007/s00259-005-1803-2.
    1. Corson D.R., MacKenzie K.R., Segre E. Artificially Radioactive Element 85. Phys. Rev. J. 1940;58:672. doi: 10.1103/PhysRev.58.672.
    1. Zalutsky M.R., Pruszynski M. Astatine-211: Production and availability. Curr. Radiopharm. 2011;4:177–185. doi: 10.2174/1874471011104030177.
    1. Zalutsky M.R., Vaidyanathan G. Astatine-211-labeled radiotherapeutics: An emerging approach to targeted alpha-particle radiotherapy. Curr. Pharm. Des. 2000;6:1433–1455. doi: 10.2174/1381612003399275.
    1. Guerard F., Gestin J.F., Brechbiel M.W. Production of [(211)At]-astatinated radiopharmaceuticals and applications in targeted alpha-particle therapy. Cancer Biother. Radiopharm. 2013;28:1–20. doi: 10.1089/cbr.2012.1292.
    1. Wadas T.J., Pandya D.N., Solingapuram Sai K.K., Mintz A. Molecular targeted alpha-particle therapy for oncologic applications. AJR Am. J. Roentgenol. 2014;203:253–260. doi: 10.2214/AJR.14.12554.
    1. Zhuikov B.L., Kalmykov S.N., Ermolaev R.A., Aliev V.M., Kokhanyuk V.L., Matushko I.G., Tananaev B.F., Myasoedov B.F. Production of 225Ac and 223Ra by irradiation of Th with accelerated protons. Radiochemistry. 2011;53:77–80. doi: 10.1134/S1066362211010103.
    1. Griswold J.R., Medvedev D.G., Engle J.W., Copping R., Fitzsimmons J.M., Radchenko V., Cooley J.C., Fassbender M.E., Denton D.L., Murphy K.E., et al. Large scale accelerator production of (225)Ac: Effective cross sections for 78–192 MeV protons incident on (232)Th targets. Appl. Radiat Isot. 2016;118:366–374. doi: 10.1016/j.apradiso.2016.09.026.
    1. John K. Targeted Alpha Therapy: The US DOE Tri-Lab (ORNL, BNL, LANL) Research Effort to Provide Accelerator-Produced 225Ac for Radiotherapy; Proceedings of the American Physical Society Annual Meeting; New Orleans, LA, USA. 28–31 January 2017.
    1. Khabibullin A.R., Karolak A., Budzevich M.M., McLaughlin M.L., Morse D.L., Woods L.M. Structure and properties of DOTA-chelated radiopharmaceuticals within the (225)Ac decay pathway. Medchemcomm. 2018;9:1155–1163. doi: 10.1039/C8MD00170G.
    1. Greenwood N.N., Earnshaw A. Chemistry of the Elements. 2nd ed. Butterworth-Heinemann; Oxford, UK: 1997. p. 946.
    1. Bruland O.S., Nilsson S., Fisher D.R., Larsen R.H. High-linear energy transfer irradiation targeted to skeletal metastases by the alpha-emitter 223Ra: Adjuvant or alternative to conventional modalities? Clin. Cancer Res. 2006;12:6250s–6257s. doi: 10.1158/1078-0432.CCR-06-0841.
    1. Henriksen G., Bruland O.S., Larsen R.H. Thorium and actinium polyphosphonate compounds as bone-seeking alpha particle-emitting agents. Anticancer Res. 2004;24:101–105.
    1. Mausner L.F., Straub R.F., Srivastava S.C. The in vivo generator for radioimmunotherapy. J. Label. Compd. Radiopharm. 1989;26:498–500. doi: 10.1002/jlcr.25802601213.
    1. Baidoo K.E., Milenic D.E., Brechbiel M.W. Methodology for Labeling Proteins and Peptides with Lead-212 ((212)Pb) Nucl. Med. Biol. 2013;40:592–599. doi: 10.1016/j.nucmedbio.2013.01.010.
    1. Mirzadeh S., Kumar K., Gansow O.A. The Chemical Fate of 212Bi-DOTA Formed by β− Decay of 212Pb(DOTA)2−. Radiochem. Acta. 1993;60:1–10. doi: 10.1524/ract.1993.60.1.1.
    1. Ruble G., Wu C., Squire R.A., Ganswo O.A., Strand M. The use of 212Pb-labeled monoclonal antibody in the treatment of murine erythroleukemia. Int. J. Radiat. Oncol. Biol. Phys. 1996;34:609–616. doi: 10.1016/0360-3016(95)02119-1.
    1. Su F.M., Beaumier P., Axworthy D., Atcher R., Fritzberg A. Pretargeted radioimmunotherapy in tumored mice using an in vivo 212Pb/212Bi generator. Nucl. Med. Biol. 2005;32:741–747. doi: 10.1016/j.nucmedbio.2005.06.009.
    1. Fendler W.P., Cutler C. More alpha Than beta for Prostate Cancer? J. Nucl. Med. 2017;58:1709–1710. doi: 10.2967/jnumed.117.198333.
    1. Morgenstern A., Apostolidis C., Kratochwil C., Sathekge M., Krolicki L., Bruchertseifer F. An Overview of Targeted Alpha Therapy with (225)Actinium and (213)Bismuth. Curr. Radiopharm. 2018;11:200–208. doi: 10.2174/1874471011666180502104524.
    1. Kratochwil C., Bruchertseifer F., Giesel F.L., Weis M., Verburg F.A., Mottaghy F., Kopka K., Apostolidis C., Haberkorn U., Morgenstern A. 225Ac-PSMA-617 for PSMA-Targeted alpha-Radiation Therapy of Metastatic Castration-Resistant Prostate Cancer. J. Nucl. Med. 2016;57:1941–1944. doi: 10.2967/jnumed.116.178673.
    1. Kratochwil C., Bruchertseifer F., Rathke H., Bronzel M., Apostolidis C., Weichert W., Haberkorn U., Giesel F.L., Morgenstern A. Targeted alpha-Therapy of Metastatic Castration-Resistant Prostate Cancer with (225)Ac-PSMA-617: Dosimetry Estimate and Empiric Dose Finding. J. Nucl. Med. 2017;58:1624–1631. doi: 10.2967/jnumed.117.191395.
    1. Bauer W., Briner U., Doepfner W., Haller R., Huguenin R., Marbach P., Petcher T.J., Pless J. SMS 201–995: A very potent and selective octapeptide analogue of somatostatin with prolonged action. Life Sci. 1982;31:1133–1140. doi: 10.1016/0024-3205(82)90087-X.
    1. Maack T., Johnson V., Kau S.T., Figueiredo J., Sigulem D. Renal filtration, transport, and metabolism of low-molecular-weight proteins: A review. Kidney Int. 1979;16:251–270. doi: 10.1038/ki.1979.128.
    1. Sabet A., Ezziddin K., Pape U.-F., Reichman K., Haslerud T., Ahmadzadehfar H., Biersack H.-J., Nagarajah J., Ezziddin S. Accurate assessment of long-term nephrotoxicity after peptide receptor radionuclide therapy with 177Lu-octreotate. Eur. J. Nucl. Med. Mol. Imaging. 2013;41:505–510. doi: 10.1007/s00259-013-2601-x.
    1. Norenberg J.P., Krenning B.J., Konings I.R., Kusewitt D.F., Nayak T.K., Anderson T.L., de Jong M., Garmestani K., Brechbiel M.W., Kvols L.K. 213Bi-[DOTA0, Tyr3]octreotide peptide receptor radionuclide therapy of pancreatic tumors in a preclinical animal model. Clin. Cancer Res. 2006;12:897–903. doi: 10.1158/1078-0432.CCR-05-1264.
    1. Kratochwil C., Giesel F.L., Bruchertseifer F., Mier W., Apostolidis C., Boll R., Murphy K., Haberkorn U., Morgenstern A. (213)Bi-DOTATOC receptor-targeted alpha-radionuclide therapy induces remission in neuroendocrine tumours refractory to beta radiation: A first-in-human experience. Eur. J. Nucl. Med. Mol. Imaging. 2014;41:2106–2119. doi: 10.1007/s00259-014-2857-9.
    1. Chan H.S., Konijnenberg M.W., de Blois E., Koelewijn S., Baum R.P., Morgenstern A., Bruchertseifer F., Breeman W.A., de Jong M. Influence of tumour size on the efficacy of targeted alpha therapy with (213)Bi-[DOTA(0),Tyr(3)]-octreotate. EJNMMI Res. 2016;6:6. doi: 10.1186/s13550-016-0162-2.
    1. Tafreshi N.K., Tichacek C.J., Pandya D.N., Doligalski M.L., Budzevich M.M., Kil H., Bhatt N.B., Kock N.D., Messina J.L., Ruiz E.E., et al. Melanocortin 1 Receptor-Targeted alpha-Particle Therapy for Metastatic Uveal Melanoma. J. Nucl. Med. 2019;60:1124–1133. doi: 10.2967/jnumed.118.217240.
    1. Miao Y., Figueroa S.D., Fisher D.R., Moore H.A., Testa R.F., Hoffman T.J., Quinn T.P. 203Pb-labeled alpha-melanocyte-stimulating hormone peptide as an imaging probe for melanoma detection. J. Nucl. Med. 2008;49:823–829. doi: 10.2967/jnumed.107.048553.
    1. Li M., Liu D., Lee D., Kapoor S., Gibson-Corley K.N., Quinn T.P., Sagastume E.A., Mott S.L., Walsh S.A., Acevedo M.R., et al. Enhancing the Efficacy of Melanocortin 1 Receptor-Targeted Radiotherapy by Pharmacologically Upregulating the Receptor in Metastatic Melanoma. Mol. Pharm. 2019 doi: 10.1021/acs.molpharmaceut.9b00512.
    1. Chang M.-Y., Seideman J., Sofou S. Enhanced Loading Efficiency and Retention of 225Ac in Rigid Liposomes for Potential Targeted Therapy of Micrometastases. Bioconjug. Chem. 2008;19:1274–1282. doi: 10.1021/bc700440a.
    1. Woodward J., Kennel S.J., Stuckey A., Osborne D., Wall J., Rondinone A.J., Standaert R.F., Mirzadeh S. LaPO4 Nanoparticles Doped with Actinium-225 that Partially Sequester Daughter Radionuclides. Bioconjug. Chem. 2011;22:766–776. doi: 10.1021/bc100574f.
