Antioxidant Saffron and Central Retinal Function in ABCA4-Related Stargardt Macular Dystrophy

Marco Piccardi, Antonello Fadda, Francesco Martelli, Dario Marangoni, Adriano Magli, Angelo M Minnella, Matteo Bertelli, Stefano Di Marco, Silvia Bisti, Benedetto Falsini, Marco Piccardi, Antonello Fadda, Francesco Martelli, Dario Marangoni, Adriano Magli, Angelo M Minnella, Matteo Bertelli, Stefano Di Marco, Silvia Bisti, Benedetto Falsini

Abstract

Retinal oxidative damage, associated with an ATP-binding cassette, sub-family A, member 4, also known as ABCA4 gene mutation, has been implicated as a major underlying mechanism for Stargardt disease/fundus flavimaculatus (STG/FF). Recent findings indicate that saffron carotenoid constituents crocins and crocetin may counteract retinal oxidative damage, inflammation and protect retinal cells from apoptosis. This pilot study aimed to evaluate central retinal function following saffron supplementation in STG/FF patients carrying ABCA4 mutations.

Methods: in a randomized, double-blind, placebo-controlled study (clinicaltrials.gov: NCT01278277), 31 patients with ABCA4-related STG/FF and a visual acuity >0.25 were randomly assigned to assume oral saffron (20 mg) or placebo over a six month period and then reverted to P or S for a further six month period. Full ophthalmic examinations, as well as central 18° focal electroretinogram (fERG) recordings, were performed at baseline and after six months of either saffron or placebo. The fERG fundamental harmonic component was isolated by Fourier analysis. Main outcome measures were fERG amplitude (in µV) and phase (in degrees). The secondary outcome measure was visual acuity.

Results: supplement was well tolerated by all patients throughout follow-up. After saffron, fERG amplitude was unchanged; after placebo, amplitude tended to decrease from baseline (mean change: -0.18 log µV, p < 0.05). Reverting the treatments, amplitude did not change significantly. fERG phase and visual acuity were unchanged throughout follow-up.

Conclusions: short-term saffron supplementation was well tolerated and had no detrimental effects on the electroretinographic responses of the central retina and visual acuity. The current findings warrant further long-term clinical trials to assess the efficacy of saffron supplementation in slowing down the progression of central retinal dysfunction in ABCA4-related STG/FF.

Keywords: ABCA4 gene mutation; antioxidants; focal electroretinogram; neuroprotection; personalized medicine; photoreceptors; retinal function; saffron.

Conflict of interest statement

The funders had no role in the design of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the decision to publish the results. A patent “Compositions based on saffron for the prevention and/or treatment of degenerative eye disorders” covering the topic of this manuscript has been filed on 20 March 2015 (W02015/145316) and is owned by Hortus Novus Srl. S.B. is one of the inventors of the patent. S.B. holds a nonremunerative relationship with Hortus Novus Srl.

Figures

Figure 1
Figure 1
Box plots the fERG amplitude values recorded at baseline and after six months of S (Treatment) or P (Placebo) supplementation, following the cross-over study design. The symbol and line in the middle of the box indicate the mean and the median, the box lower and upper boundaries the 25th and 75th percentiles, and the lower and upper whiskers the 5th and 95th percentiles, respectively.
Figure 2
Figure 2
(A) Box plot showing the difference from baseline fERG Log amplitude recorded at the end of the first six-month study period in patients assuming S (Treatment) and those assuming P (Placebo). (B.) The same changes recorded in A shown as a scatter of data points. The diagonal line in the plot indicates equivalence. It can be noted that in seven out of 17 patients assuming P, fERG amplitude losses were substantially larger compared to those recorded in the 14 patients assuming S.

