Prenatal choline supplementation improves child sustained attention: A 7-year follow-up of a randomized controlled feeding trial

Charlotte L Bahnfleth, Barbara J Strupp, Marie A Caudill, Richard L Canfield, Charlotte L Bahnfleth, Barbara J Strupp, Marie A Caudill, Richard L Canfield

Abstract

Numerous rodent studies demonstrate developmental programming of offspring cognition by maternal choline intake, with prenatal choline deprivation causing lasting adverse effects and supplemental choline producing lasting benefits. Few human studies have evaluated the effect of maternal choline supplementation on offspring cognition, with none following children to school age. Here, we report results from a controlled feeding study in which pregnant women were randomized to consume 480 mg choline/d (approximately the Adequate Intake [AI]) or 930 mg choline/d during the 3rd trimester. Sustained attention was assessed in the offspring at age 7 years (n = 20) using a signal detection task that showed benefits of maternal choline supplementation in a murine model. Children in the 930 mg/d group showed superior performance (vs. 480 mg/d group) on the primary endpoint (SAT score, p = .02) and a superior ability to maintain correct signal detections (hits) across the 12-min session (p = .02), indicative of improved sustained attention. This group difference in vigilance decrement varied by signal duration (p = .04). For the briefest (17 ms) signals, the 480 mg/d group showed a 22.9% decline in hits across the session compared to a 1.5% increase in hits for the 930 mg/d group (p = .04). The groups did not differ in vigilance decrement for 29 or 50 ms signals. This pattern suggests an enhanced ability to sustain perceptual amplification of a brief low-contrast visual signal by children in the 930 mg/d group. This inference of improved sustained attention by the 930 mg/d group is strengthened by the absence of group differences for false alarms, omissions, and off-task behaviors. This pattern of results indicates that maternal 3rd trimester consumption of the choline AI for pregnancy (vs. double the AI) produces offspring with a poorer ability to sustain attention-reinforcing concerns that, on average, choline consumption by pregnant women is approximately 70% of the AI.

Trial registration: ClinicalTrials.gov NCT01127022.

Keywords: attention; child development; choline; cognition; dietary supplements.

© 2021 The Authors. The FASEB Journal published by Wiley Periodicals LLC on behalf of Federation of American Societies for Experimental Biology.

Figures

FIGURE 1
FIGURE 1
Time course of events within each trial of the Sustained Attention Task (SAT). Each trial began with a variable monitoring interval (500, 1000, or 1500 ms) to prevent anticipatory responding. Following the monitoring interval, a non‐signal or signal event occurred. The child was instructed to indicate whether they saw or did not see a brief, low‐contrast signal (a 5 mm × 5 mm gray square) of variable duration (17, 29, or 50 ms) on a light gray screen. A signal was presented randomly on 50% of the trials, with an equal number of signal and non‐signal trials occurring every 18 trials. One hundred ms after the signal or non‐signal event, a 430 ms auditory response cue (“Go”) indicated the opening of the response window; i.e., that it was time to respond. Children had 1500 ms to indicate whether they saw or did not see a signal by pressing the appropriate, pre‐specified key on the laptop keyboard (key assignments were determined by child handedness). Correct responses were followed by a 500 ms positively‐valenced tone. No feedback was given after incorrect responses or omissions (Icons sourced from Microsoft Powerpoint).
