Caffeine intake inverts the effect of adenosine on myocardial perfusion during stress as measured by T1 mapping

Dirkjan Kuijpers, Niek H Prakken, Rozemarijn Vliegenthart, Paul R M van Dijkman, Pim van der Harst, Matthijs Oudkerk, Dirkjan Kuijpers, Niek H Prakken, Rozemarijn Vliegenthart, Paul R M van Dijkman, Pim van der Harst, Matthijs Oudkerk

Abstract

Caffeine intake before adenosine stress myocardial perfusion imaging may cause false negative findings. We hypothesized that the antagonistic effect of caffeine can be measured by T1 relaxation times in rest and adenosine stress cardiac magnetic resonance imaging (CMR), as T1 mapping techniques are sensitive to changes in myocardial blood volume. We prospectively analyzed 105 consecutive patients with adenosine stress perfusion CMR on a 1.5-T MRI system. Rest and stress T1 mapping was performed using Modified Look-Locker Inversion recovery. T1 reactivity was defined as difference in T1rest and T1stress (∆T1). Fifteen patients drank coffee within 4 h of CMR (<4H caffeine group), and 10 patients had coffee the day before (>8H caffeine group). Comparison was made to patients without self-reported coffee intake: 50 with normal CMR (control group), 18 with myocardial ischemia, and 12 with myocardial infarction. The national review board approved the study; all patients gave written informed consent. The <4H caffeine group showed inverted ∆T1 of -7.8 % (T1rest 975 ± 42 ms, T1stress 898 ± 51 ms, p < 0.0005). The >8H caffeine group showed reduced T1 reactivity (1.8 %; T1rest 979 ms, T1stress 997 ms) compared to the controls (4.3 %; T1rest 977 ± 40 ms, T1stress 1018 ± 40 ms), p < 0.0005. Ischemic and infarcted myocardium showed minimal T1 reactivity (0.2 and 0.3 %, respectively). Caffeine intake inverts the adenosine effect during stress perfusion CMR as measured by T1 mapping. T1 reactivity can assess the adequacy of adenosine-induced stress in perfusion CMR.

Keywords: Biomarkers; Caffeine; Cardiovascular MRI; T1-mapping.

Figures

Fig. 1
Fig. 1
Rest-stress T1 mapping analysis with adenosine perfusion CMR
Fig. 2
Fig. 2
Myocardial T1 values at rest and during adenosine stress CMR
Fig. 3
Fig. 3
Comparison of T1 reactivity (∆T1) between the different patient groups
Fig. 4
Fig. 4
Comparison of T1 reactivity (∆T1) between ischemic, infarcted and remote myocardial tissue
Fig. 5
Fig. 5
Comparison of T1 values in ischemic and infarct area versus remote myocardial tissue (septum)