    1. Zhu C., Bandekar A., Sempkowski M., Banerjee S.R., Pomper M.G., Bruchertseifer F., Morgenstern A., Sofou S. Nanoconjugation of PSMA-Targeting Ligands Enhances Perinuclear Localization and Improves Efficacy of Delivered Alpha-Particle Emitters against Tumor Endothelial Analogues. Mol. Cancer Ther. 2016;15:106–113. doi: 10.1158/1535-7163.MCT-15-0207.
    1. Ballangrud A.M., Yang W.H., Palm S., Enmon R., Borchardt P.E., Pellegrini V.A., McDevitt M.R., Scheinberg D.A., Sgouros G. Alpha-particle emitting atomic generator (Actinium-225)-labeled trastuzumab (herceptin) targeting of breast cancer spheroids: Efficacy versus HER2/neu expression. Clin. Cancer Res. 2004;10:4489–4497. doi: 10.1158/1078-0432.CCR-03-0800.
    1. Jaggi J.S., Seshan S.V., McDevitt M.R., LaPerle K., Sgouros G., Scheinberg D.A. Renal Tubulointerstitial Changes after Internal Irradiation with α-Particle–Emitting Actinium Daughters. J. Am. Soc. Nephrol. 2005;16:2677–2689. doi: 10.1681/ASN.2004110945.
    1. Singh Jaggi J., Kappel B.J., McDevitt M.R., Sgouros G., Flombaum C.D., Cabassa C., Scheinberg D.A. Efforts to Control the Errant Products of a Targeted In vivo Generator. Cancer Res. 2005;65:4888–4895. doi: 10.1158/0008-5472.CAN-04-3096.
    1. Orozco J.J., Bäck T., Kenoyer A., Balkin E.R., Hamlin D.K., Wilbur D.S., Fisher D.R., Frayo S.L., Hylarides M.D., Green D.J., et al. Anti-CD45 radioimmunotherapy using (211)At with bone marrow transplantation prolongs survival in a disseminated murine leukemia model. Blood. 2013;121:3759–3767. doi: 10.1182/blood-2012-11-467035.
    1. Green D.J., Shadman M., Jones J.C., Frayo S.L., Kenoyer A.L., Hylarides M.D., Hamlin D.K., Wilbur D.S., Balkan E.R., Lin Y., et al. Astatine-211 conjugated to an anti-CD20 monoclonal antibody eradicates disseminated B-cell lymphoma in a mouse model. Blood. 2015;125:2111–2119. doi: 10.1182/blood-2014-11-612770.
    1. Yokota T., Milenic D.E., Whitlow M., Schlom J. Rapid Tumor Penetration of a Single-Chain Fv and Comparison with Other Immunoglobulin Forms. Cancer Res. 1992;52:3402–3408.
    1. Hudson P.J., Souriau C. Engineered antibodies. Nat. Med. 2003;9:129–134. doi: 10.1038/nm0103-129.
    1. Steffen A.C., Almqvist Y., Chyan M.K., Lundqvist H., Tolmachev V., Wilbur D.S., Carlsson J. Biodistribution of 211At labeled HER-2 binding affibody molecules in mice. Oncol. Rep. 2007;17:1141–1147. doi: 10.3892/or.17.5.1141.
    1. D’Huyvetter M., Xavier C., Caveliers V., Lahoutte T., Muyldermans S., Devoogdt N. Radiolabeled nanobodies as theranostic tools in targeted radionuclide therapy of cancer. Expert. Opin. Drug Deliv. 2014;11:1939–1954. doi: 10.1517/17425247.2014.941803.
    1. Jadvar H., Challa S., Quinn D.I., Conti P.S. One-Year Postapproval Clinical Experience with Radium-223 Dichloride in Patients with Metastatic Castrate-Resistant Prostate Cancer. Cancer Biother. Radiopharm. 2015;30:195–199. doi: 10.1089/cbr.2014.1802.
    1. Takalkar A., Adams S., Subbiah V. Radium-223 dichloride bone-targeted alpha particle therapy for hormone-refractory breast cancer metastatic to bone. Exp. Hematol. Oncol. 2014;3:1–7. doi: 10.1186/2162-3619-3-23.
    1. Kozempel J., Vlk M., Málková E., Bajzíková A., Bárta J., Santos-Oliveira R., Malta Rossi A. Prospective carriers of 223Ra for targeted alpha particle therapy. J. Radioanal. Nucl. Chem. 2014;304:443–447. doi: 10.1007/s10967-014-3615-y.
    1. Schwartz J., Jaggi J.S., O’Donoghue J.A., Ruan S., McDevitt M., Larson S.M., Scheinberg D.A., Humm J.L. Renal uptake of bismuth-213 and its contribution to kidney radiation dose following administration of actinium-225-labeled antibody. Phys. Med. Biol. 2011;56:721–733. doi: 10.1088/0031-9155/56/3/012.
    1. McLaughlin M.F., Woodward J., Boll R.A., Wall J.S., Rondinone A.J., Kennel S.J., Mirzadeh S., Robertson J.D. Gold Coated Lanthanide Phosphate Nanoparticles for Targeted Alpha Generator Radiotherapy. PLoS ONE. 2013;8:e54531. doi: 10.1371/journal.pone.0054531.
    1. Harrison M.R., Wong T.Z., Armstrong A.J., George D.J. Radium-223 chloride: A potential new treatment for castration-resistant prostate cancer patients with metastatic bone disease. Cancer Manag. Res. 2013;5:1–14. doi: 10.2147/CMAR.S25537.
    1. Wilbur D.S. Chemical and radiochemical considerations in radiolabeling with alpha-emitting radionuclides. Curr. Radiopharm. 2011;4:214–247. doi: 10.2174/1874471011104030214.
    1. de Kruijff R.M., Wolterbeek H.T., Denkova A.G. A Critical Review of Alpha Radionuclide Therapy-How to Deal with Recoiling Daughters? Pharmaceuticals (Basel) 2015;8:321–336. doi: 10.3390/ph8020321.
    1. Zalutsky M.R., Reardon D.A., Pozzi O.R., Vaidyanathan G., Bigner D.D. Targeted alpha-particle radiotherapy with 211At-labeled monoclonal antibodies. Nucl. Med. Biol. 2007;34:779–785. doi: 10.1016/j.nucmedbio.2007.03.007.
    1. Hassfjell S., Brechbiel M.W. The development of the alpha-particle emitting radionuclides 212Bi and 213Bi, and their decay chain related radionuclides, for therapeutic applications. Chem. Rev. 2001;101:2019–2036. doi: 10.1021/cr000118y.
    1. Morgenstern A., Bruchertseifer F., Apostolidis C. Targeted alpha therapy with 213Bi. Curr. Radiopharm. 2011;4:295–305. doi: 10.2174/1874471011104040295.
    1. Raes F. Description of the properties of unattached 218Po and 212Pb particles by means of the classical theory of cluster formation. Health Phys. 1985;49:1177–1187. doi: 10.1097/00004032-198512000-00013.
    1. Yong K., Brechbiel M. Application of Pb for Targeted alpha-particle Therapy (TAT): Pre-clinical and Mechanistic Understanding through to Clinical Translation. AIMS Med. Sci. 2015;2:228–245. doi: 10.3934/medsci.2015.3.228.
    1. Gott M., Steinbach J., Mamat C. The Radiochemical and Radiopharmaceutical Applications of Radium. Open Chem. 2016;14:118–129. doi: 10.1515/chem-2016-0011.
    1. Scheinberg D.A., McDevitt M.R. Actinium-225 in targeted alpha-particle therapeutic applications. Curr. Radiopharm. 2011;4:306–320. doi: 10.2174/1874471011104040306.
    1. Moss L., Edelstein N., Fuger J. The Chemistry of the Actinide and TRANSACTINIDE Elements. Springer; Amsterdam, The Netherlands: 2006. Actinium; pp. 18–51.
    1. Diamond R., Street Jr K., Seaborg G. An ion-exchange study of possible hybridized 5f bonding in the actinides. J. Am. Chem. Soc. 1954;76:1461–1469. doi: 10.1021/ja01635a001.
    1. Moss L., Edelstein N., Fuger J., editors. Summary and Comparison of the Properties of the Actinide and Transactinide Elements. Springer; Amsterdam, The Netherlands: 2006. pp. 1753–1835.
    1. Gorden A.E., DeVore M.A., 2nd, Maynard B.A. Coordination chemistry with f-element complexes for an improved understanding of factors that contribute to extraction selectivity. Inorg. Chem. 2013;52:3445–3458. doi: 10.1021/ic300887p.
    1. Chappell L.L., Ma D., Milenic D.E., Garmestani K., Venditto V., Beitzel M.P., Brechbiel M.W. Synthesis and evaluation of novel bifunctional chelating agents based on 1,4,7,10-tetraazacyclododecane-N,N′,N″,N‴-tetraacetic acid for radiolabeling proteins. Nucl. Med. Biol. 2003;30:581–595. doi: 10.1016/S0969-8051(03)00033-7.
    1. Chappell L.L., Deal K.A., Dadachova E., Brechbiel M.W. Synthesis, conjugation, and radiolabeling of a novel bifunctional chelating agent for (225)Ac radioimmunotherapy applications. Bioconjug. Chem. 2000;11:510–519. doi: 10.1021/bc990153f.
    1. Davis I.A., Glowienka K.A., Boll R.A., Deal K.A., Brechbiel M.W., Stabin M., Bochsler P.N., Mirzadeh S., Kennel S.J. Comparison of 225actinium chelates: Tissue distribution and radiotoxicity. Nucl. Med. Biol. 1999;26:581–589. doi: 10.1016/S0969-8051(99)00024-4.
    1. McDevitt M.R., Ma D., Simon J., Frank R.K., Scheinberg D.A. Design and synthesis of 225Ac radioimmunopharmaceuticals. Appl. Radiat. Isot. 2002;57:841–847. doi: 10.1016/S0969-8043(02)00167-7.
