Orthostatic Symptoms and Reductions in Cerebral Blood Flow in Long-Haul COVID-19 Patients: Similarities with Myalgic Encephalomyelitis/Chronic Fatigue Syndrome

C Linda M C van Campen, Peter C Rowe, Frans C Visser, C Linda M C van Campen, Peter C Rowe, Frans C Visser

Abstract

Background and Objectives: Symptoms and hemodynamic findings during orthostatic stress have been reported in both long-haul COVID-19 and myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS), but little work has directly compared patients from these two groups. To investigate the overlap in these clinical phenotypes, we compared orthostatic symptoms in daily life and during head-up tilt, heart rate and blood pressure responses to tilt, and reductions in cerebral blood flow in response to orthostatic stress in long-haul COVID-19 patients, ME/CFS controls, and healthy controls. Materials and Methods: We compared 10 consecutive long-haul COVID-19 cases with 20 age- and gender-matched ME/CFS controls with postural tachycardia syndrome (POTS) during head-up tilt, 20 age- and gender-matched ME/CFS controls with a normal heart rate and blood pressure response to head-up tilt, and 10 age- and gender-matched healthy controls. Identical symptom questionnaires and tilt test procedures were used for all groups, including measurement of cerebral blood flow and cardiac index during the orthostatic stress. Results: There were no significant differences in ME/CFS symptom prevalence between the long-haul COVID-19 patients and the ME/CFS patients. All long-haul COVID-19 patients developed POTS during tilt. Cerebral blood flow and cardiac index were more significantly reduced in the three patient groups compared with the healthy controls. Cardiac index reduction was not different between the three patient groups. The cerebral blood flow reduction was larger in the long-haul COVID-19 patients compared with the ME/CFS patients with a normal heart rate and blood pressure response. Conclusions: The symptoms of long-haul COVID-19 are similar to those of ME/CFS patients, as is the response to tilt testing. Cerebral blood flow and cardiac index reductions during tilt were more severely impaired than in many patients with ME/CFS. The finding of early-onset orthostatic intolerance symptoms, and the high pre-illness physical activity level of the long-haul COVID-19 patients, makes it unlikely that POTS in this group is due to deconditioning. These data suggest that similar to SARS-CoV-1, SARS-CoV-2 infection acts as a trigger for the development of ME/CFS.

Keywords: cerebral blood flow (CBF); chronic fatigue syndrome (CFS); long-haul COVID-19; myalgic encephalomyelitis (ME); orthostatic intolerance; postural orthostatic tachycardia syndrome (POTS); tilt testing.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Number of positive symptom clusters derived from ME/CFS/Institute of Medicine criteria in the long-haul COVID-19 patients and all ME/CFS patient. Legend Figure 1 ME/CFS: myalgic encephalomyelitis/chronic fatigue syndrome; Exerc: exercise; Intol: intolerance: Phys: physical; Ment: mental; PEM: post-exertional malaise; Prol: prolonged; Probl: problems; Unrefr: unrefreshing; Sens: sensory; Hypersens: hypersensitivity; Abn: abnormality; Sympt: symptoms: Infect: infection; GI: gastro-intestinal; GenitoUr: genito-urogenital; Respir: respiratory; Instab: instability; Extr: extreme; Temp: temperature.
Figure 2
Figure 2
Percent reduction in cerebral blood flow (end-tilt minus supine/supine × 100%) in the long-haul COVID-19 patients, ME/CFS patients with POTS, ME/CFS patients with a normal heart rate and blood pressure response, and healthy controls. Legend Figure 2 CBF: cerebral blood flow; ME/CFS: myalgic encephalomyelitis/chronic fatigue syndrome; BP: blood pressure; HR: heart rate; POTS: postural orthostatic intolerance syndrome.