References

    1. Blacharski P.A. Fundus flavimaculatus. In: Newsome D.A., editor. Retinal Dystrophies and Degenerations. Raven Press; New York, NY, USA: 1988. pp. 135–159.
    1. Noble K.G., Carr R.E. Stargardt’s Disease and Fundus Flavimaculatus. Arch. Ophthalmol. 1979;97:1281–1285.
    1. Allikmets R. A photoreceptor cell-specific ATP-binding transporter gene (ABCR) is mutated in recessive Stargardt macular dystrophy. Nat. Genet. 1997;17:122.
    1. Molday L.L., Rabin A.R., Molday R.S. ABCR expression in foveal cone photoreceptors and its role in stargardt macular dystrophy. Am. J. Ophthalmol. 2000;130:689. doi: 10.1016/S0002-9394(00)00756-X.
    1. Weng J., Mata N.L., Azarian S.M., Tzekov R.T., Birch D.G., Travis G.H. Insights into the function of Rim protein in photoreceptors and etiology of Stargardt’s disease from the phenotype in abcr knockout mice. Cell. 1999;98:13–23. doi: 10.1016/S0092-8674(00)80602-9.
    1. Sparrow J.R., Nakanishi K., Parish C.A. The lipofuscin fluorophore A2E mediates blue light-induced damage to retinal pigmented epithelial cells. Investig. Ophthalmol. Vis. Sci. 2000;41:1981–1989.
    1. Sun H., Nathans J. ABCR, the ATP-binding cassette transporter responsible for Stargardt macular dystrophy, is an efficient target of all-trans-retinal-mediated photooxidative damage in vitro. Implications for retinal disease. J. Biol. Chem. 2001;276:11766–11774. doi: 10.1074/jbc.M010152200.
    1. Kim S.R., Nakanishi K., Itagaki Y., Sparrow J.R. Photooxidation of A2-PE, a photoreceptor outer segment fluorophore, and protection by lutein and zeaxanthin. Exp. Eye Res. 2006;82:828–839. doi: 10.1016/j.exer.2005.10.004.
    1. Maccarone R., Di Marco S., Bisti S. Saffron Supplement Maintains Morphology and Function after Exposure to Damaging Light in Mammalian Retina. Investig. Ophthalmol. Vis. Sci. 2008;49:1254–1261. doi: 10.1167/iovs.07-0438.
    1. Giaccio M. Crocetin from Saffron: An Active Component of an Ancient Spice. Crit. Rev. Food Sci. Nutr. 2004;44:155–172. doi: 10.1080/10408690490441433.
    1. Ochiai T., Shimeno H., Mishima K.-I., Iwasaki K., Fujiwara M., Tanaka H., Shoyama Y., Toda A., Eyanagi R., Soeda S. Protective effects of carotenoids from saffron on neuronal injury in vitro and in vivo. Biochim. et Biophys. Acta (BBA) - Gen. Subj. 2007;1770:578–584. doi: 10.1016/j.bbagen.2006.11.012.
    1. Laabich A., Vissvesvaran G.P., Lieu K.L., Murata K., McGinn T.E., Manmoto C.C., Sinclair J.R., Karliga I., Leung D.W., Fawzi A., et al. Protective Effect of Crocin against Blue Light- and White Light-Mediated Photoreceptor Cell Death in Bovine and Primate Retinal Primary Cell Culture. Investig. Ophthalmol. Vis. Sci. 2006;47:3156–3163. doi: 10.1167/iovs.05-1621.
    1. Kanakis C.D., Tarantilis P.A., Tajmir-Riahi H.A., Polissiou M.G. DNA interaction with saffron’s secondary metabolites safranal, crocetin, and dimethylcrocetin. DNA Cell Biol. 2007;26:63–70. doi: 10.1089/dna.2006.0529.
    1. Natoli R., Zhu Y., Valter K., Bisti S., Eells J., Stone J. Gene and noncoding RNA regulation underlying photoreceptor protection: microarray study of dietary antioxidant saffron and photobiomodulation in rat retina. Mol. Vis. 2010;16:1801–1822.
    1. Falsini B., Piccardi M., Minnella A., Savastano M.C., Capoluongo E., Fadda A., Balestrazzi E., Maccarone R., Bisti S. Influence of Saffron Supplementation on Retinal Flicker Sensitivity in Early Age-Related Macular Degeneration. Investig. Ophthalmol. Vis. Sci. 2010;51:6118–6124. doi: 10.1167/iovs.09-4995.