    1. Gouin S.G., Gestin J.F., Monrandeau L., Segat-Dioury F., Meslin J.C., Deniaud D. Synthesis and metal complexation properties of Ph-DTPA and Ph-TTHA: Novel radionuclide chelating agents for use in nuclear medicine. Org. Biomol. Chem. 2005;3:454–461. doi: 10.1039/b413758b.
    1. Thiele N.A., Brown V., Kelly J.M., Amor-Coarasa A., Jermilova U., MacMillan S.N., Nikolopoulou A., Ponnala S., Ramogida C.F., Robertson A.K.H., et al. An Eighteen-Membered Macrocyclic Ligand for Actinium-225 Targeted Alpha Therapy. Angew. Chem. Int. Ed. Engl. 2017;56:14712–14717. doi: 10.1002/anie.201709532.
    1. Escorcia F.E., Henke E., McDevitt M.R., Villa C.H., Smith-Jones P., Blasberg R.G., Benezra R., Scheinberg D.A. Selective killing of tumor neovasculature paradoxically improves chemotherapy delivery to tumors. Cancer Res. 2010;70:9277–9286. doi: 10.1158/0008-5472.CAN-10-2029.
    1. Maguire W.F., McDevitt M.R., Smith-Jones P.M., Scheinberg D.A. Efficient 1-step radiolabeling of monoclonal antibodies to high specific activity with 225Ac for alpha-particle radioimmunotherapy of cancer. J. Nucl. Med. 2014;55:1492–1498. doi: 10.2967/jnumed.114.138347.
    1. Poty S., Membreno R., Glaser J.M., Ragupathi A., Scholz W.W., Zeglis B.M., Lewis J.S. The inverse electron-demand Diels-Alder reaction as a new methodology for the synthesis of (225)Ac-labelled radioimmunoconjugates. Chem. Commun. (Camb) 2018;54:2599–2602. doi: 10.1039/C7CC09129J.
    1. Sofou S., Kappel B.J., Jaggi J.S., McDevitt M.R., Scheinberg D.A., Sgouros G. Enhanced retention of the alpha-particle-emitting daughters of Actinium-225 by liposome carriers. Bioconjug. Chem. 2007;18:2061–2067. doi: 10.1021/bc070075t.
    1. Sofou S., Thomas J.L., Lin H.Y., McDevitt M.R., Scheinberg D.A., Sgouros G. Engineered liposomes for potential alpha-particle therapy of metastatic cancer. J. Nucl. Med. 2004;45:253–260.
    1. Matson M.L., Villa C.H., Ananta J.S., Law J.J., Scheinberg D.A., Wilson L.J. Encapsulation of alpha-Particle-Emitting 225Ac3+ Ions Within Carbon Nanotubes. J. Nucl. Med. 2015;56:897–900. doi: 10.2967/jnumed.115.158311.
    1. McDevitt M.R., Chattopadhyay D., Kappel B.J., Jaggi J.S., Schiffman S.R., Antczak C., Njardarson J.T., Brentjens R., Scheinberg D.A. Tumor targeting with antibody-functionalized, radiolabeled carbon nanotubes. J. Nucl. Med. 2007;48:1180–1189. doi: 10.2967/jnumed.106.039131.
    1. Mulvey J.J., Villa C.H., McDevitt M.R., Escorcia F.E., Casey E., Scheinberg D.A. Self-assembly of carbon nanotubes and antibodies on tumours for targeted amplified delivery. Nat. Nanotechnol. 2013;8:763–771. doi: 10.1038/nnano.2013.190.
    1. Ruggiero A., Villa C.H., Holland J.P., Sprinkle S.R., May C., Lewis J.S., Scheinberg D.A., McDevitt M.R. Imaging and treating tumor vasculature with targeted radiolabeled carbon nanotubes. Int. J. Nanomed. 2010;5:783–802. doi: 10.2147/IJN.S13300.
    1. Gouard S., Pallardy A., Gaschet J., Faivre-Chauvet A., Bruchertseifer F., Morgenstern A., Maurel C., Matous E., Kraeber-Bodere F., Davodeau F., et al. Comparative analysis of multiple myeloma treatment by CD138 antigen targeting with bismuth-213 and Melphalan chemotherapy. Nucl. Med. Biol. 2014;41:e30–e35. doi: 10.1016/j.nucmedbio.2014.02.008.
    1. Hermanson G.T. In: Bioconjugate Techniques. 3rd ed. Hermanson G.T., editor. Academic Press; Cambridge, MA, USA: 2013.
    1. Tavaré R., Wu W.H., Zettlitz K.A., Salazar F.B., McCabe K.E., Marks J.D., Wu A.M. Enhanced immunoPET of ALCAM-positive colorectal carcinoma using site-specific 64Cu-DOTA conjugation. Protein Eng. Des. Sel. 2014;27:317–324. doi: 10.1093/protein/gzu030.
    1. Li L., Olafsen T., Anderson A.-L., Wu A., Raubitschek A.A., Shively J.E. Reduction of Kidney Uptake in Radiometal Labeled Peptide Linkers Conjugated to Recombinant Antibody Fragments. Site-Specific Conjugation of DOTA-Peptides to a Cys-Diabody. Bioconjug. Chem. 2002;13:985–995. doi: 10.1021/bc025565u.
    1. Akizawa H., Imajima M., Hanaoka H., Uehara T., Satake S., Arano Y. Renal Brush Border Enzyme-Cleavable Linkages for Low Renal Radioactivity Levels of Radiolabeled Antibody Fragments. Bioconjug. Chem. 2013;24:291–299. doi: 10.1021/bc300428b.
    1. Loevinger R., Budinger T.F., Watson E.E. MIRD Primer for Absorbed Dose Calculations, Revised Edition. The Society of Nuclear Medicine, Inc; New York, NY, USA: 1991.
    1. Kellerer A.M., Chmelevsky D. Criteria for the applicability of LET. Radiat. Res. 1975;63:226–234. doi: 10.2307/3574148.
    1. Fisher K.J., Jooss K., Alston J., Yang Y., Haecker S.E., High K., Pathak R., Raper S.E., Wilson J.M. Recombinant adeno-associated virus for muscle directed gene therapy. Nat. Med. 1997;3:306–312. doi: 10.1038/nm0397-306.
    1. Zubal I.G., Harrell C.R., Smith E.O., Rattner Z., Gindi G., Hoffer P.B. Computerized three-dimensional segmented human anatomy. Med. Phys. 1994;21:299–302. doi: 10.1118/1.597290.
    1. Bolch W.E., Bouchet L.G., Robertson J.S., Wessels B.W., Siegel J.A., Howell R.W., Erdi A.K., Aydogan B., Costes S., Watson E.E., et al. MIRD pamphlet No. 17: The dosimetry of nonuniform activity distributions--radionuclide S values at the voxel level. Medical Internal Radiation Dose Committee. J. Nucl. Med. 1999;40:11S–36S.
    1. Stabin M.G., Sparks R.B., Crowe E. OLINDA/EXM: The second-generation personal computer software for internal dose assessment in nuclear medicine. J. Nucl. Med. 2005;46:1023–1027.
    1. Sgouros G., Frey E., Wahl R., He B., Prideaux A., Hobbs R. Three-dimensional imaging-based radiobiological dosimetry. Semin. Nucl. Med. 2008;38:321–334. doi: 10.1053/j.semnuclmed.2008.05.008.
    1. Gil A.V., Pérez M.C., Aroche L.T., Pacilio M., Botta F., Cremonesi M. MCID: A personalized dosimetric tool associating voxel-based models with MCNP5; Proceedings of the IAEA International Conference on Radiation Protection in Medicine, Setting the Scene for the Next Decade; Bonn, Germany. 3–7 December 2012.
    1. Chiavassa S., Bardies M., Guiraud-Vitaux F., Bruel D., Jourdain J.R., Franck D., Aubineau-Laniece I. OEDIPE: A personalized dosimetric tool associating voxel-based models with MCNPX. Cancer Biother. Radiopharm. 2005;20:325–332. doi: 10.1089/cbr.2005.20.325.
    1. Yoriyaz H., Stabin M.G., dos Santos A. Monte Carlo MCNP-4B-based absorbed dose distribution estimates for patient-specific dosimetry. J. Nucl. Med. 2001;42:662–669.
    1. Prideaux A.R., Song H., Hobbs R.F., He B., Frey E.C., Ladenson P.W., Wahl R.L., Sgouros G. Three-dimensional radiobiologic dosimetry: Application of radiobiologic modeling to patient-specific 3-dimensional imaging-based internal dosimetry. J. Nucl. Med. 2007;48:1008–1016. doi: 10.2967/jnumed.106.038000.
    1. Liu X., Ljungberg M., Strand S.E. DOSIMG: A 3D voxel-based Monte Carlo program for absorbed dose calculations. J. Nucl. Med. 2001;42:243P.
    1. Nelson W.R., Hirayama H., Rogers D.W.O. The EGS4 Code System. National Technical Information Service, U.S. Department of Commerce; Springfield, VA, USA: Stanford University Linear Accelerator Center; Stanford, CA, USA: 1985.
    1. Marcatili S., Pettinato C., Daniels S., Lewis G., Edwards P., Fanti S., Spezi E. Development and validation of RAYDOSE: A Geant4-based application for molecular radiotherapy. Phys. Med. Biol. 2013;58:2491–2508. doi: 10.1088/0031-9155/58/8/2491.
    1. Besemer A.E., Yang Y.M., Grudzinski J.J., Hall L.T., Bednarz B.P. Development and Validation of RAPID: A Patient-Specific Monte Carlo Three-Dimensional Internal Dosimetry Platform. Cancer Biother. Radiopharm. 2018;33:155–165. doi: 10.1089/cbr.2018.2451.
    1. Agostinelli S., Allison J., Amako K., Apostolakis J., Araujo H., Arce P., Asai M., Axen D., Banerjee S., Barrand G., et al. GEANT4-a simulation toolkit. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2003;506:250–303. doi: 10.1016/S0168-9002(03)01368-8.
    1. Sempau J., Wilderman S.J., Bielajew A.F. DPM, a fast, accurate Monte Carlo code optimized for photon and electron radiotherapy treatment planning dose calculations. Phys. Med. Biol. 2000;45:2263–2291. doi: 10.1088/0031-9155/45/8/315.