Figure 3
Figure 3
Mean number of positive response to 15 questions, obtained directly after tilting to the upright position, in long-haul COVID-19 patients, ME/CFS patients with POTS, ME/CFS patients with a normal heart rate and blood pressure response, and healthy controls. Legend Figure 3 ME/CFS: myalgic encephalomyelitis/chronic fatigue syndrome.
Figure 4
Figure 4
Example of cerebral blood flow images of the left carotid artery supine (left side) and end-tilt standing (right side) of a long-haul COVID-19 subject (upper panel) and a healthy control (lower panel). Legend Figure 4: CBF: cerebral blood flow.
Figure 5
Figure 5
Example of cardiac output images supine (left side) and end-tilt standing (right side) of a long-haul COVID-19 subject (upper panel) and a healthy control (lower panel). Legend Figure 5: CO: cardiac output.

References

    1. Carfi A., Bernabei R., Landi F. Gemelli Against C-P-ACSG. Persistent Symptoms in Patients after Acute COVID-19. JAMA. 2020;324:603–605. doi: 10.1001/jama.2020.12603.
    1. Davis H.E., Assaf G.S., McCorkell L., Wei H., Low R.J., Re’Em Y., Redfield S., Austin J.P., Akrami A. Characterizing long COVID in an international cohort: 7 months of symptoms and their impact. EClinicalMedicine. 2021;38:101019. doi: 10.1016/j.eclinm.2021.101019.
    1. Low P.A., Sandroni P., Joyner M., Shen W.K. Postural tachycardia syndrome (POTS) J. Cardiovasc. Electrophysiol. 2009;20:352–358. doi: 10.1111/j.1540-8167.2008.01407.x.
    1. Institute Of Medicine (IOM) (Ed.) Beyond Mayalgic Encephalomyelitis/Chronic Fatigue Syndrome: Redefining an Illness. The National Academies Press; Washington, DC, USA: 2015.
    1. Miglis M.G., Prieto T., Shaik R., Muppidi S., Sinn D.I., Jaradeh S. A case report of postural tachycardia syndrome after COVID-19. Clin. Auton. Res. 2020;30:449–451. doi: 10.1007/s10286-020-00727-9.
    1. Kanjwal K., Jamal S., Kichloo A., Grubb B.P. New-onset Postural Orthostatic Tachycardia Syndrome Following Coronavirus Disease 2019 Infection. J. Innov. Card. Rhythm Manag. 2020;11:4302–4304. doi: 10.19102/icrm.2020.111102.
    1. Dani M., Dirksen A., Taraborrelli P., Torocastro M., Panagopoulos D., Sutton R., Lim P.B. Autonomic dysfunction in ‘long COVID’: Rationale, physiology and management strategies. Clin. Med. 2021;21:e63–e67. doi: 10.7861/clinmed.2020-0896.
    1. Novak P. Post COVID-19 syndrome associated with orthostatic cerebral hypoperfusion syndrome, small fiber neuropathy and benefit of immunotherapy: A case report. Eneurologicalsci. 2020;21:100276. doi: 10.1016/j.ensci.2020.100276.
    1. Petracek L.S., Suskauer S.J., Vickers R.F., Patel N.R., Violand R.L., Swope R.L., Rowe P.C. Adolescent and Young Adult ME/CFS after Confirmed or Probable COVID-19. Front. Med. 2021;8:668944. doi: 10.3389/fmed.2021.668944.
    1. Fukuda K., Straus S.E., Hickie I., Sharpe M.C., Dobbins J.G., Komaroff A. The chronic fatigue syndrome: A comprehensive approach to its definition and study. International Chronic Fatigue Syndrome Study Group. Ann. Intern. Med. 1994;121:953–959. doi: 10.7326/0003-4819-121-12-199412150-00009.
    1. Carruthers B.M., van de Sande M.I., De Meirleir K.L., Klimas N.G., Broderick G., Mitchell T., Staines D., Powles A.C.P., Speight N., Vallings R., et al. Myalgic encephalomyelitis: International Consensus Criteria. J. Intern. Med. 2011;270:327–338. doi: 10.1111/j.1365-2796.2011.02428.x.