    1. Broadhead G.K., Grigg J.R., McCluskey P., Hong T., Schlub T.E., Chang A.A. Saffron therapy for the treatment of mild/moderate age-related macular degeneration: a randomised clinical trial. Graefe’s Arch. Clin. Exp. Ophthalmol. 2019;257:31–40. doi: 10.1007/s00417-018-4163-x.
    1. Riazi A., Alishiri A.A., Hosseini M.A., Sahebkar A., Panahi Y., Zarchi A.A.K. The impact of saffron (Crocus sativus) supplementation on visual function in patients with dry age-related macular degeneration. Ital. J. Med. 2016;10:196–201. doi: 10.4081/itjm.2016.758.
    1. Lashay A., Sadough G., Ashrafi E., Lashay M., Movassat M., Akhondzadeh S. Short-term Outcomes of Saffron Supplementation in Patients with Age-related Macular Degeneration: A Double-blind, Placebo-controlled, Randomized Trial. Med. Hypothesis Discov. Innov. Ophthalmol. J. 2016;5:32–38.
    1. Falsini B., Fadda A., Iarossi G., Piccardi M., Canu D., Minnella A., Serrao S., Scullica L. Retinal sensitivity to flicker modulation: reduced by early age-related maculopathy. Investig. Ophthalmol. Vis. Sci. 2000;41:1498–1506.
    1. Falsini B., Galli-Resta L., Fadda A., Ziccardi L., Piccardi M., Iarossi G., Resta G. Long-Term Decline of Central Cone Function in Retinitis Pigmentosa Evaluated by Focal Electroretinogram. Investig. Ophthalmol. Vis. Sci. 2012;53:7701–7709. doi: 10.1167/iovs.12-11017.
    1. Galli-Resta L., Piccardi M., Ziccardi L., Fadda A., Minnella A., Marangoni D., Placidi G., Resta G., Falsini B. Early Detection of Central Visual Function Decline in Cone-Rod Dystrophy by the Use of Macular Focal Cone Electroretinogram. Investig. Ophthalmol. Vis. Sci. 2013;54:6560–6569. doi: 10.1167/iovs.13-12676.
    1. Orita M., Iwahana H., Kanazawa H., Hayashi K., Sekiya T. Detection of polymorphisms of human DNA by gel electrophoresis as single-strand conformation polymorphisms. Proc. Natl. Acad. Sci. USA. 1989;86:2766–2770. doi: 10.1073/pnas.86.8.2766.
    1. Falsini B., Piccardi M., Iarossi G., Fadda A., Merendino E., Valentini P. Influence of short-term antioxidant supplementation on macular function in age-related maculopathy: a pilot study including electrophysiologic assessment. Ophthalmology. 2003;110:51–60. doi: 10.1016/S0161-6420(02)01547-6.
    1. Parisi V., Canu D., Iarossi G., Olzi D., Falsini B. Altered recovery of macular function after bleaching in Stargardt’s disease-fundus flavimaculatus: pattern VEP evidence. Invest. Ophthalmol. Vis. Sci. 2002;43:2741–2748.
    1. Porciatti V., Burr D.C., Morrone M.C., Fiorentini A. The effects of ageing on the pattern electroretinogram and visual evoked potential in humans. Vis. Res. 1992;32:1199–1209. doi: 10.1016/0042-6989(92)90214-4.
    1. Porciatti V., Ventura L.M. Normative data for a user-friendly paradigm for pattern electroretinogram recording. Ophthalmol. 2004;111:161–168. doi: 10.1016/j.ophtha.2003.04.007.
    1. Falsini B., Serrao S., Fadda A., Iarossi G., Porrello G., Cocco F., Merendino E. Focal electroretinograms and fundus appearance in nonexudative age-related macular degeneration. Quantitative relationship between retinal morphology and function. Graefe’s Arch. Clin. Exp. Ophthalmol. 1999;237:193–200. doi: 10.1007/s004170050218.
    1. Otto T., Bach M. [Reproducibility of the pattern electroretinogram] Der Ophthalmol. 1997;94:217–221. doi: 10.1007/s003470050105.