FIGURE 2
FIGURE 2
Participant flowchart for the assessment of the effect of 3rd trimester choline supplementation on child sustained attention task (SAT) performance at age 7 years
FIGURE 3
FIGURE 3
Effect of 3rd trimester choline intake and signal duration on SAT score. Children in the 930 mg/d group had a higher average SAT score than children in the 480 mg/d group (main effect of treatment group: p = .02). SAT score differed significantly by signal duration (p < .0001), but the 3rd trimester choline intake by signal duration interaction was non‐significant (p = .74). Values represent least square means ± SEM. 480 mg/d: n = 9; 930 mg/d: n = 11
FIGURE 4
FIGURE 4
Effect of 3rd trimester choline intake on vigilance decrement for percentage hits. Linear change in percentage hits (correct signal detections) across the task blocks varied by 3rd trimester choline intake (p = .02): the 480 mg/d group exhibited significant decline across blocks (p = .001) whereas the 930 mg/d group exhibited no change in performance across blocks (p = .71). Values represent least square means ± SEM. 480 mg/d: n = 9; 930 mg/d: n = 11
FIGURE 5
FIGURE 5
Effect of 3rd trimester choline intake on vigilance decrement for percentage hits as a function of signal duration. The choline group difference in the vigilance decrement varied by signal duration (p = .04). The vigilance decrement for 17 ms signals was significantly greater for the 480 mg choline/d group than for the 930 mg choline/d group (p = .04, Bonferroni corrected). The groups did not differ significantly in vigilance decrement for 29 and 50 ms trials. Notably, for the 480 mg/d group there is an apparent increase in the magnitude of the vigilance decrement for each decrease in signal duration, whereas the 930 mg/d group shows no vigilance decrement for any signal duration. Values represent least square means ± SEM. 480 mg/d: n = 9; 930 mg/d: n = 11

References

    1. Yan J, Jiang X, West AA, et al. Maternal choline intake modulates maternal and fetal biomarkers of choline metabolism in humans. Am J Clin Nutr. 2012;95:1060‐1071. doi:10.3945/ajcn.111.022772
    1. Zeisel SH, Mar MH, Zhou Z, da Costa KA. Pregnancy and lactation are associated with diminished concentrations of choline and its metabolites in rat liver. J Nutr. 1995;125(12):3049‐3054.
    1. Lauder JM, Schambra UB. Morphogenetic roles of acetylcholine. Environ Health Perspect. 1999;107(suppl 1):65‐69.
    1. Abreu‐Villaça Y, Filgueiras CC, Manhães AC. Developmental aspects of the cholinergic system. Behav Brain Res. 2011;221(2):367‐378. doi:10.1016/J.BBR.2009.12.049
    1. Sarter M, Givens B, Bruno JP. The cognitive neuroscience of sustained attention: where top‐down meets bottom‐up. Brain Res Rev. 2001;35:146‐160. doi:10.1016/S0165-0173(01)00044-3
    1. Kent C. Regulation of phosphatidylcholine biosynthesis. Prog Lipid Res. 1991;29(4):87‐105. doi:10.1016/S0163-7827(05)80001-3
    1. Hanada K, Horii M, Akamatsu Y. Functional reconstitution of sphingomyelin synthase in Chinese hamster ovary cell membranes. Biochim Biophys Acta. 1991;1086(2):151‐156. doi:10.1016/0005-2760(91)90002-Y
    1. Jiang X, Yan J, West AA, et al. Maternal choline intake alters the epigenetic state of fetal cortisol‐regulating genes in humans. FASEB J. 2012;26:3563‐3574. doi:10.1096/fj.12-207894
    1. Mehedint MG, Niculescu MD, Craciunescu CN, Zeisel SH. Choline deficiency alters global histone methylation and epigenetic marking at the Re1 site of the calbindin 1 gene. FASEB J. 2010;24:184‐195. doi:10.1096/fj.09-140145
    1. Niculescu MD, Craciunescu CN, Zeisel SH. Dietary choline deficiency alters global and gene‐specific DNA methylation in the developing hippocampus of mouse fetal brains. FASEB J. 2006;20:43‐49. doi:10.1096/fj.05-4707com
    1. Blusztajn JK. Choline, a vital amine. Science. 1998;281(5378):794‐795. doi:10.1126/science.281.5378.794
    1. Meck WH, Williams CL. Metabolic imprinting of choline by its availability during gestation: implications for memory and attentional processing across the lifespan. Neurosci Biobehav Rev. 2003;27(4):385‐399. doi:10.1016/S0149-7634(03)00069-1
    1. Mohler EG, Meck WH, Williams CL. Sustained attention in adult mice is modulated by prenatal choline availability. Int J Comp Psychol. 2001;14:136‐150.