    1. Miller B.W., Gregory S.J., Fuller E.S., Barrett H.H., Barber B., Furenlid L.R. The iQID camera: An ionizing-radiation quantum imaging detector. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2014;767:146–152. doi: 10.1016/j.nima.2014.05.070.
    1. Back T., Jacobsson L. The alpha-camera: A quantitative digital autoradiography technique using a charge-coupled device for ex vivo high-resolution bioimaging of alpha-particles. J. Nucl. Med. 2010;51:1616–1623. doi: 10.2967/jnumed.110.077578.
    1. Demartis S., Tarli L., Borsi L., Zardi L., Neri D. Selective targeting of tumour neovasculature by a radiohalogenated human antibody fragment specific for the ED-B domain of fibronectin. Eur. J. Nucl. Med. 2001;28:534–539. doi: 10.1007/s002590100480.
    1. Park S.I., Shenoi J., Pagel J.M., Hamlin D.K., Wilbur D.S., Orgun N., Kenoyer A.L., Frayo S., Axtman A., Back T., et al. Conventional and pretargeted radioimmunotherapy using bismuth-213 to target and treat non-Hodgkin lymphomas expressing CD20: A preclinical model toward optimal consolidation therapy to eradicate minimal residual disease. Blood. 2010;116:4231–4239. doi: 10.1182/blood-2010-05-282327.
    1. Robinson M.K., Shaller C., Garmestani K., Plascjak P.S., Hodge K.M., Yuan Q.A., Marks J.D., Waldmann T.A., Brechbiel M.W., Adams G.P. Effective treatment of established human breast tumor xenografts in immunodeficient mice with a single dose of the alpha-emitting radioisotope astatine-211 conjugated to anti-HER2/neu diabodies. Clin. Cancer Res. 2008;14:875–882. doi: 10.1158/1078-0432.CCR-07-1250.
    1. Zhang M., Yao Z., Garmestani K., Axworthy D.B., Zhang Z., Mallett R.W., Theodore L.J., Goldman C.K., Brechbiel M.W., Carrasquillo J.A., et al. Pretargeting radioimmunotherapy of a murine model of adult T-cell leukemia with the alpha-emitting radionuclide, bismuth 213. Blood. 2002;100:208–216. doi: 10.1182/blood-2002-01-0107.
    1. Poty S., Carter L.M., Mandleywala K., Membreno R., Abdel-Atti D., Ragupathi A., Scholz W.W., Zeglis B.M., Lewis J.S. Leveraging Bioorthogonal Click Chemistry to Improve (225)Ac-Radioimmunotherapy of Pancreatic Ductal Adenocarcinoma. Clin. Cancer Res. 2019;25:868–880. doi: 10.1158/1078-0432.CCR-18-1650.
    1. Li Y., Song E., Abbas Rizvi S.M., Power C.A., Beretov J., Raja C., Cozzi P.J., Morgenstern A., Apostolidis C., Allen B.J., et al. Inhibition of micrometastatic prostate cancer cell spread in animal models by 213Bilabeled multiple targeted alpha radioimmunoconjugates. Clin. Cancer Res. 2009;15:865–875. doi: 10.1158/1078-0432.CCR-08-1203.
    1. Makvandi M., Lieberman B.P., LeGeyt B., Hou C., Mankoff D.A., Mach R.H., Pryma D.A. The pre-clinical characterization of an alpha-emitting sigma-2 receptor targeted radiotherapeutic. Nucl. Med. Biol. 2016;43:35–41. doi: 10.1016/j.nucmedbio.2015.10.001.
    1. Willhauck M.J., Samani B.R., Wolf I., Senekowitsch-Schmidtke R., Stark H.J., Meyer G.J., Knapp W.H., Goke B., Morris J.C., Spitzweg C. The potential of 211Astatine for NIS-mediated radionuclide therapy in prostate cancer. Eur. J. Nucl. Med. Mol. Imaging. 2008;35:1272–1281. doi: 10.1007/s00259-008-0775-4.
    1. Borchardt P.E., Yuan R.R., Miederer M., McDevitt M.R., Scheinberg D.A. Targeted actinium-225 in vivo generators for therapy of ovarian cancer. Cancer Res. 2003;63:5084–5090.
    1. Miederer M., McDevitt M.R., Sgouros G., Kramer K., Cheung N.K., Scheinberg D.A. Pharmacokinetics, dosimetry, and toxicity of the targetable atomic generator, 225Ac-HuM195, in nonhuman primates. J. Nucl. Med. 2004;45:129–137.
    1. Miederer M., McDevitt M.R., Borchardt P., Bergman I., Kramer K., Cheung N.K., Scheinberg D.A. Treatment of neuroblastoma meningeal carcinomatosis with intrathecal application of alpha-emitting atomic nanogenerators targeting disialo-ganglioside GD2. Clin. Cancer Res. 2004;10:6985–6992. doi: 10.1158/1078-0432.CCR-04-0859.
    1. Miederer M., Henriksen G., Alke A., Mossbrugger I., Quintanilla-Martinez L., Senekowitsch-Schmidtke R., Essler M. Preclinical evaluation of the alpha-particle generator nuclide 225Ac for somatostatin receptor radiotherapy of neuroendocrine tumors. Clin. Cancer Res. 2008;14:3555–3561. doi: 10.1158/1078-0432.CCR-07-4647.
    1. Song H., Hobbs R.F., Vajravelu R., Huso D.L., Esaias C., Apostolidis C., Morgenstern A., Sgouros G. Radioimmunotherapy of breast cancer metastases with alpha-particle emitter 225Ac: Comparing efficacy with 213Bi and 90Y. Cancer Res. 2009;69:8941–8948. doi: 10.1158/0008-5472.CAN-09-1828.
    1. Essler M., Gartner F.C., Neff F., Blechert B., Senekowitsch-Schmidtke R., Bruchertseifer F., Morgenstern A., Seidl C. Therapeutic efficacy and toxicity of 225Ac-labelled vs. 213Bi-labelled tumour-homing peptides in a preclinical mouse model of peritoneal carcinomatosis. Eur. J. Nucl. Med. Mol. Imaging. 2012;39:602–612. doi: 10.1007/s00259-011-2023-6.
    1. Drecoll E., Gaertner F.C., Miederer M., Blechert B., Vallon M., Muller J.M., Alke A., Seidl C., Bruchertseifer F., Morgenstern A., et al. Treatment of peritoneal carcinomatosis by targeted delivery of the radio-labeled tumor homing peptide bi-DTPA-[F3]2 into the nucleus of tumor cells. PLoS ONE. 2009;4:e5715. doi: 10.1371/journal.pone.0005715.
    1. Sattiraju A., Solingapuram Sai K.K., Xuan A., Pandya D.N., Almaguel F.G., Wadas T.J., Herpai D.M., Debinski W., Mintz A. IL13RA2 targeted alpha particle therapy against glioblastomas. Oncotarget. 2017;8:42997–43007. doi: 10.18632/oncotarget.17792.
    1. Sattiraju A., Xiong X., Pandya D.N., Wadas T.J., Xuan A., Sun Y., Jung Y., Sai K.K.S., Dorsey J.F., Li K.C., et al. Alpha Particle Enhanced Blood Brain/Tumor Barrier Permeabilization in Glioblastomas Using Integrin Alpha-v Beta-3-Targeted Liposomes. Mol. Cancer. 2017;16:2191–2200. doi: 10.1158/1535-7163.MCT-16-0907.
    1. McLaughlin M.F., Robertson D., Pevsner P.H., Wall J.S., Mirzadeh S., Kennel S.J. LnPO4 nanoparticles doped with Ac-225 and sequestered daughters for targeted alpha therapy. Cancer Biother. Radiopharm. 2014;29:34–41. doi: 10.1089/cbr.2013.1546.
    1. Nedrow J.R., Josefsson A., Park S., Back T., Hobbs R.F., Brayton C., Bruchertseifer F., Morgenstern A., Sgouros G. Pharmacokinetics, microscale distribution, and dosimetry of alpha-emitter-labeled anti-PD-L1 antibodies in an immune competent transgenic breast cancer model. EJNMMI Res. 2017;7:57. doi: 10.1186/s13550-017-0303-2.
    1. Pfannkuchen N., Bausbacher N., Pektor S., Miederer M., Rosch F. In vivo Evaluation of [(225)Ac]Ac-DOTA(ZOL) for alpha-Therapy of Bone Metastases. Curr. Radiopharm. 2018;11:223–230. doi: 10.2174/1874471011666180604083911.
    1. Kelly J.M., Amor-Coarasa A., Ponnala S., Nikolopoulou A., Williams C., Jr., Thiele N.A., Schlyer D., Wilson J.J., DiMagno S.G., Babich J.W. A Single Dose of (225)Ac-RPS-074 Induces a Complete Tumor Response in a LNCaP Xenograft Model. J. Nucl. Med. 2018 doi: 10.2967/jnumed.118.219592.
    1. Zalutsky M.R., McLendon R.E., Garg P.K., Archer G.E., Schuster J.M., Bigner D.D. Radioimmunotherapy of neoplastic meningitis in rats using an alpha-particle-emitting immunoconjugate. Cancer Res. 1994;54:4719–4725.
    1. Zalutsky M.R., Stabin M.G., Larsen R.H., Bigner D.D. Tissue distribution and radiation dosimetry of astatine-211-labeled chimeric 81C6, an alpha-particle-emitting immunoconjugate. Nucl. Med. Biol. 1997;24:255–261. doi: 10.1016/S0969-8051(97)00060-7.
    1. Andersson H., Elgqvist J., Horvath G., Hultborn R., Jacobsson L., Jensen H., Karlsson B., Lindegren S., Palm S. Astatine-211-labeled antibodies for treatment of disseminated ovarian cancer: An overview of results in an ovarian tumor model. Clin. Cancer Res. 2003;9:3914S–3921S.
    1. Andersson H., Lindegren S., Back T., Jacobsson L., Leser G., Horvath G. Radioimmunotherapy of nude mice with intraperitoneally growing ovarian cancer xenograft utilizing 211At-labelled monoclonal antibody MOv18. Anticancer Res. 2000;20:459–462.