References

    1. Windecker S, Kolh P, Alfonso F, Collet JP, Cremer J, Falk V, Filippatos G, Hamm C, Head SJ, Jüni P, Kappetein AP, Kastrati A, Knuuti J, Landmesser U, Laufer G, Neumann FJ, Richter DJ, Schauerte P, Uva MS, Stefanini GG, Taggart DP, Torracca L, Valgimigli M, Wijns W, Witkowski A. ESC/EACTS guidelines on myocardial revascularization. Rev Esp Cardiol (Engl Ed) 2014;68(2):144.
    1. Schwitter J, Wacker CM, Wilke N, Al-Saadi N, Sauer E, Huettle K, Schönberg SO, Debl K, Strohm O, Ahlstrom H, Dill T, Hoebel N, Simor T. Superior diagnostic performance of perfusion-cardiovascular magnetic resonance versus SPECT to detect coronary artery disease: the secondary endpoints of the multicenter multivendor MR-IMPACT II (magnetic resonance imaging for myocardial perfusion assessment in coronary artery disease trial) J Cardiovasc Magn Res. 2012;14:61–71. doi: 10.1186/1532-429X-14-61.
    1. Plein S, Kidambi A, Sourbon S, Maredia N, Uddin A, Motwani M, Ripley DP, Herzog BA, Brown J, Nixon J, Everett C, Greenwood JP. Associated factors for a false neagtive cardiovascular magnetic resonance perfusion study: a CE-MARC substudy. J Cardiovasc Magn Reson. 2013;15(1):P214.
    1. Fredholm BB, Irenius E, Kull B. Comparison of the potency of adenosine as an antagonist at human adenosine receptors expressed in Chines hamster ovary cells. Biochem Pharmacol. 2001;61:443–448. doi: 10.1016/S0006-2952(00)00570-0.
    1. Namdar M, Koepfli P, Grathwohl R, Siegrist PT, Klainguti M, Schepis T, Delaloye R, Wyss CA, Fleischmann SP, Gaemperli O, Kaufmann PA. Caffeine decreases exercise-induced myocardial flow reserve. J Am Coll Cardiol. 2006;47:405–410. doi: 10.1016/j.jacc.2005.08.064.
    1. Biaggioni I, Killian TJ, Mosqueda-Garcia R, Robertson RM, Robertson D. Adenosine increases sympatic nerve traffic in humans. Circulation. 1991;83:1668–1675. doi: 10.1161/01.CIR.83.5.1668.
    1. Thames MD, Kinugawa T, Dibner-Dunlap ME. Reflex sympathoexitation by cardiac sympathetic afferents during myocardial ischemia. Role of adenosine. Circulation. 1993;87:1698–1704. doi: 10.1161/01.CIR.87.5.1698.
    1. Rongen GA, Floras JS. Effect of adenosine receptor blockade with caffeine on sympathetic response to handgrip exercise in heart failure. Am J Physiol Heart Circ Physiol. 2001;281:H1312–H1318.
    1. Mishra RK, Dorbala S, Logsetty G, Hassan A, Heinonen T, Schelbert HR, Di Carli MF, RAMPART Investigators Quantitative relation between hemodynamic changes during intravenous adenosine infusion and the magnitude of coronary hyperemia: implications for myocardial perfusion imaging. J Am Coll Cardiol. 2005;45(4):553–558. doi: 10.1016/j.jacc.2004.10.064.
    1. Piechnik SK, Robson MD, Ugander M, Gatehouse PD, Arai AE, Friedrich MG, Neubauer S, Schulz-Menger J, Schelbert EB. Myocardial T1 mapping and extracellular volume quantification: a Society for Cardiovascular Magnetic Resonance (SCMR) and CMR Working Group of the European Society of Cardiology consensus statement. J Cardiovasc Magn Reson. 2013;15:92. doi: 10.1186/1532-429X-15-13.
    1. Hinojar R, Varma N, Child N, Goodman B, Jabbour A, Yu CY, Gebker R, Doltra A, Kelle S, Khan S, Rogers T, Arroyo Ucar E, Cummins C, Carr-White G, Nagel E (2015) T1 mapping in discrimination of hypertrophic phenotypes: hypertensive heart disease and hypertrophic cardiomyopathy. Findings from the International T1 multicenter cardiovascular magentic resonance study. Circ Cardiovasc Imaging 8(12). doi:10.1161/CIRCIMAGING.115.003285
    1. Bull S, White SK, Piechnik SK, Flett AS, Ferreira VM, Loudon M, Francis JM, Karamitsos TD, Prendergast BD, Robson MD, Neubauer S, Moon JC, Myerson SG. Human non-contrast T1 values and correlation with histology in diffuse fibrosis. Heart. 2013;99:932–937. doi: 10.1136/heartjnl-2012-303052.