    1. Moon J, Chen M, Gandhy SU, et al. Perinatal choline supplementation improves cognitive functioning and emotion regulation in the Ts65Dn mouse model of down syndrome. Behav Neurosci. 2010;124:346‐361. doi:10.1037/a0019590
    1. Powers BE, Kelley CM, Velazquez R, et al. Maternal choline supplementation in a mouse model of Down syndrome: effects on attention and nucleus basalis/substantia innominata neuron morphology in adult offspring. Neuroscience. 2017;340:501‐514. doi:10.1016/J.NEUROSCIENCE.2016.11.001
    1. Meck WH, Williams CL. Simultaneous temporal processing is sensitive to prenatal choline availability in mature and aged rats. NeuroReport. 1997;8(14):3045‐3051.
    1. Meck WH, Williams CL, Cermak JM, Blusztajn JK. Developmental periods of choline sensitivity provide an ontogenetic mechanism for regulating memory capacity and age‐related dementia. Front Integr Neurosci. 2008;1:1‐11. doi:10.3389/neuro.07.007.2007
    1. Meck WH, Smith RA, Williams CL. Pre‐ and postnatal choline supplementation produces long‐term facilitation of spatial memory. Dev Psychobiol. 1988;21(4):339‐353. doi:10.1002/dev.420210405
    1. Thomas JD, La Fiette MH, Quinn VRE, Riley EP. Neonatal choline supplementation ameliorates the effects of prenatal alcohol exposure on a discrimination learning task in rats. Neurotoxicol Teratol. 2000;22(5):703‐711. doi:10.1016/S0892-0362(00)00097-0
    1. Thomas JD, Biane JS, O'Bryan KA, O'Neill TM, Dominguez HD. Choline supplementation following third‐trimester‐equivalent alcohol exposure attenuates behavioral alterations in rats. Behav Neurosci. 2007;121(1):120‐130. doi:10.1037/0735-7044.121.1.120
    1. Ryan SH, Williams JK, Thomas JD. Choline supplementation attenuates learning deficits associated with neonatal alcohol exposure in the rat: effects of varying the timing of choline administration. Brain Res. 2008;1237:91‐100. doi:10.1016/j.brainres.2008.08.048
    1. Schneider RD, Thomas JD. Adolescent choline supplementation attenuates working memory deficits in rats exposed to alcohol during the third trimester equivalent. Alcohol Clin Exp Res. 2016;40(4):897‐905. doi:10.1111/acer.13021
    1. Schulz KM, Pearson JN, Gasparrini ME, et al. Dietary choline supplementation to dams during pregnancy and lactation mitigates the effects of in utero stress exposure on adult anxiety‐related behaviors. Behav Brain Res. 2014;268:104‐110. doi:10.1016/j.bbr.2014.03.031
    1. Langley EA, Krykbaeva M, Blusztajn JK, Mellott TJ. High maternal choline consumption during pregnancy and nursing alleviates deficits in social interaction and improves anxiety‐like behaviors in the BTBR T+Itpr3tf/J mouse model of autism. Behav Brain Res. 2015;278:210‐220. doi:10.1016/j.bbr.2014.09.043
    1. Velazquez R, Ash JA, Powers BE, et al. Maternal choline supplementation improves spatial learning and adult hippocampal neurogenesis in the Ts65Dn mouse model of Down syndrome. Neurobiol Dis. 2013;58:92‐101. doi:10.1016/j.nbd.2013.04.016
    1. Ash JA, Velazquez R, Kelley CM, et al. Maternal choline supplementation improves spatial mapping and increases basal forebrain cholinergic neuron number and size in aged Ts65Dn mice. Neurobiol Dis. 2014;70:32‐42. doi:10.1016/j.nbd.2014.06.001
    1. Kelley CM, Powers BE, Velazquez R, et al. Maternal choline supplementation differentially alters the basal forebrain cholinergic system of young‐adult Ts65Dn and disomic mice. J Comp Neurol. 2014;522(6):1390‐1410. doi:10.1002/cne.23492
    1. Strupp BJ, Powers BE, Velazquez R, et al. Maternal choline supplementation: a potential prenatal treatment for Down syndrome and Alzheimer's disease. Curr Alzheimer Res. 2016;13:97‐106.