    1. Cockshell S.J., Mathias J.L. Cognitive functioning in chronic fatigue syndrome: A meta-analysis. Psychol. Med. 2010;40:1253–1267. doi: 10.1017/S0033291709992054.
    1. Cvejic E., Birch R.C., Vollmer-Conna U. Cognitive Dysfunction in Chronic Fatigue Syndrome: A Review of Recent Evidence. Curr. Rheumatol. Rep. 2016;18:24. doi: 10.1007/s11926-016-0577-9.
    1. Roma M., Marden C.L., Flaherty M.A.K., Jasion S.E., Cranston E.M., Rowe P.C. Impaired Health-Related Quality of Life in Adolescent Myalgic Encephalomyelitis/Chronic Fatigue Syndrome: The Impact of Core Symptoms. Front. Pediatr. 2019;7:26. doi: 10.3389/fped.2019.00026.
    1. van Campen C.L.M.C., Verheugt F.W.A., Rowe P.C., Visser F.C. Cerebral blood flow is reduced in ME/CFS during head-up tilt testing even in the absence of hypotension or tachycardia: A quantitative, controlled study using Doppler echography. Clin. Neurophysiol. Pract. 2020;5:50–58. doi: 10.1016/j.cnp.2020.01.003.
    1. Katz B.Z., Shiraishi Y., Mears C.J., Binns H.J., Taylor R. Chronic fatigue syndrome after infectious mononucleosis in adolescents. Pediatrics. 2009;124:189–193. doi: 10.1542/peds.2008-1879.
    1. Hickie I., Davenport T., Wakefield D., Vollmer-Conna U., Cameron B., Vernon S.D., Reeves W.C., Lloyd A. Post-infective and chronic fatigue syndromes precipitated by viral and non-viral pathogens: Prospective cohort study. BMJ. 2006;333:575. doi: 10.1136/.
    1. Pedersen M., Asprusten T.T., Godang K., Leegaard T.M., Osnes L.T., Skovlund E., Tjade T., Glenne Øie M., Bratholm Wyller V.B. Predictors of chronic fatigue in adolescents six months after acute Epstein-Barr virus infection: A prospective cohort study. Brain Behav. Immun. 2019;75:94–100. doi: 10.1016/j.bbi.2018.09.023.
    1. Moldofsky H., Patcai J. Chronic widespread musculoskeletal pain, fatigue, depression and disordered sleep in chronic post-SARS syndrome; a case-controlled study. BMC Neurol. 2011;11:37. doi: 10.1186/1471-2377-11-37.
    1. Lam M.H., Wing Y.K., Yu M.W., Leung C.M., Ma R.C., Kong A.P., So W.Y., Fong S.Y.-Y., Lam S.-P. Mental morbidities and chronic fatigue in severe acute respiratory syndrome survivors: Long-term follow-up. Arch. Intern. Med. 2009;169:2142–2147. doi: 10.1001/archinternmed.2009.384.
    1. Van Campen C.L.M.C., Rowe P.C., Visser F.C. Myalgic Encephalomyelitis/Chronic Fatigue Syndrome Patients with Joint Hypermobility Show Larger Cerebral Blood Flow Reductions during Orthostatic Stress Testing than Patients without Hypermobility: A Case Control Study. Med. Res. Arch. 2021;9:18. doi: 10.18103/mra.v9i6.2494.
    1. Beighton P., Solomon L., Soskolne C.L. Articular mobility in an African population. Ann. Rheum Dis. 1973;32:413–418. doi: 10.1136/ard.32.5.413.
    1. Cooper D.J., Scammell B.E., Batt M.E., Palmer D. Development and validation of self-reported line drawings of the modified Beighton score for the assessment of generalised joint hypermobility. BMC Med. Res. Methodol. 2018;18:11. doi: 10.1186/s12874-017-0464-8.