    1. Andersson H., Lindegren S., Back T., Jacobsson L., Leser G., Horvath G. The curative and palliative potential of the monoclonal antibody MOv18 labelled with 211At in nude mice with intraperitoneally growing ovarian cancer xenografts--a long-term study. Acta Oncol. 2000;39:741–745. doi: 10.1080/028418600750063820.
    1. Andersson H., Palm S., Lindegren S., Back T., Jacobsson L., Leser G., Horvath G. Comparison of the therapeutic efficacy of 211At- and 131I-labelled monoclonal antibody MOv18 in nude mice with intraperitoneal growth of human ovarian cancer. Anticancer Res. 2001;21:409–412.
    1. Elgqvist J., Andersson H., Jensen H., Kahu H., Lindegren S., Warnhammar E., Hultborn R. Repeated Intraperitoneal alpha-Radioimmunotherapy of Ovarian Cancer in Mice. J. Oncol. 2010;2010:394913. doi: 10.1155/2010/394913.
    1. Elgqvist J., Bernhardt P., Hultborn R., Jensen H., Karlsson B., Lindegren S., Warnhammar E., Jacobsson L. Myelotoxicity and RBE of 211At-conjugated monoclonal antibodies compared with 99mTc-conjugated monoclonal antibodies and 60Co irradiation in nude mice. J. Nucl. Med. 2005;46:464–471.
    1. Zhang M., Yao Z., Patel H., Garmestani K., Zhang Z., Talanov V.S., Plascjak P.S., Goldman C.K., Janik J.E., Brechbiel M.W., et al. Effective therapy of murine models of human leukemia and lymphoma with radiolabeled anti-CD30 antibody, HeFi-1. Proc. Natl. Acad. Sci. USA. 2007;104:8444–8448. doi: 10.1073/pnas.0702496104.
    1. Cheng J., Ekberg T., Engstrom M., Nestor M., Jensen H.J., Tolmachev V., Anniko M. Radioimmunotherapy with astatine-211 using chimeric monoclonal antibody U36 in head and neck squamous cell carcinoma. Laryngoscope. 2007;117:1013–1018. doi: 10.1097/MLG.0b013e31804b1a6d.
    1. Nakamae H., Wilbur D.S., Hamlin D.K., Thakar M.S., Santos E.B., Fisher D.R., Kenoyer A.L., Pagel J.M., Press O.W., Storb R., et al. Biodistributions, myelosuppression, and toxicities in mice treated with an anti-CD45 antibody labeled with the alpha-emitting radionuclides bismuth-213 or astatine-211. Cancer Res. 2009;69:2408–2415. doi: 10.1158/0008-5472.CAN-08-4363.
    1. Palm S., Back T., Claesson I., Danielsson A., Elgqvist J., Frost S., Hultborn R., Jensen H., Lindegren S., Jacobsson L. Therapeutic efficacy of astatine-211-labeled trastuzumab on radioresistant SKOV-3 tumors in nude mice. Int. J. Radiat. Oncol. Biol. Phys. 2007;69:572–579. doi: 10.1016/j.ijrobp.2007.06.023.
    1. Eriksson S.E., Back T., Elgstrom E., Jensen H., Nilsson R., Lindegren S., Tennvall J. Successful radioimmunotherapy of established syngeneic rat colon carcinoma with 211At-mAb. EJNMMI Res. 2013;3:23. doi: 10.1186/2191-219X-3-23.
    1. Ohshima Y., Sudo H., Watanabe S., Nagatsu K., Tsuji A.B., Sakashita T., Ito Y.M., Yoshinaga K., Higashi T., Ishioka N.S. Antitumor effects of radionuclide treatment using alpha-emitting meta-(211)At-astato-benzylguanidine in a PC12 pheochromocytoma model. Eur. J. Nucl. Med. Mol. Imaging. 2018;45:999–1010. doi: 10.1007/s00259-017-3919-6.
    1. Li H.K., Hasegawa S., Nakajima N.I., Morokoshi Y., Minegishi K., Nagatsu K. Targeted cancer cell ablation in mice by an alpha-particle-emitting astatine-211-labeled antibody against major histocompatibility complex class I chain-related protein A and B. Biochem. Biophys. Res. Commun. 2018;506:1078–1084. doi: 10.1016/j.bbrc.2018.10.157.
    1. Behr T.M., Behe M., Stabin M.G., Wehrmann E., Apostolidis C., Molinet R., Strutz F., Fayyazi A., Wieland E., Gratz S., et al. High-linear energy transfer (LET) alpha versus low-LET beta emitters in radioimmunotherapy of solid tumors: Therapeutic efficacy and dose-limiting toxicity of 213Bi- versus 90Y-labeled CO17-1A Fab’ fragments in a human colonic cancer model. Cancer Res. 1999;59:2635–2643.
    1. Huneke R.B., Pippin C.G., Squire R.A., Brechbiel M.W., Gansow O.A., Strand M. Effective alpha-particle-mediated radioimmunotherapy of murine leukemia. Cancer Res. 1992;52:5818–5820.
    1. Hartmann F., Horak E.M., Garmestani K., Wu C., Brechbiel M.W., Kozak R.W., Tso J., Kosteiny S.A., Gansow O.A., Nelson D.L., et al. Radioimmunotherapy of nude mice bearing a human interleukin 2 receptor alpha-expressing lymphoma utilizing the alpha-emitting radionuclide-conjugated monoclonal antibody 212Bi-anti-Tac. Cancer Res. 1994;54:4362–4370.
    1. Nikula T.K., McDevitt M.R., Finn R.D., Wu C., Kozak R.W., Garmestani K., Brechbiel M.W., Curcio M.J., Pippin C.G., Tiffany-Jones L., et al. Alpha-emitting bismuth cyclohexylbenzyl DTPA constructs of recombinant humanized anti-CD33 antibodies: Pharmacokinetics, bioactivity, toxicity and chemistry. J. Nucl. Med. 1999;40:166–176.
    1. Milenic D., Garmestani K., Dadachova E., Chappell L., Albert P., Hill D., Schlom J., Brechbiel M. Radioimmunotherapy of human colon carcinoma xenografts using a 213Bi-labeled domain-deleted humanized monoclonal antibody. Cancer Biother. Radiopharm. 2004;19:135–147. doi: 10.1089/108497804323071904.
    1. Bloechl S., Beck R., Seidl C., Morgenstern A., Schwaiger M., Senekowitsch-Schmidtke R. Fractionated locoregional low-dose radioimmunotherapy improves survival in a mouse model of diffuse-type gastric cancer using a 213Bi-conjugated monoclonal antibody. Clin. Cancer Res. 2005;11:7070s–7074s. doi: 10.1158/1078-0432.CCR-1004-0017.
    1. Knor S., Sato S., Huber T., Morgenstern A., Bruchertseifer F., Schmitt M., Kessler H., Senekowitsch-Schmidtke R., Magdolen V., Seidl C. Development and evaluation of peptidic ligands targeting tumour-associated urokinase plasminogen activator receptor (uPAR) for use in alpha-emitter therapy for disseminated ovarian cancer. Eur. J. Nucl. Med. Mol. Imaging. 2008;35:53–64. doi: 10.1007/s00259-007-0582-3.
    1. Pfost B., Seidl C., Autenrieth M., Saur D., Bruchertseifer F., Morgenstern A., Schwaiger M., Senekowitsch-Schmidtke R. Intravesical alpha-radioimmunotherapy with 213Bi-anti-EGFR-mAb defeats human bladder carcinoma in xenografted nude mice. J. Nucl. Med. 2009;50:1700–1708. doi: 10.2967/jnumed.109.065961.
    1. Milenic D.E., Brady E.D., Garmestani K., Albert P.S., Abdulla A., Brechbiel M.W. Improved efficacy of alpha-particle-targeted radiation therapy: Dual targeting of human epidermal growth factor receptor-2 and tumor-associated glycoprotein 72. Cancer. 2010;116:1059–1066. doi: 10.1002/cncr.24793.
    1. Wild D., Frischknecht M., Zhang H., Morgenstern A., Bruchertseifer F., Boisclair J., Provencher-Bolliger A., Reubi J.C., Maecke H.R. Alpha- versus beta-particle radiopeptide therapy in a human prostate cancer model (213Bi-DOTA-PESIN and 213Bi-AMBA versus 177Lu-DOTA-PESIN) Cancer Res. 2011;71:1009–1018. doi: 10.1158/0008-5472.CAN-10-1186.
    1. Fichou N., Gouard S., Maurel C., Barbet J., Ferrer L., Morgenstern A., Bruchertseifer F., Faivre-Chauvet A., Bigot-Corbel E., Davodeau F., et al. Single-Dose Anti-CD138 Radioimmunotherapy: Bismuth-213 is More Efficient than Lutetium-177 for Treatment of Multiple Myeloma in a Preclinical Model. Front. Med. (Lausanne) 2015;2:76. doi: 10.3389/fmed.2015.00076.
    1. Seidl C., Zockler C., Beck R., Quintanilla-Martinez L., Bruchertseifer F., Senekowitsch-Schmidtke R. 177Lu-immunotherapy of experimental peritoneal carcinomatosis shows comparable effectiveness to 213Bi-immunotherapy, but causes toxicity not observed with 213Bi. Eur. J. Nucl. Med. Mol. Imaging. 2011;38:312–322. doi: 10.1007/s00259-010-1639-2.
    1. Cherel M., Gouard S., Gaschet J., Sai-Maurel C., Bruchertseifer F., Morgenstern A., Bourgeois M., Gestin J.F., Bodere F.K., Barbet J., et al. 213Bi radioimmunotherapy with an anti-mCD138 monoclonal antibody in a murine model of multiple myeloma. J. Nucl. Med. 2013;54:1597–1604. doi: 10.2967/jnumed.112.111997.
    1. Fazel J., Rotzer S., Seidl C., Feuerecker B., Autenrieth M., Weirich G., Bruchertseifer F., Morgenstern A., Senekowitsch-Schmidtke R. Fractionated intravesical radioimmunotherapy with (213)Bi-anti-EGFR-MAb is effective without toxic side-effects in a nude mouse model of advanced human bladder carcinoma. Cancer Biol. 2015;16:1526–1534. doi: 10.1080/15384047.2015.1071735.