    1. Yang Y, Liu Z, Cermak JM, et al. Protective effects of prenatal choline supplementation on seizure‐induced memory impairment. J Neurosci. 2000;20(22):RC109. doi:10.1523/JNEUROSCI.20-22-j0006.2000
    1. Holmes GL, Yang Y, Liu Z, et al. Seizure‐induced memory impairment is reduced by choline supplementation before or after status epilepticus. Epilepsy Res. 2002;48(1):3‐13. doi:10.1016/S0920-1211(01)00321-7
    1. Wong‐Goodrich SJE, Glenn MJ, Mellott TJ, Liu YB, Blusztajn JK, Williams CL. Water maze experience and prenatal choline supplementation differentially promote long‐term hippocampal recovery from seizures in adulthood. Hippocampus. 2011;21(6):584‐608. doi:10.1002/hipo.20783
    1. Nag N, Berger‐Sweeney JE. Postnatal dietary choline supplementation alters behavior in a mouse model of Rett syndrome. Neurobiol Dis. 2007;26(2):473‐480. doi:10.1016/j.nbd.2007.02.003
    1. Nag N, Mellott TJ, Berger‐Sweeney JE. Effects of postnatal dietary choline supplementation on motor regional brain volume and growth factor expression in a mouse model of Rett syndrome. Brain Res. 2008;1237:101‐109. doi:10.1016/j.brainres.2008.08.042
    1. Ricceri L, De Filippis B, Fuso A, Laviola G. Cholinergic hypofunction in MeCP2‐308 mice: beneficial neurobehavioural effects of neonatal choline supplementation. Behav Brain Res. 2011;221(2):623‐629. doi:10.1016/j.bbr.2011.03.051
    1. Velazquez R, Ferreira E, Knowles S, et al. Lifelong choline supplementation ameliorates Alzheimer's disease pathology and associated cognitive deficits by attenuating microglia activation. Aging Cell. 2019;18(6):e13037. doi:10.1111/acel.13037
    1. Mellott TJ, Huleatt OM, Shade BN, et al. Perinatal choline supplementation reduces amyloidosis and increases choline acetyltransferase expression in the hippocampus of the APPswePS1dE9 Alzheimer's disease model mice. PLoS One. 2017;12(1):e0170450. doi:10.1371/journal.pone.0170450
    1. Institute of Medicine . Dietary Reference Intakes for Thiamin, Riboflavin, Niacin, Vitamin B6, Folate, Vitamin B12, Pantothenic Acid, Biotin, and Choline. National Academies Press; 1998. doi:10.17226/6015
    1. Wu BTF, Dyer RA, King DJ, Richardson KJ, Innis SM. Early second trimester maternal plasma choline and betaine are related to measures of early cognitive development in term infants. PLoS One. 2012;7:e43448. doi:10.1371/journal.pone.0043448
    1. Boeke CE, Gillman MW, Hughes MD, Rifas‐Shiman SL, Villamor E, Oken E. Choline intake during pregnancy and child cognition at age 7 years. Am J Epidemiol. 2013;177:1338‐1347. doi:10.1093/aje/kws395
    1. Signore C, Ueland PM, Troendle J, Mills JL. Choline concentrations in human maternal and cord blood and intelligence at 5 y of age. Am J Clin Nutr. 2008;87:896‐902. doi:10.1093/ajcn/87.4.896
    1. Villamor E, Rifas‐Shiman SL, Gillman MW, Oken E. Maternal intake of methyl‐donor nutrients and child cognition at 3 years of age. Paediatr Perinat Epidemiol. 2012;26:328‐335. doi:10.1111/j.1365-3016.2012.01264.x
    1. Cheatham CL, Goldman BD, Fischer LM, Da Costa KA, Reznick JS, Zeisel SH. Phosphatidylcholine supplementation in pregnant women consuming moderate‐choline diets does not enhance infant cognitive function: a randomized, double‐blind, placebo‐controlled trial. Am J Clin Nutr. 2012;96:1465‐1472. doi:10.3945/ajcn.112.037184
    1. Caudill MA, Strupp BJ, Muscalu L, Nevins JEH, Canfield RL. Maternal choline supplementation during the third trimester of pregnancy improves infant information processing speed: a randomized, double‐blind, controlled feeding study. FASEB J. 2018;32:2172‐2180. doi:10.1096/fj.201700692RR
    1. Ross RG, Hunter SK, McCarthy L, et al. Perinatal choline effects on neonatal pathophysiology related to later Schizophrenia risk. Am J Psychiatry. 2013;170:290‐298. doi:10.1176/appi.ajp.2012.12070940