    1. Fadda A., Falsini B. Precision LED-based stimulator for focal electroretinography. Med. Boil. Eng. 1997;35:441–444. doi: 10.1007/BF02534106.
    1. Fadda A., Di Renzo A., Parisi V., Stifano G., Balestrazzi E., Riva C.E., Falsini B. Lack of habituation in the light adapted flicker electroretinogram of normal subjects: A comparison with pattern electroretinogram. Clin. Neurophysiol. 2009;120:1828–1834. doi: 10.1016/j.clinph.2009.06.011.
    1. Aleman T.S., Cideciyan A.V., Windsor E.A.M., Schwartz S.B., Swider M., Chico J.D., Sumaroka A., Pantelyat A.Y., Duncan K.G., Gardner L.M., et al. Macular pigment and lutein supplementation in ABCA4-associated retinal degenerations. Investig. Ophthalmol. Vis. Sci. 2007;48:1319–1329. doi: 10.1167/iovs.06-0764.
    1. Bouvier F., Suire C., Mutterer J., Camara B. Oxidative remodeling of chromoplast carotenoids: identification of the carotenoid dioxygenase CsCCD and CsZCD genes involved in Crocus secondary metabolite biogenesis. Plant Cell. 2003;15:47–62. doi: 10.1105/tpc.006536.
    1. Umigai N., Murakami K., Ulit M., Antonio L., Shirotori M., Morikawa H., Nakano T. The pharmacokinetic profile of crocetin in healthy adult human volunteers after a single oral administration. Phytomedicine. 2011;18:575–578. doi: 10.1016/j.phymed.2010.10.019.
    1. Bisti S., Maccarone R., Falsini B. Saffron and retina: Neuroprotection and pharmacokinetics. Vis. Neurosci. 2014;31:355–361. doi: 10.1017/S0952523814000108.
    1. Corso L., Cavallero A., Baroni D., Garbati P., Prestipino G., Bisti S., Nobile M., Picco C. Saffron reduces ATP-induced retinal cytotoxicity by targeting P2X7 receptors. Purinergic Signal. 2016;12:161–174. doi: 10.1007/s11302-015-9490-3.
    1. Maccarone R., Rapino C., Zerti D., Di Tommaso M., Battista N., Di Marco S., Bisti S., Maccarrone M. Modulation of Type-1 and Type-2 Cannabinoid Receptors by Saffron in a Rat Model of Retinal Neurodegeneration. PLoS ONE. 2016;11:0166827. doi: 10.1371/journal.pone.0166827.
    1. Di Marco S., Carnicelli V., Franceschini N., Di Paolo M., Piccardi M., Bisti S., Falsini B. Saffron: A Multitask Neuroprotective Agent for Retinal Degenerative Diseases. Antioxidants. 2019;8:224. doi: 10.3390/antiox8070224.
    1. Cideciyan A.V., Swider M., Aleman T.S., Tsybovsky Y., Schwartz S.B., Windsor E.A.M., Roman A.J., Sumaroka A., Steinberg J.D., Jacobson S.G., et al. ABCA4 disease progression and a proposed strategy for gene therapy. Hum. Mol. Genet. 2009;18:931–941. doi: 10.1093/hmg/ddn421.
    1. Moloney J.B., Mooney D.J., O’Connor M.A. Retinal function in Stargardt’s disease and fundus flavimaculatus. Am. J. Ophthalmol. 1983;96:57–65. doi: 10.1016/0002-9394(83)90455-5.
    1. Lachapelle P., Little J.M., Roy M.S. The electroretinogram in Stargardt’s disease and fundus flavimaculatus. Doc. Ophthalmol. 1989;73:395–404. doi: 10.1007/BF00154495.
    1. Lois N., Holder G.E., Bunce C., Fitzke F.W., Bird A.C. Phenotypic subtypes of Stargardt macular dystrophy-fundus flavimaculatus. Arch. Ophthalmol. (Chicago, Ill. 1960) 2001;119:359–369. doi: 10.1001/archopht.119.3.359.
    1. Cideciyan A.V., Swider M., Aleman T.S., Feuer W.J., Schwartz S.B., Russell R.C., Steinberg J.D., Stone E.M., Jacobson S.G. Macular function in macular degenerations: repeatability of microperimetry as a potential outcome measure for ABCA4-associated retinopathy trials. Investig. Ophthalmol. Vis. Sci. 2012;53:841–852. doi: 10.1167/iovs.11-8415.

Source: PubMed

3
Abonnieren