    1. Milenic D.E., Baidoo K.E., Kim Y.S., Brechbiel M.W. Evaluation of cetuximab as a candidate for targeted alpha-particle radiation therapy of HER1-positive disseminated intraperitoneal disease. MAbs. 2015;7:255–264. doi: 10.4161/19420862.2014.985160.
    1. Miao Y., Hylarides M., Fisher D.R., Shelton T., Moore H., Wester D.W., Fritzberg A.R., Winkelmann C.T., Hoffman T., Quinn T.P. Melanoma therapy via peptide-targeted {alpha}-radiation. Clin. Cancer Res. 2005;11:5616–5621. doi: 10.1158/1078-0432.CCR-05-0619.
    1. Boudousq V., Bobyk L., Busson M., Garambois V., Jarlier M., Charalambatou P., Pelegrin A., Paillas S., Chouin N., Quenet F., et al. Comparison between internalizing anti-HER2 mAbs and non-internalizing anti-CEA mAbs in alpha-radioimmunotherapy of small volume peritoneal carcinomatosis using 212Pb. PLoS ONE. 2013;8:e69613. doi: 10.1371/journal.pone.0069613.
    1. Milenic D.E., Garmestani K., Brady E.D., Albert P.S., Ma D., Abdulla A., Brechbiel M.W. Alpha-particle radioimmunotherapy of disseminated peritoneal disease using a (212)Pb-labeled radioimmunoconjugate targeting HER2. Cancer Biother. Radiopharm. 2005;20:557–568. doi: 10.1089/cbr.2005.20.557.
    1. Milenic D.E., Garmestani K., Brady E.D., Albert P.S., Abdulla A., Flynn J., Brechbiel M.W. Potentiation of high-LET radiation by gemcitabine: Targeting HER2 with trastuzumab to treat disseminated peritoneal disease. Clin. Cancer Res. 2007;13:1926–1935. doi: 10.1158/1078-0432.CCR-06-2300.
    1. Kasten B.B., Arend R.C., Katre A.A., Kim H., Fan J., Ferrone S., Zinn K.R., Buchsbaum D.J. B7-H3-targeted (212)Pb radioimmunotherapy of ovarian cancer in preclinical models. Nucl. Med. Biol. 2017;47:23–30. doi: 10.1016/j.nucmedbio.2017.01.003.
    1. Kasten B.B., Gangrade A., Kim H., Fan J., Ferrone S., Ferrone C.R., Zinn K.R., Buchsbaum D.J. (212)Pb-labeled B7-H3-targeting antibody for pancreatic cancer therapy in mouse models. Nucl. Med. Biol. 2018;58:67–73. doi: 10.1016/j.nucmedbio.2017.12.004.
    1. Kasten B.B., Oliver P.G., Kim H., Fan J., Ferrone S., Zinn K.R., Buchsbaum D.J. (212)Pb-Labeled Antibody 225.28 Targeted to Chondroitin Sulfate Proteoglycan 4 for Triple-Negative Breast Cancer Therapy in Mouse Models. Int. J. Mol. Sci. 2018;19:925. doi: 10.3390/ijms19040925.
    1. Milenic D.E., Kim Y.S., Baidoo K.E., Wong K.J., Barkley R., Delgado J., Brechbiel M.W. Exploration of a F(ab′)2 Fragment as the Targeting Agent of alpha-Radiation Therapy: A Comparison of the Therapeutic Benefit of Intraperitoneal and Intravenous Administered Radioimmunotherapy. Cancer Biother. Radiopharm. 2018;33:182–193. doi: 10.1089/cbr.2018.2434.
    1. Dahle J., Jonasdottir T.J., Heyerdahl H., Nesland J.M., Borrebaek J., Hjelmerud A.K., Larsen R.H. Assessment of long-term radiotoxicity after treatment with the low-dose-rate alpha-particle-emitting radioimmunoconjugate (227)Th-rituximab. Eur. J. Nucl. Med. Mol. Imaging. 2010;37:93–102. doi: 10.1007/s00259-009-1197-7.
    1. Abbas N., Heyerdahl H., Bruland O.S., Borrebaek J., Nesland J., Dahle J. Experimental alpha-particle radioimmunotherapy of breast cancer using 227Th-labeled p-benzyl-DOTA-trastuzumab. EJNMMI Res. 2011;1:18. doi: 10.1186/2191-219X-1-18.
    1. Hagemann U.B., Mihaylova D., Uran S.R., Borrebaek J., Grant D., Bjerke R.M., Karlsson J., Cuthbertson A.S. Targeted alpha therapy using a novel CD70 targeted thorium-227 conjugate in in vitro and in vivo models of renal cell carcinoma. Oncotarget. 2017;8:56311–56326. doi: 10.18632/oncotarget.16910.
    1. Westrom S., Bonsdorff T.B., Bruland O.S., Larsen R.H. Therapeutic Effect of alpha-Emitting (224)Ra-Labeled Calcium Carbonate Microparticles in Mice with Intraperitoneal Ovarian Cancer. Transl. Oncol. 2018;11:259–267. doi: 10.1016/j.tranon.2017.12.011.
    1. Briel A. Innovative diagnostics enhances and advances the impact of in vivo small-animal imaging in drug discovery and pharmaceutical development. Mod. Biopharm. 2013:183–209. doi: 10.1002/9783527669417.ch10.
    1. Chaudhury S., Thakur B., Chatterjee S., Ray P. Molecular Imaging Aided Improvement in Drug Discovery and Development. Curr. Biotechnol. (SharjahUnited Arab Emir.) 2014;3:218–237. doi: 10.2174/2211550103666140717182415.
    1. Medhi B., Misra S., Avti Pramod K., Kumar P., Kumar H., Singh B. Role of neuroimaging in drug development. Rev. Neurosci. 2014;25:663–673. doi: 10.1515/revneuro-2014-0031.
    1. Poels E.M.P., Kegeles L.S., Kantrowitz J.T., Slifstein M., Javitt D.C., Lieberman J.A., Abi-Dargham A., Girgis R.R. Imaging glutamate in schizophrenia: Review of findings and implications for drug discovery. Mol. Psychiatry. 2014;19:20–29. doi: 10.1038/mp.2013.136.
    1. Pecking A.P., Bellet D., Alberini J.L. Immuno-SPET/CT and immuno-PET/CT: A step ahead to translational imaging. Clin. Exp. Metastasis. 2012;29:847–852. doi: 10.1007/s10585-012-9501-5.
    1. Chappell L.L., Dadachova E., Milenic D.E., Garmestani K., Wu C., Brechbiel M.W. Synthesis, characterization, and evaluation of a novel bifunctional chelating agent for the lead isotopes 203Pb and 212Pb. Nucl. Med. Biol. 2000;27:93–100. doi: 10.1016/S0969-8051(99)00086-4.
    1. Sgouros G., Ballangrud A.M., Jurcic J.G., McDevitt M.R., Humm J.L., Erdi Y.E., Mehta B.M., Finn R.D., Larson S.M., Scheinberg D.A. Pharmacokinetics and dosimetry of an alpha-particle emitter labeled antibody: 213Bi-HuM195 (anti-CD33) in patients with leukemia. J. Nucl. Med. 1999;40:1935–1946.
    1. Lohrmann C., Zhang H., Thorek D.L., Desai P., Zanzonico P.B., O’Donoghue J., Irwin C.P., Reiner T., Grimm J., Weber W.A. Cerenkov Luminescence Imaging for Radiation Dose Calculation of a 90Y-Labeled Gastrin-Releasing Peptide Receptor Antagonist. J. Nucl. Med. 2015;56:805–811. doi: 10.2967/jnumed.114.149054.
    1. Ruggiero A., Holland J.P., Lewis J.S., Grimm J. Cerenkov luminescence imaging of medical isotopes. J. Nucl. Med. 2010;51:1123–1130. doi: 10.2967/jnumed.110.076521.
    1. Das S., Thorek D.L., Grimm J. Cerenkov imaging. Adv. Cancer Res. 2014;124:213–234. doi: 10.1016/B978-0-12-411638-2.00006-9.
    1. Thorek D., Robertson R., Bacchus W.A., Hahn J., Rothberg J., Beattie B.J., Grimm J. Cerenkov imaging—A new modality for molecular imaging. Am. J. Nucl. Med. Mol. Imaging. 2012;2:163–173.
    1. Beattie B.J., Thorek D.L., Schmidtlein C.R., Pentlow K.S., Humm J.L., Hielscher A.H. Quantitative modeling of Cerenkov light production efficiency from medical radionuclides. PLoS ONE. 2012;7:e31402. doi: 10.1371/journal.pone.0031402.
    1. Ackerman N.L., Graves E.E. The potential for Cerenkov luminescence imaging of alpha-emitting radionuclides. Phys. Med. Biol. 2012;57:771–783. doi: 10.1088/0031-9155/57/3/771.
    1. Sgouros G. Long-lived alpha emitters in radioimmunotherapy: The mischievous progeny. Cancer Biother. Radiopharm. 2000;15:219–221. doi: 10.1089/108497800414301.
    1. Pandya D.N., Hantgan R., Budzevich M.M., Kock N.D., Morse D.L., Batista I., Mintz A., Li K.C., Wadas T.J. Preliminary Therapy Evaluation of 225Ac-DOTA-c(RGDyK) Demonstrates that Cerenkov Radiation Derived from 225Ac Daughter Decay Can be Detected by Optical Imaging for In vivo Tumor Visualization. Theranostics. 2016;6:698–709. doi: 10.7150/thno.14338.
    1. Chen X., Hou Y., Tohme M., Park R., Khankaldyyan V., Gonzales-Gomez I., Bading J.R., Laug W.E., Conti P.S. Pegylated Arg-Gly-Asp peptide: 64Cu labeling and PET imaging of brain tumor alphavbeta3-integrin expression. J. Nucl. Med. 2004;45:1776–1783.
    1. Chen X., Liu S., Hou Y., Tohme M., Park R., Bading J.R., Conti P.S. MicroPET imaging of breast cancer alphav-integrin expression with 64Cu-labeled dimeric RGD peptides. Mol. Imaging Biol. 2004;6:350–359. doi: 10.1016/j.mibio.2004.06.004.