    1. McGaughy J, Kaiser T, Sarter M. Behavioral vigilance following infusions of 192 IgG‐saporin into the basal forebrain: selectivity of the behavioral impairment and relation to cortical AChE‐positive fiber density. Behav Neurosci. 1996;110(2):247‐265. doi:10.1037/0735-7044.110.2.247
    1. McGaughy J, Sarter M. Sustained attention performance in rats with intracortical infusions of 192 IgG‐saporin‐induced cortical cholinergic deafferentation: effects of Physostigmine and FG 7142. Behav Neurosci. 1998;112(6):1519‐1525. doi:10.1037/0735-7044.112.6.1519
    1. Hasselmo ME, Sarter M. Modes and models of forebrain cholinergic neuromodulation of cognition. Neuropsychopharmacology. 2011;36(1):52‐73. doi:10.1038/npp.2010.104
    1. Sarter M, Hasselmo ME, Bruno JP, Givens B. Unraveling the attentional functions of cortical cholinergic inputs: interactions between signal‐driven and cognitive modulation of signal detection. Brain Res Rev. 2005;48(1):98‐111. doi:10.1016/j.brainresrev.2004.08.006
    1. Parikh V, Kozak R, Martinez V, Sarter M. Prefrontal acetylcholine release controls cue detection on multiple timescales. Neuron. 2007;56(1):141‐154. doi:10.1016/j.neuron.2007.08.025
    1. Yan J, Jiang X, West AA, et al. Pregnancy alters choline dynamics: results of a randomized trial using stable isotope methodology in pregnant and nonpregnant women. Am J Clin Nutr. 2013;98(6):1459‐1467. doi:10.3945/ajcn.113.066092
    1. Jiang X, Bar HY, Yan J, et al. A higher maternal choline intake among third‐trimester pregnant women lowers placental and circulating concentrations of the antiangiogenic factor fms‐like tyrosine kinase‐1 (sFLT1). FASEB J. 2013;27(3):1245‐1253. doi:10.1096/fj.12-221648
    1. Demeter E, Guthrie SK, Taylor SF, Sarter M, Lustig C. Increased distractor vulnerability but preserved vigilance in patients with schizophrenia: evidence from a translational Sustained Attention Task. Schizophr Res. 2013;144:136‐141. doi:10.1016/j.schres.2013.01.003
    1. Parasuraman R, Warm JS, Dember WN. Vigilance: taxonomy and utility. In: Mark LS, Warm JS, Huston RL, eds. Ergonomics and Human Factors. Recent Research in Psychology. Springer; 1987:11‐32. doi:10.1007/978-1-4612-4756-2_2
    1. Demeter E, Sarter M, Lustig C. Rats and humans paying attention: cross‐species task development for translational research. Neuropsychology. 2008;22(6):787‐799. doi:10.1037/a0013712
    1. Burk JA, Sarter M. Dissociation between the attentional functions mediated via basal forebrain cholinergic and GABAergic neurons. Neuroscience. 2001;105(4):899‐909. doi:10.1016/S0306-4522(01)00233-0
    1. Burk JA, Herzog CD, Porter MC, Sarter M. Interactions between aging and cortical cholinergic deafferentation on attention. Neurobiol Aging. 2002;23(3):467‐477. doi:10.1016/S0197-4580(01)00315-3
    1. McGaughy J, Sarter M. Effects of ovariectomy, 192 IgG‐saporin‐induced cortical cholinergic deafferentation, and administration of estradiol on sustained attention performance in rats. Behav Neurosci. 1999;113(6):1216‐1232. doi:10.1037/0735-7044.113.6.1216
    1. Friard O, Gamba M. BORIS: a free, versatile open‐source event‐logging software for video/audio coding and live observations. Methods Ecol Evol. Published online 2016. doi:10.1111/2041-210X.12584
    1. Bahnfleth C, Canfield R, Nevins J, Caudill M, Strupp B. Prenatal choline supplementation improves child color‐location memory task performance at 7 y of age (FS05‐01‐19). Curr Dev Nutr. 2019;3(Supplement_1):1260‐1261. doi:10.1093/cdn/nzz048.FS05-01-19
    1. Nevins J, Beckman K, Bahnfleth C, et al. Maternal choline supplementation during pregnancy improves executive functioning in children at age 7 y (E10–06). Curr Dev Nutr. 2018;2(nzy043):3‐4. doi:10.1093/cdn/nzy043
    1. Bahnfleth CL. The Effect of Maternal Choline Intake on Child Attention and Memory: A Seven‐year Follow‐up. Doctoral dissertation. Cornell University; 2019.