    1. Karamitsos TD, Piechnik SK, Banypersad SM, Fontana M, Ntusi NB, Ferreira VM, Whelan CJ, Myerson SG, Robson MD, Hawkins PN, Neubauer S, Moon JC. Noncontrast T1 mapping for the diagnosis of cardiac amyloidosis. J Am Coll Cardiol Img. 2013;6:488–497. doi: 10.1016/j.jcmg.2012.11.013.
    1. Sado DM, White SK, Piechnik SK, Banypersad SM, Treibel T, Captur G, Fontana M, Maestrini V, Flett AS, Robson MD, Lachmann RH, Murphy E, Mehta A, Hughes D, Neubauer S, Elliott PM, Moon JC. Identification and assessment of Anderson-Fabry disease by cardiovascular magnetic resonance noncontrast myocardial T1 mapping. Circ Cardiovasc Imaging. 2013;6:392–398. doi: 10.1161/CIRCIMAGING.112.000070.
    1. Liu A, Wijesurendra RS, Francis JM, Robson MD, Neubauer S, Piechnik SK, ferreira VM. Adenosine stress and Rest T1 Mapping can differentiate between ischemic, infarcted, remote, and normal myocardium without the need for gadolinium contrast agents. J Am Coll Cardiol Img. 2016;9:27–36. doi: 10.1016/j.jcmg.2015.08.018.
    1. Lubbers DD, Rijlaarsdam-Hermsen D, Kuijpers D, Kerkhof M, Sijens PE, van Dijkman PRM, Oudkerk M. Performance of adenosine “stress-only” perfusion MRI in patients without a history of myocardial infarction: a clinical outcome study. Int J Cardiovasc Imaging. 2012;28(1):109–115. doi: 10.1007/s10554-010-9775-0.
    1. Child N, Yap ML, Dabir S, Rogers T, Suna G, Sandhu B, Higgins DM, Mayr M, Nagel E, Puntmann VO. T1 values by conservative septal post-processing approach are superior in relating to the interstitial myocardial fibrosis: findings from patients with severe aortic stenosis. J Cardiovasc Magn Reson. 2015;17(S1):49. doi: 10.1186/1532-429X-17-S1-P49.
    1. Bottcher M, Czernin J, Sun KT, Phelps ME, Schelbert HR. Effect of caffeine on myocardiall blood flow at rest and during pharmacological vasodilatation. J Nucl Med. 1995;36:2016–2021.
    1. Di Carli MF, Tobes MC, Mangner T, Levine AB, Muzik O, Chakroborty P, Levine TB. Effects of cardiac sympathetic innervation on coronary blood flow. N Engl J Med. 1997;336:1208–1215. doi: 10.1056/NEJM199704243361703.
    1. Corti R, Binggeli C, Sudano I, Spieker L, Hanseler E, Ruschitzka F, Chaplin WF, Luscher TF, Noll G. Coffee acutely increases sympathetic nerve activity and blood pressure independently of caffeine content. Role of habitual versus nonhabitual drinking. Circulation. 2002;106:2935–2940. doi: 10.1161/01.CIR.0000046228.97025.3A.
    1. Yang JN, Chen JF, Fredholm BB. Physiological roles of A1 and A2a adenosine receptors in regulating heart rate, body temperature, and locomotion as revealed using knockout mice and caffeine. Am J Physiol Heart Circ Physiol. 2009;296:1141–1149. doi: 10.1152/ajpheart.00754.2008.
    1. Le DE, Jayaweera AR, Wei K, Coggins MP, Lindner JR, Kaul S. Changes in myocardial blood volume over a wide range of coronary driving presssures: role of capillaries beyond the autoregulatory range. Heart. 2004;90:1199–1205. doi: 10.1136/hrt.2003.020875.
    1. Jayaweera AR, Wei K, Coggins M, Bin JP, Goodman C, Kaul S. Role of capillaries in determining coronary blood flow reserve: new insights using myocardial contrast echocardiography. Am J Physiol. 1999;277:H2363–H2372.
    1. Kaoukis A, Panagopoulou V, Mojibian HR, Jacoby D. Reverse Takotsubo cardiomyopathy associated with the consumption of an energy drink. Circulation. 2012;125:1584–1585. doi: 10.1161/CIRCULATIONAHA.111.057505.
    1. Zoghbi GJ, Htay T, Aqel R, Blackmon L, Heo J, Iskandrian AE. Effect of caffeine on ischemia detection by adenosine single-photon emission computed tomography perfusion imaging. J Am Coll Cardiol. 2006;47:2296–2302. doi: 10.1016/j.jacc.2005.11.088.
    1. Hage FG, Iskandrian AE. The effect of caffeine on adenosine myocardial perfusion imaging: time to reassess? J Nucl Cardiol. 2015;19:415–419. doi: 10.1007/s12350-012-9519-8.

Source: PubMed

3
Abonnieren