    1. van Campen C.L.M.C., Verheugt F.W.A., Visser F.C. Cerebral blood flow changes during tilt table testing in healthy volunteers, as assessed by Doppler imaging of the carotid and vertebral arteries. Clin. Neurophysiol. Pract. 2018;3:91–95. doi: 10.1016/j.cnp.2018.02.004.
    1. Sato K., Ogoh S., Hirasawa A., Oue A., Sadamoto T. The distribution of blood flow in the carotid and vertebral arteries during dynamic exercise in humans. Pt 11J. Physiol. 2011;589:2847–2856. doi: 10.1113/jphysiol.2010.204461.
    1. van Campen C.L.M.C., Visser F.C. Validation of Stroke volume measured with suprasternal aortic Doppler imaging: Comparison to transthoracic Stroke Volume measurements. J. Thromb. Circ. 2018:1–5. doi: 10.29011/JTC-106.000006.
    1. van Campen C.L.M.C., Visser F.C., de Cock C.C., Vos H.S., Kamp O., Visser C.A. Comparison of the haemodynamics of different pacing sites in patients undergoing resynchronisation treatment: Need for individualisation of lead localisation. Heart. 2006;92:1795–1800. doi: 10.1136/hrt.2004.050435.
    1. Kusumoto F., Venet T., Schiller N.B., Sebastian A., Foster E. Measurement of aortic blood flow by Doppler echocardiography: Temporal, technician, and reader variability in normal subjects and the application of generalizability theory in clinical research. J. Am. Soc. Echocardiogr. 1995;8:647–653. doi: 10.1016/S0894-7317(05)80378-5.
    1. Freeman R., Wieling W., Axelrod F.B., Benditt D.G., Benarroch E., Biaggioni I., Cheshire W., Chelimsky T., Cortelli P., Gibbons C.H., et al. Consensus statement on the definition of orthostatic hypotension, neurally mediated syncope and the postural tachycardia syndrome. Auton. Neurosci. 2011;161:46–48. doi: 10.1016/j.autneu.2011.02.004.
    1. Sheldon R.S., Grubb B.P., Olshansky B., 2nd, Shen W.K., Calkins H., Brignole M., Raj S.R., Krahn A.D., Morillo C.A., Stewart J.M., et al. 2015 heart rhythm society expert consensus statement on the diagnosis and treatment of postural tachycardia syndrome, inappropriate sinus tachycardia, and vasovagal syncope. Heart Rhythm. 2015;12:e41–e63. doi: 10.1016/j.hrthm.2015.03.029.
    1. Shen W.K., Sheldon R.S., Benditt D.G., Cohen M.I., Forman D.E., Goldberger Z.D., Grubb B.P., Hamdan M.H., Krahn A.D., Link M.S., et al. 2017 ACC/AHA/HRS Guideline for the Evaluation and Management of Patients with Syncope: Executive Summary: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines and the Heart Rhythm Society. J. Am. Coll. Cardiol. 2017;70:620–663. doi: 10.1016/j.jacc.2017.03.002.
    1. Naschitz J.E., Rosner I., Rozenbaum M., Gaitini L., Bistritzki I., Zuckerman E., Sabo E., Yeshurun D. Seminars in Arthritis and Rheumatism. Volume 30. W. B. Saunders; Philadelphia, PA, USA: 2000. The capnography head-up tilt test for evaluation of chronic fatigue syndrome; pp. 79–86.
    1. Ocon A.J., Messer Z.R., Medow M.S., Stewart J.M. Increasing orthostatic stress impairs neurocognitive functioning in chronic fatigue syndrome with postural tachycardia syndrome. Clin. Sci. 2012;122:227–238. doi: 10.1042/CS20110241.
    1. Tanaka H., Matsushima R., Tamai H., Kajimoto Y. Impaired postural cerebral hemodynamics in young patients with chronic fatigue with and without orthostatic intolerance. J. Pediatr. 2002;140:412–417. doi: 10.1067/mpd.2002.122725.