    1. Abelson RP, Prentice DA. Contrast tests of interaction hypotheses. Psychol Methods. 1997;2(4):315‐328.
    1. VanderWeele TJ, Mathur MB. Some desirable properties of the Bonferroni correction: is the Bonferroni correction really so bad? Am J Epidemiol. 2019;188(3):617‐618. doi:10.1093/aje/kwy250
    1. Nuechterlein KH, Parasuraman R, Jiang Q. Visual sustained attention: image degradation produces rapid sensitivity decrement over time. Science. 1983;220(4594):327‐329. doi:10.1126/science.6836276
    1. Sarter M. Behavioral‐cognitive targets for cholinergic enhancement. Curr Opin Behav Sci. 2015;4:22‐26. doi:10.1016/j.cobeha.2015.01.004
    1. Kang JI, Huppé‐Gourgues F, Vaucher E. Boosting visual cortex function and plasticity with acetylcholine to enhance visual perception. Front Syst Neurosci. 2014;8:172. doi:10.3389/fnsys.2014.00172
    1. Williams CL, Meck WH, Heyer DD, Loy R. Hypertrophy of basal forebrain neurons and enhanced visuospatial memory in perinatally choline‐supplemented rats. Brain Res. 1998;794:225‐238. doi:10.1016/S0006-8993(98)00229-7
    1. Loy R, Heyer D, Williams CL, Meck WH. Choline‐induced spatial memory facilitation correlates with altered distribution and morphology of septal neurons. Adv Exp Med Biol. 1991;295:373‐382.
    1. Napoli I, Blusztajn JK, Mellott TJ. Prenatal choline supplementation in rats increases the expression of IGF2 and its receptor IGF2R and enhances IGF2‐induced acetylcholine release in hippocampus and frontal cortex. Brain Res. 2008;1237:124‐135. doi:10.1016/j.brainres.2008.08.046
    1. Cermak JM, Holler T, Jackson DA, Blusztajn JK. Prenatal availability of choline modifies development of the hippocampal cholinergic system. FASEB J. 1998;12(3):349‐357. doi:10.1096/fasebj.12.3.349
    1. Unsworth N, Robison MK. A locus coeruleus‐norepinephrine account of individual differences in working memory capacity and attention control. Psychon Bull Rev. 2017;24(4):1282‐1311. doi:10.3758/s13423-016-1220-5
    1. Chamberlain SR, del Campo N, Dowson J, et al. Atomoxetine improved response inhibition in adults with attention deficit/hyperactivity disorder. Biol Psychiat. 2007;62(9):977‐984. doi:10.1016/j.biopsych.2007.03.003
    1. Bunsey MD, Strupp BJ. Specific effects of idazoxan in a distraction task: evidence that endogenous norepinephrine plays a role in selective attention in rats. Behav Neurosci. 1995;109(5):903‐911. doi:10.1037/0735-7044.109.5.903
    1. Greene CM, Bellgrove MA, Gill M, Robertson IH. Noradrenergic genotype predicts lapses in sustained attention. Neuropsychologia. 2009;47(2):591‐594. doi:10.1016/j.neuropsychologia.2008.10.003
    1. van den Brink RL, Murphy PR, Nieuwenhuis S. Pupil diameter tracks lapses of attention. PLoS One. 2016;11(10):e0165274. doi:10.1371/journal.pone.0165274
    1. Button KS, Ioannidis JPA, Mokrysz C, et al. Power failure: why small sample size undermines the reliability of neuroscience. Nat Rev Neurosci. 2013;14:365‐376. doi:10.1038/nrn3475
    1. Shalev L, Ben‐Simon A, Mevorach C, Cohen Y, Tsal Y. Conjunctive Continuous Performance Task (CCPT)—a pure measure of sustained attention. Neuropsychologia. 2011;49(9):2584‐2591. doi:10.1016/j.neuropsychologia.2011.05.006
    1. Barkley RA. Behavioral inhibition, sustained attention, and executive functions: constructing a unifying theory of ADHD. Psychol Bull. 1997;121(1):65‐94.