    1. Chen X., Park R., Tohme M., Shahinian A.H., Bading J.R., Conti P.S. MicroPET and autoradiographic imaging of breast cancer alpha v-integrin expression using 18F- and 64Cu-labeled RGD peptide. Bioconjug. Chem. 2004;15:41–49. doi: 10.1021/bc0300403.
    1. Chen X. Integrin Targeted Imaging and Therapy. Theranostics. 2011;2011:28–29. doi: 10.7150/thno/v01p0028.
    1. Li X., Patterson J.T., Sarkar M., Pedzisa L., Kodadek T., Roush W.R., Rader C. Site-Specific Dual Antibody Conjugation via Engineered Cysteine and Selenocysteine Residues. Bioconjug. Chem. 2015;26:2243–2248. doi: 10.1021/acs.bioconjchem.5b00244.
    1. van Rij C.M., Frielink C., Goldenberg D.M., Sharkey R.M., Lütje S., McBride W.J., Oyen W.J.G., Boerman O.C. Pretargeted Radioimmunotherapy of Prostate Cancer with an Anti-TROP-2×Anti-HSG Bispecific Antibody and a (177)Lu-Labeled Peptide. Cancer Biother. Radiopharm. 2014;29:323–329. doi: 10.1089/cbr.2014.1660.
    1. Frampas E., Rousseau C., Bodet-Milin C., Barbet J., Chatal J.-F., Kraeber-Bodéré F. Improvement of Radioimmunotherapy Using Pretargeting. Front. Oncol. 2013;3:159. doi: 10.3389/fonc.2013.00159.
    1. Jourdan M., Ferlin M., Legouffe E., Horvathova M., Liautard J., Rossi J.F., Wijdenes J., Brochier J., Klein B. The myeloma cell antigen syndecan-1 is lost by apoptotic myeloma cells. Br. J. Haematol. 1998;100:637–646. doi: 10.1046/j.1365-2141.1998.00623.x.
    1. Adumeau P., Sharma S.K., Brent C., Zeglis B.M. Site-Specifically Labeled Immunoconjugates for Molecular Imaging--Part 2: Peptide Tags and Unnatural Amino Acids. Mol. Imaging Biol. 2016;18:153–165. doi: 10.1007/s11307-015-0920-y.
    1. Adumeau P., Sharma S.K., Brent C., Zeglis B.M. Site-Specifically Labeled Immunoconjugates for Molecular Imaging--Part 1: Cysteine Residues and Glycans. Mol. Imaging Biol. 2016;18:1–17. doi: 10.1007/s11307-015-0919-4.
    1. Schwarz S.W., Decristoforo C., Goodbody A.E., Singhal N., Saliba S., Ruddock R.S., Zukotynski K., Ross A.A. Harmonization of U.S., European Union, and Canadian First-in-Human Regulatory Requirements for Radiopharmaceuticals: Is This Possible? J. Nucl. Med. 2019;60:158–166. doi: 10.2967/jnumed.118.209460.
    1. Krolicki L., Bruchertseifer F., Kunikowska J., Koziara H., Krolicki B., Jakucinski M., Pawlak D., Apostolidis C., Mirzadeh S., Rola R., et al. Prolonged survival in secondary glioblastoma following local injection of targeted alpha therapy with (213)Bi-substance P analogue. Eur. J. Nucl. Med. Mol. Imaging. 2018;45:1636–1644. doi: 10.1007/s00259-018-4015-2.
    1. Krolicki L., Bruchertseifer F., Kunikowska J., Koziara H., Krolicki B., Jakucinski M., Pawlak D., Apostolidis C., Mirzadeh S., Rola R., et al. Safety and efficacy of targeted alpha therapy with (213)Bi-DOTA-substance P in recurrent glioblastoma. Eur. J. Nucl. Med. Mol. Imaging. 2018 doi: 10.1007/s00259-018-4225-7.
    1. Autenrieth M.E., Seidl C., Bruchertseifer F., Horn T., Kurtz F., Feuerecker B., D’Alessandria C., Pfob C., Nekolla S., Apostolidis C., et al. Treatment of carcinoma in situ of the urinary bladder with an alpha-emitter immunoconjugate targeting the epidermal growth factor receptor: A pilot study. Eur. J. Nucl. Med. Mol. Imaging. 2018;45:1364–1371. doi: 10.1007/s00259-018-4003-6.
    1. Autenrieth M.E., Horn T., Kurtz F., Nguyen K., Morgenstern A., Bruchertseifer F., Schwaiger M., Blechert M., Seidl C., Senekowitsch-Schmidtke R., et al. [Intravesical radioimmunotherapy of carcinoma in situ of the urinary bladder after BCG failure] Urol. A. 2017;56:40–43. doi: 10.1007/s00120-016-0273-4.
    1. Hadaschik B. Re: 225Ac-PSMA-617 for PSMA-Targeting Alpha-radiation Therapy of Patients with Metastatic Castration-resistant Prostate Cancer. Eur. Urol. 2016;70:1080–1081. doi: 10.1016/j.eururo.2016.08.028.
    1. Kratochwil C., Bruchertseifer F., Giesel F., Apostolidis C., Haberkorn U., Morgenstern A. Ac-225-DOTATOCan empiric dose finding for alpha particle emitter based radionuclide therapy of neuroendocrine tumors. J. Nucl. Med. 2015;56:1232.
    1. Jurcic J.G., Levy M.Y., Park J.H., Ravandi F., Perl A.E., Pagel M.J., Smith D.B., Estey E.H., Kantarjian H., Cicic D., et al. Phase I Trial of Targeted Alpha-Particle Therapy with Actinium-225 (225Ac)-Lintuzumab and Low-Dose Cytarabine (LDAC) in Patients Age 60 or Older with Untreated Acute Myeloid Leukemia (AML); Proceedings of the ASH Annual Meeting; Atlanta, GA, USA. 9–12 December 2017; p. 4050.
    1. Rathke H., Kratochwil C., Hohenberger R., Giesel F.L., Bruchertseifer F., Flechsig P., Morgenstern A., Hein M., Plinkert P., Haberkorn U., et al. Initial clinical experience performing sialendoscopy for salivary gland protection in patients undergoing (225)Ac-PSMA-617 RLT. Eur. J. Nucl. Med. Mol. Imaging. 2019;46:139–147. doi: 10.1007/s00259-018-4135-8.
    1. Sathekge M., Bruchertseifer F., Vorster M., Lawal I., Knoesen O., Mahapane J., Davis C., Reyneke F., Maes A., Kratochwil C., et al. PREDICTORS OF OVERALL AND DISEASE FREE SURVIVAL IN METASTATIC CASTRATION-RESISTANT PROSTATE CANCER PATIENTS RECEIVING (225)Ac-PSMA-617 RADIOLIGAND THERAPY. J. Nucl. Med. 2019 doi: 10.2967/jnumed.119.229229.
    1. Zalutsky M.R., Reardon D.A., Akabani G., Coleman R.E., Friedman A.H., Friedman H.S., McLendon R.E., Wong T.Z., Bigner D.D. Clinical experience with alpha-particle emitting 211At: Treatment of recurrent brain tumor patients with 211At-labeled chimeric antitenascin monoclonal antibody 81C6. J. Nucl. Med. 2008;49:30–38. doi: 10.2967/jnumed.107.046938.
    1. Andersson H., Cederkrantz E., Back T., Divgi C., Elgqvist J., Himmelman J., Horvath G., Jacobsson L., Jensen H., Lindegren S., et al. Intraperitoneal alpha-particle radioimmunotherapy of ovarian cancer patients: Pharmacokinetics and dosimetry of (211)At-MX35 F(ab′)2—A phase I study. J. Nucl. Med. 2009;50:1153–1160. doi: 10.2967/jnumed.109.062604.
    1. Jurcic J.G., Larson S.M., Sgouros G., McDevitt M.R., Finn R.D., Divgi C.R., Ballangrud A.M., Hamacher K.A., Ma D., Humm J.L., et al. Targeted alpha particle immunotherapy for myeloid leukemia. Blood. 2002;100:1233–1239. doi: 10.1182/blood.V100.4.1233.h81602001233_1233_1239.
    1. Rosenblat T.L., McDevitt M.R., Mulford D.A., Pandit-Taskar N., Divgi C.R., Panageas K.S., Heaney M.L., Chanel S., Morgenstern A., Sgouros G., et al. Sequential cytarabine and alpha-particle immunotherapy with bismuth-213-lintuzumab (HuM195) for acute myeloid leukemia. Clin. Cancer Res. 2010;16:5303–5311. doi: 10.1158/1078-0432.CCR-10-0382.
    1. Heeger S., Moldenhauer G., Egerer G., Wesch H., Martin S., Nikula T.K., Apostolidis C., Brechbiel M., Ho A., Haas R. Alpha radioimmunotherapy of B-lineage non-Hodgkin’s lymphoma using 213Bi-labeled anti-CD19- and anti-CD20-CHX-A”-DTPA conjugates. J. Clin. Oncol. 2004;22(Suppl. S14):2625. doi: 10.1200/jco.2004.22.14_suppl.2625.
    1. Kneifel S., Cordier D., Good S., Ionescu M.C., Ghaffari A., Hofer S., Kretzschmar M., Tolnay M., Apostolidis C., Waser B., et al. Local targeting of malignant gliomas by the diffusible peptidic vector 1,4,7,10-tetraazacyclododecane-1-glutaric acid-4,7,10-triacetic acid-substance p. Clin. Cancer Res. 2006;12:3843–3850. doi: 10.1158/1078-0432.CCR-05-2820.
    1. Allen B.J., Singla A.A., Rizvi S.M., Graham P., Bruchertseifer F., Apostolidis C., Morgenstern A. Analysis of patient survival in a Phase I trial of systemic targeted alpha-therapy for metastatic melanoma. Immunotherapy. 2011;3:1041–1050. doi: 10.2217/imt.11.97.
    1. Raja C., Graham P., Abbas Rizvi S.M., Song E., Goldsmith H., Thompson J., Bosserhoff A., Morgenstern A., Apostolidis C., Kearsley J., et al. Interim analysis of toxicity and response in phase 1 trial of systemic targeted alpha therapy for metastatic melanoma. Cancer Biol. 2007;6:846–852. doi: 10.4161/cbt.6.6.4089.