    1. Bou-Holaigah I., Rowe P.C., Kan J., Calkins H. The relationship between neurally mediated hypotension and the chronic fatigue syndrome. JAMA. 1995;274:961–967. doi: 10.1001/jama.1995.03530120053041.
    1. Boissoneault J., Letzen J., Robinson M., Staud R. Cerebral blood flow and heart rate variability predict fatigue severity in patients with chronic fatigue syndrome. Brain Imaging Behav. 2019;13:789–797. doi: 10.1007/s11682-018-9897-x.
    1. Medow M.S., Sood S., Messer Z., Dzogbeta S., Terilli C., Stewart J.M. Phenylephrine alteration of cerebral blood flow during orthostasis: Effect on n-back performance in chronic fatigue syndrome. J. Appl. Physiol. 2014;117:1157–1164. doi: 10.1152/japplphysiol.00527.2014.
    1. Biswal B., Kunwar P., Natelson B.H. Cerebral blood flow is reduced in chronic fatigue syndrome as assessed by arterial spin labeling. J. Neurol. Sci. 2011;301:9–11. doi: 10.1016/j.jns.2010.11.018.
    1. Razumovsky A.Y., DeBusk K., Calkins H., Snader S., Lucas K.E., Vyas P., Hanley D.F., Rowe P.C. Cerebral and systemic hemodynamics changes during upright tilt in chronic fatigue syndrome. J. Neuroimaging. 2003;13:57–67. doi: 10.1111/j.1552-6569.2003.tb00158.x.
    1. van Campen C.L.M.C., Visser F.C. The abnormal Cardiac Index and Stroke Volume Index changes during a normal Tilt Table Test in ME/CFS patients compared to healthy volunteers, are not related to deconditioning. J. Thromb. Circ. 2018:1–8. doi: 10.29011/JTC-107.00000.
    1. Timmers H.J., Wieling W., Soetekouw P.M., Bleijenberg G., Van Der Meer J.W., Lenders J.W. Hemodynamic and neurohumoral responses to head-up tilt in patients with chronic fatigue syndrome. Clin. Auton. Res. 2002;12:273–280. doi: 10.1007/s10286-002-0014-1.
    1. Jha N.K., Ojha S., Jha S.K., Dureja H., Singh S.K., Shukla S.D., Chellappan D.K., Gupta G., Bhardwaj S., Kumar N., et al. Evidence of Coronavirus (CoV) Pathogenesis and Emerging Pathogen SARS-CoV-2 in the Nervous System: A Review on Neurological Impairments and Manifestations. J. Mol. Neurosci. 2021;71:2192–2209. doi: 10.1007/s12031-020-01767-6.
    1. Zhou Z., Kang H., Li S., Zhao X. Understanding the neurotropic characteristics of SARS-CoV-2: From neurological manifestations of COVID-19 to potential neurotropic mechanisms. J. Neurol. 2020;267:2179–2184. doi: 10.1007/s00415-020-09929-7.
    1. Yachou Y., El Idrissi A., Belapasov V., Ait Benali S. Neuroinvasion, neurotropic, and neuroinflammatory events of SARS-CoV-2: Understanding the neurological manifestations in COVID-19 patients. Neurol. Sci. 2020;41:2657–2669. doi: 10.1007/s10072-020-04575-3.
    1. Montalvan V., Lee J., Bueso T., De Toledo J., Rivas K. Neurological manifestations of COVID-19 and other coronavirus infections: A systematic review. Clin. Neurol. Neurosurg. 2020;194:105921. doi: 10.1016/j.clineuro.2020.105921.
    1. Almqvist J., Granberg T., Tzortzakakis A., Klironomos S., Kollia E., Ohberg C., Martin R., Piehl F., Ouellette R., Ineichen B.V. Neurological manifestations of coronavirus infections—A systematic review. Ann. Clin. Transl. Neurol. 2020;7:2057–2071. doi: 10.1002/acn3.51166.