    1. Metallidou P, Malegiannaki AC, Konstantinopoulou E, Kiosseoglou G. Effects of different functions of attention on school grades in primary school children. J Educ Hum Dev. 2016;5(3):68‐79. doi:10.15640/jehd.v5n3a8
    1. Muris P. Relation of attention control and school performance in normal children. Percept Mot Skills. 2006;102(1):78‐80. doi:10.2466/pms.102.1.78-80
    1. McClelland MM, Cameron CE, Connor CM, Farris CL, Jewkes AM, Morrison FJ. Links between behavioral regulation and preschoolers' literacy, vocabulary, and math skills. Dev Psychol. 2007;43(4):947‐959. doi:10.1037/0012-1649.43.4.947
    1. Bixler R, D'Mello S. Automatic gaze‐based user‐independent detection of mind wandering during computerized reading. User Model User‐Adap Inter. 2016;26:33‐68. doi:10.1007/s11257-015-9167-1
    1. Kane MJ, Conway ARA, Hambrick DZ, Engle RW. Variation in working memory capacity as variation in executive attention and control. In: Conway ARA, Jarrold C, Kane MJ, Miyake A, Towse JN, eds. Variation in Working Memory. Oxford University Press; 2007:21‐48.
    1. Smilek D, Carriere JSA, Cheyne JA. Failures of sustained attention in life, lab, and brain: ecological validity of the SART. Neuropsychologia. 2010;48(9):2564‐2570. doi:10.1016/j.neuropsychologia.2010.05.002
    1. Visentin CE, Masih S, Plumptre L, et al. Maternal choline status, but not fetal genotype, influences cord plasma choline metabolite concentrations. J Nutr. 2015;145(7):1491‐1497. doi:10.3945/jn.115.211136
    1. Lewis ED, Subhan FB, Bell RC, et al. Estimation of choline intake from 24 h dietary intake recalls and contribution of egg and milk consumption to intake among pregnant and lactating women in Alberta. Br J Nutr. 2014;112:112‐121. doi:10.1017/S0007114514000555
    1. Fischer LM, da Costa KA, Galanko J, et al. Choline intake and genetic polymorphisms influence choline metabolite concentrations in human breast milk and plasma. Am J Clin Nutr. 2010;92:336‐346. doi:10.3945/ajcn.2010.29459
    1. Wallace TC, Fulgoni VL. Usual choline intakes are associated with egg and protein food consumption in the United States. Nutrients. 2017;9(8):839. doi:10.3390/nu9080839
    1. Jacobson SW, Carter RC, Molteno CD, et al. Efficacy of maternal choline supplementation during pregnancy in mitigating adverse effects of prenatal alcohol exposure on growth and cognitive function: a randomized, double‐blind, placebo‐controlled clinical trial. Alcohol Clin Exp Res. 2018;42(7):1327‐1341. doi:10.1111/acer.13769
    1. Kable JA, Coles CD, Keen CL, et al. The impact of micronutrient supplementation in alcohol‐exposed pregnancies on information processing skills in Ukrainian infants. Alcohol. 2015;49(7):647‐656. doi:10.1016/j.alcohol.2015.08.005
    1. Wozniak JR, Fink BA, Fuglestad AJ, et al. Four‐year follow‐up of a randomized controlled trial of choline for neurodevelopment in fetal alcohol spectrum disorder. J Neurodev Disord. 2020;12(1):9. doi:10.1186/s11689-020-09312-7
    1. Bell CC, Aujla J. Prenatal vitamins deficient in recommended choline intake for pregnant women. J Fam Med Dis Prev. 2016;2:048.

Source: PubMed

3
Abonnieren