    1. Meredith R., Torgue J., Shen S., Fisher D.R., Banaga E., Bunch P., Morgan D., Fan J., Straughn J.M., Jr. Dose escalation and dosimetry of first-in-human alpha radioimmunotherapy with 212Pb-TCMC-trastuzumab. J. Nucl. Med. 2014;55:1636–1642. doi: 10.2967/jnumed.114.143842.
    1. Meredith R.F., Torgue J., Azure M.T., Shen S., Saddekni S., Banaga E., Carlise R., Bunch P., Yoder D., Alvarez R. Pharmacokinetics and imaging of 212Pb-TCMC-trastuzumab after intraperitoneal administration in ovarian cancer patients. Cancer Biother. Radiopharm. 2014;29:12–17. doi: 10.1089/cbr.2013.1531.
    1. Castello A., Macapinlac H.A., Lopci E., Santos E.B. Prostate-specific antigen flare induced by (223)RaCl2 in patients with metastatic castration-resistant prostate cancer. Eur. J. Nucl. Med. Mol. Imaging. 2018;45:2256–2263. doi: 10.1007/s00259-018-4051-y.
    1. Dizdarevic S., Petersen P.M., Essler M., Versari A., Bourre J.C., la Fougere C., Valdagni R., Paganelli G., Ezziddin S., Kalinovsky J., et al. Interim analysis of the REASSURE (Radium-223 alpha Emitter Agent in non-intervention Safety Study in mCRPC popUlation for long-teRm Evaluation) study: Patient characteristics and safety according to prior use of chemotherapy in routine clinical practice. Eur. J. Nucl. Med. Mol. Imaging. 2019;46:1102–1110. doi: 10.1007/s00259-019-4261-y.
    1. Hoskin P., Sartor O., O’Sullivan J.M., Johannessen D.C., Helle S.I., Logue J., Bottomley D., Nilsson S., Vogelzang N.J., Fang F., et al. Efficacy and safety of radium-223 dichloride in patients with castration-resistant prostate cancer and symptomatic bone metastases, with or without previous docetaxel use: A prespecified subgroup analysis from the randomised, double-blind, phase 3 ALSYMPCA trial. Lancet Oncol. 2014;15:1397–1406. doi: 10.1016/S1470-2045(14)70474-7.
    1. Parker C., Finkelstein S.E., Michalski J.M., O’Sullivan J.M., Bruland O., Vogelzang N.J., Coleman R.E., Nilsson S., Sartor O., Li R., et al. Efficacy and Safety of Radium-223 Dichloride in Symptomatic Castration-resistant Prostate Cancer Patients With or Without Baseline Opioid Use From the Phase 3 ALSYMPCA Trial. Eur. Urol. 2016;70:875–883. doi: 10.1016/j.eururo.2016.06.002.
    1. Jo K.I., Kim M.S., Yeon J.Y., Kim J.S., Hong S.C. Recurrent Bleeding in Hemorrhagic Moyamoya Disease: Prognostic Implications of the Perfusion Status. J. Korean Neurosurg. Soc. 2016;59:117–121. doi: 10.3340/jkns.2016.59.2.117.
    1. Falkmer U., Jarhult J., Wersall P., Cavallin-Stahl E. A systematic overview of radiation therapy effects in skeletal metastases. Acta Oncol. 2003;42:620–633. doi: 10.1080/02841860310014895.
    1. Silberstein E.B. Dosage and response in radiopharmaceutical therapy of painful osseous metastases. J. Nucl. Med. 1996;37:249–252.
    1. Pandit-Taskar N., Batraki M., Divgi C.R. Radiopharmaceutical therapy for palliation of bone pain from osseous metastases. J. Nucl. Med. 2004;45:1358–1365.
    1. Henriksen G., Fisher D.R., Roeske J.C., Bruland O.S., Larsen R.H. Targeting of osseous sites with alpha-emitting 223Ra: Comparison with the beta-emitter 89Sr in mice. J. Nucl. Med. 2003;44:252–259.
    1. Nilsson S., Larsen R.H., Fossa S.D., Balteskard L., Borch K.W., Westlin J.E., Salberg G., Bruland O.S. First clinical experience with alpha-emitting radium-223 in the treatment of skeletal metastases. Clin. Cancer Res. 2005;11:4451–4459. doi: 10.1158/1078-0432.CCR-04-2244.
    1. Lewington V.J. Bone-seeking radionuclides for therapy. J. Nucl. Med. 2005;46(Suppl. 1):38S–47S.
    1. Dauer L.T., Williamson M.J., Humm J., O’Donoghue J., Ghani R., Awadallah R., Carrasquillo J., Pandit-Taskar N., Aksnes A.K., Biggin C., et al. Radiation safety considerations for the use of (2)(2)(3)RaCl(2) DE in men with castration-resistant prostate cancer. Health Phys. 2014;106:494–504. doi: 10.1097/HP.0b013e3182a82b37.
    1. Nilsson S., Strang P., Aksnes A.K., Franzen L., Olivier P., Pecking A., Staffurth J., Vasanthan S., Andersson C., Bruland O.S. A randomized, dose-response, multicenter phase II study of radium-223 chloride for the palliation of painful bone metastases in patients with castration-resistant prostate cancer. Eur. J. Cancer. 2012;48:678–686. doi: 10.1016/j.ejca.2011.12.023.
    1. Sartor O., Coleman R., Nilsson S., Heinrich D., Helle S.I., O’Sullivan J.M., Fossa S.D., Chodacki A., Wiechno P., Logue J., et al. Effect of radium-223 dichloride on symptomatic skeletal events in patients with castration-resistant prostate cancer and bone metastases: Results from a phase 3, double-blind, randomised trial. Lancet. Oncol. 2014;15:738–746. doi: 10.1016/S1470-2045(14)70183-4.
    1. Nilsson S., Cislo P., Sartor O., Vogelzang N.J., Coleman R.E., O’Sullivan J.M., Reuning-Scherer J., Shan M., Zhan L., Parker C. Patient-reported quality of life analysis of radium-223 dichloride from the phase 3 ALSYMPCA study. Ann. Oncol. 2016 doi: 10.1093/annonc/mdw065.
    1. Crawford E.D., Higano C.S., Shore N.D., Hussain M., Petrylak D.P. Treating Patients with Metastatic Castration Resistant Prostate Cancer: A Comprehensive Review of Available Therapies. J. Urol. 2015;194:1537–1547. doi: 10.1016/j.juro.2015.06.106.
    1. Morris M.J., Loriot Y., Sweeney C.J., Fizazi K., Ryan C.J., Shevrin D.H., Antonarakis E.S., Pandit-Taskar N., Deandreis D., Jacene H.A., et al. Radium-223 in combination with docetaxel in patients with castration-resistant prostate cancer and bone metastases: A phase 1 dose escalation/randomised phase 2a trial. Eur. J. Cancer. 2019;114:107–116. doi: 10.1016/j.ejca.2019.04.007.
    1. Shore N.D., Tutrone R.F., Mariados N.F., Nordquist L.T., Mehlhaff B.A., Steere K.J., Harrelson S.S. eRADicAte: A Prospective Evaluation Combining Radium-223 Dichloride and Abiraterone Acetate Plus Prednisone in Patients With Castration-Resistant Prostate Cancer. Clin. Genitourin. Cancer. 2018;16:149–154. doi: 10.1016/j.clgc.2017.10.022.
    1. Smith M.R., Parker C.C., Saad F., Miller K., Tombal B., Ng Q.S., Bogemann M., Matveev V., Piulats J.M., Zucca L.E., et al. ERA 223: A phase 3 trial of radium-223 dichloride (Ra-223) in combination with abiraterone acetate (abiraterone) and prednisone in the treatment of asymptomatic or mildly symptomatic chemotherapy-naive patients (pts) with bone predominant metastatic castration-resistant prostate cancer (mCRPC); Proceedings of the ESMO 2018 Congress; Munich, Germany. 19 October 2018.
    1. van der Doelen M.J., Mehra N., Hermsen R., Janssen M.J.R., Gerritsen W.R., van Oort I.M. Patient Selection for Radium-223 Therapy in Patients With Bone Metastatic Castration-Resistant Prostate Cancer: New Recommendations and Future Perspectives. Clin. Genitourin. Cancer. 2019;17:79–87. doi: 10.1016/j.clgc.2018.11.008.
    1. Malamas A.S., Gameiro S.R., Knudson K.M., Hodge J.W. Sublethal exposure to alpha radiation (223Ra dichloride) enhances various carcinomas’ sensitivity to lysis by antigen-specific cytotoxic T lymphocytes through calreticulin-mediated immunogenic modulation. Oncotarget. 2016;7:86937–86947. doi: 10.18632/oncotarget.13520.
    1. Nilsson S., Franzen L., Parker C., Tyrrell C., Blom R., Tennvall J., Lennernas B., Petersson U., Johannessen D.C., Sokal M., et al. Two-year survival follow-up of the randomized, double-blind, placebo-controlled phase II study of radium-223 chloride in patients with castration-resistant prostate cancer and bone metastases. Clin. Genitourin. Cancer. 2013;11:20–26. doi: 10.1016/j.clgc.2012.07.002.
    1. Coleman R., Aksnes A.K., Naume B., Garcia C., Jerusalem G., Piccart M., Vobecky N., Thuresson M., Flamen P. A phase IIa, nonrandomized study of radium-223 dichloride in advanced breast cancer patients with bone-dominant disease. Breast Cancer Res. Treat. 2014;145:411–418. doi: 10.1007/s10549-014-2939-1.
    1. Berenson J.R., Yellin O., Patel R., Duvivier H., Nassir Y., Mapes R., Abaya C.D., Swift R.A. A phase I study of samarium lexidronam/bortezomib combination therapy for the treatment of relapsed or refractory multiple myeloma. Clin. Cancer Res. 2009;15:1069–1075. doi: 10.1158/1078-0432.CCR-08-1261.
    1. Anderson P.M., Subbiah V., Rohren E. Bone-seeking radiopharmaceuticals as targeted agents of osteosarcoma: Samarium-153-EDTMP and radium-223. Adv. Exp. Med. Biol. 2014;804:291–304. doi: 10.1007/978-3-319-04843-7_16.

Source: PubMed

3
Abonnieren