    1. Sriwastava S., Tandon M., Podury S., Prasad A., Wen S., Guthrie G., Kakara M., Jaiswal S., Subedi R., Elkhooly M., et al. COVID-19 and neuroinflammation: A literature review of relevant neuroimaging and CSF markers in central nervous system inflammatory disorders from SARS-CoV2. J. Neurol. 2021;268:4448–4478. doi: 10.1007/s00415-021-10611-9.
    1. Mukerji S.S., Solomon I.H. What can we learn from brain autopsies in COVID-19? Neurosci. Lett. 2021;742:135528. doi: 10.1016/j.neulet.2020.135528.
    1. Nakatomi Y., Mizuno K., Ishii A., Wada Y., Tanaka M., Tazawa S., Onoe K., Fukuda S., Kawabe J., Takahashi K., et al. Neuroinflammation in Patients with Chronic Fatigue Syndrome/Myalgic Encephalomyelitis: An 11C-(R)-PK11195 PET Study. J. Nucl. Med. 2014;55:945–950. doi: 10.2967/jnumed.113.131045.
    1. Mueller C., Lin J.C., Sheriff S., Maudsley A.A., Younger J.W. Evidence of widespread metabolite abnormalities in Myalgic encephalomyelitis/chronic fatigue syndrome: Assessment with whole-brain magnetic resonance spectroscopy. Brain Imaging Behav. 2020;14:562–572. doi: 10.1007/s11682-018-0029-4.
    1. Shan Z.Y., Barnden L.R., Kwiatek R.A., Bhuta S., Hermens D.F., Lagopoulos J. Neuroimaging characteristics of myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS): A systematic review. J. Transl. Med. 2020;18:335. doi: 10.1186/s12967-020-02506-6.
    1. Boissoneault J., Letzen J., Lai S., O’Shea A., Craggs J., Robinson M.E., Staud R. Abnormal resting state functional connectivity in patients with chronic fatigue syndrome: An arterial spin-labeling fMRI study. Magn. Reson. Imaging. 2016;34:603–608. doi: 10.1016/j.mri.2015.12.008.
    1. Poenaru S., Abdallah S.J., Corrales-Medina V., Cowan J. COVID-19 and post-infectious myalgic encephalomyelitis/chronic fatigue syndrome: A narrative review. Ther. Adv. Infect Dis. 2021;8:20499361211009385. doi: 10.1177/20499361211009385.
    1. Shouman K., Vanichkachorn G., Cheshire W.P., Suarez M.D., Shelly S., Lamotte G.J., Sandroni P., Benarroch E.E., Berini S.E., Cutsforth-Gregory J.K., et al. Autonomic dysfunction following COVID-19 infection: An early experience. Clin. Auton. Res. 2021;31:385–394. doi: 10.1007/s10286-021-00803-8.
    1. Johansson M., Stahlberg M., Runold M., Nygren-Bonnier M., Nilsson J., Olshansky B., Bruchfeld J., Fedorowski A. Long-Haul Post-COVID-19 Symptoms Presenting as a Variant of Postural Orthostatic Tachycardia Syndrome: The Swedish Experience. JACC Case Rep. 2021;3:573–580. doi: 10.1016/j.jaccas.2021.01.009.
    1. Blitshteyn S., Whitelaw S. Postural orthostatic tachycardia syndrome (POTS) and other autonomic disorders after COVID-19 infection: A case series of 20 patients. Immunol. Res. 2021;69:205–211. doi: 10.1007/s12026-021-09185-5.
    1. Ocon A.J., Medow M.S., Taneja I., Clarke D., Stewart J.M. Decreased upright cerebral blood flow and cerebral autoregulation in normocapnic postural tachycardia syndrome. Am. J. Physiol. Heart Circ. Physiol. 2009;297:H664–H673. doi: 10.1152/ajpheart.00138.2009.
    1. Shin K.J., Kim S.E., Park K.M., Park J., Ha S.Y., Kwon O.-Y. Cerebral hemodynamics in orthostatic intolerance with normal head-up tilt test. Acta Neurol. Scand. 2016;134:108–115. doi: 10.1111/ane.12516.
    1. Hermosillo A.G., Jordan J.L., Vallejo M., Kostine A., Marquez M.F., Cardenas M. Cerebrovascular blood flow during the near syncopal phase of head-up tilt test: A comparative study in different types of neurally mediated syncope. Europace. 2006;8:199–203. doi: 10.1093/europace/eul001.
    1. Wells R., Malik V., Brooks A.G., Linz D., Elliott A.D., Sanders P., Page A., Baumert M., Lau D.H. Cerebral Blood Flow and Cognitive Performance in Postural Tachycardia Syndrome: Insights from Sustained Cognitive Stress Test. J. Am. Heart Assoc. 2020;9:e017861. doi: 10.1161/JAHA.120.017861.
    1. Masuki S., Eisenach J.H., Schrage W.G., Johnson C.P., Dietz N.M., Wilkins B.W., Sandroni P., Low P.A., Joyner M.J. Reduced stroke volume during exercise in postural tachycardia syndrome. J. Appl. Physiol. 2007;103:1128–1135. doi: 10.1152/japplphysiol.00175.2007.
    1. Fu Q., Vangundy T.B., Galbreath M.M., Shibata S., Jain M., Hastings J.L., Bhella P.S., Levine B.D. Cardiac origins of the postural orthostatic tachycardia syndrome. J. Am. Coll. Cardiol. 2010;55:2858–2868. doi: 10.1016/j.jacc.2010.02.043.
    1. Parsaik A., Allison T.G., Singer W., Sletten D.M., Joyner M.J., Benarroch E.E., Low P.A., Sandroni P. Deconditioning in patients with orthostatic intolerance. Neurology. 2012;79:1435–1439. doi: 10.1212/WNL.0b013e31826d5f95.
    1. van Campen C.L.M.C., Rowe P.C., Visser F.C. Deconditioning does not explain orthostatic intolerance in ME/CFS (myalgic encephalomyelitis/chronic fatigue syndrome. J. Transl. Med. 2021;19:193. doi: 10.1186/s12967-021-02819-0.
    1. Nisenbaum R., Jones J.F., Unger E.R., Reyes M., Reeves W.C. A population-based study of the clinical course of chronic fatigue syndrome. Health Qual. Life Outcome. 2003;3:49. doi: 10.1186/1477-7525-1-49.
    1. Jason L.A., Porter N., Brown M., Anderson V., Brown A., Hunnell J., Lerch A. CFS: A Review of Epidemiology and Natural History Studies. Bull. IACFS ME. 2009;17:88–106.
    1. Pheley A.M., Melby D., Schenck C., Mandel J., Peterson P.K. Can we predict recovery in chronic fatigue syndrome? Minn Med. 1999;82:52–56.
    1. Hill N.F., Tiersky L.A., Scavalla V.R., Lavietes M., Natelson B.H. Natural history of severe chronic fatigue syndrome. Arch. Phys. Med. Rehabil. 1999;80:1090–1094. doi: 10.1016/S0003-9993(99)90066-7.
    1. van der Werf S.P., de Vree B., Alberts M., van der Meer J.W., Bleijenberg G. Natural course and predicting self-reported improvement in patients with chronic fatigue syndrome with a relatively short illness duration. J. Psychosom. Res. 2002;53:749–753. doi: 10.1016/S0022-3999(02)00324-0.
    1. Reyes M., Dobbins J.G., Nisenbaum R., Subedar N.S., Randall B., Reeves W.C. Chronic Fatigue Syndrome Progression and Self-Defined Recovery. J. Chronic. Fatigue Syndr. 1999;5:17–27. doi: 10.1300/J092v05n01_03.

Source: PubMed

3
Abonnieren