Implementation of family psychosocial risk assessment in pediatric cancer with the Psychosocial Assessment Tool (PAT): study protocol for a cluster-randomized comparative effectiveness trial

Anne E Kazak, Janet A Deatrick, Michele A Scialla, Eric Sandler, Rebecca E Madden, Lamia P Barakat, Anne E Kazak, Janet A Deatrick, Michele A Scialla, Eric Sandler, Rebecca E Madden, Lamia P Barakat

Abstract

Background: Childhood cancer affects and is affected by multiple levels of the social ecology, including social and relational determinants of health (e.g., economic stability, housing, childcare, healthcare access, child and family problems). The 2015 Standards of Psychosocial Care in Pediatric Cancer outline optimal psychosocial care sensitive to these ecological factors, starting with assessment of psychosocial healthcare needs to promote medical and psychosocial outcomes across all children with cancer. To address the first standard of family psychosocial assessment, the Psychosocial Assessment Tool (PAT) is a validated screener ready for broad implementation.

Method: The PAT will be implemented across a national sample of 18 pediatric cancer programs ranging in size (annual new patients) in a mixed methods, comparative effectiveness study, guided by the Interactive Systems Framework for Dissemination and Implementation, comparing two implementation strategies. It is hypothesized that implementation will be more successful at the patient/family, provider, and institutional level when training (strategy I) is combined with implementation expanded resources (strategy II). There are three aims: (1) Refine the two implementation strategies using semi-structured qualitative interviews with 19 stakeholders including parent advocates, providers, pediatric oncology organization representatives, healthcare industry leaders; (2) Compare the two theoretically based and empirically informed strategies to implement the PAT in English and Spanish using a cluster-randomized controlled trial across 18 sites. Stratified by size, sites will be randomized to cohort (3) and strategy (2). Outcomes include adoption and penetration of screening (patient/family), staff job satisfaction/burnout (provider), and cost-effective use of resources consistent with family risk (institution); (3) Based on the results of the trial and feedback from the first and second aim, we will develop and disseminate a web-based PAT Implementation Toolkit.

Discussion: Use of the PAT across children's cancer programs nationally can achieve the assessment standard and inform equitable delivery of psychosocial care matched to family need for all patients.

Trial registration: ClinicalTrials.gov , NCT04446728 , registered 23 June 2020.

Keywords: Families; Implementation; Pediatric cancer; Psychosocial; Risk; Screening.

Conflict of interest statement

The authors declare that they have no competing interests.

Figures

Fig. 1
Fig. 1
Pediatric Psychosocial Preventative Health Model
Fig. 2
Fig. 2
Interactive systems framework and stages of the implementation study
Fig. 3
Fig. 3
Study flow diagram

References

    1. Adler NE, Page AEK, editors. Cancer care for the whole patient: meeting psychosocial health needs. Institute of Medicine. 2008; doi: 10.17226/11993.
    1. National Cancer Policy Forum, Board on Health Care Services, Institute of Medicine, National Academies of Sciences, Engineering and Medicine. Comprehensive cancer care for children and their families: summary of a joint workshop by the Institute of Medicine and the American Cancer Society. The National Academies Press. 2015; doi: 10.17226/21754.
    1. Wiener L, Kazak AE, Noll RB, Patenaude AF, Kupst MJ. Standards for psychosocial care for children with cancer and their families: an introduction to the special issue. Pediatr Blood Cancer. 2015;62-S5:S419-S424.
    1. Kazak AE, Abrams AN, Banks J, Christofferson J, DiDonato S, Grootenhuis MA, et al. Psychosocial assessment as a standard of care in pediatric cancer. Pediatr Blood Cancer. 2015;62(Suppl 5):S426–S459.
    1. Scialla MA, Canter KS, Chen FF, Kolb EA, Sandler E, Wiener L, et al. Implementing the psychosocial standards in pediatric cancer: current staffing and services available. Pediatr Blood Cancer. 2017. 10.1002/pbc.26634.
    1. Selove R, Kroll T, Coppes M, Cheng Y. Psychosocial services in the first 30 days after diagnosis: results of a web-based survey of Children’s Oncology Gorup (COG) member institutions. Pediatr Blood Cancer. 2012;58(3):435–440.
    1. Kazak AE, Hwang WT, Chen FF, Askins MA, Carlson O, Argueta-Ortiz F, et al. Screening for family psychosocial risk in pediatric cancer: validation of the Psychosocial Assessment Tool (PAT) Version 3. J Pediatr Psychol. 2018;43(7):737–748.
    1. Kazak AE, Hwang WT, Chen FF, Askins MA, Carlson O, Argueta-Ortiz F, et al. Validation of the Spanish version of the Psychosocial Assessment Tool (PAT) in pediatric cancer. J Pediatr Psychol. 2018;43(10):1104–1113.
    1. Kazak AE, Schneider S, DiDonato S, Pai AL. Family psychosocial risk screening guided by the Pediatric Preventative Psychosocial Health Model (PPPHM) using the Psychosocial Assessment Tool (PAT) Acta Oncol. 2015;54(5):574–580.
    1. Pierce L, Hocking MC, Schwartz LA, Alderfer MA, Kazak AE, Barakat LP. Caregiver distress and patient health-related quality of life: psychosocial screening during pediatric cancer treatment. Psycho-oncology. 2017;26(10):1555–1561.
    1. Scialla MA, Canter KS, Chen FF, Kolb EA, Sandler E, Wiener L, et al. Delivery of care consistent with the Psychosocial Standards in Pediatric Cancer: current practices in the United States. Pediatr Blood Cancer. 2018. 10.1002/pbc.26869.
    1. Jones B, Currin-Mcculloch J, Pelletier W, Sardi-Brown V, Brown P, Wiener L. Psychsocial standards of care for children with cancer and their families: a national survey of pediatric oncology social workers. Soc Work Health Care. 2018;57(4):221–249.
    1. Kazak AE, Barakat LP, Askins MA, McCafferty M, Lattomus A, Ruppe N, et al. Provider perspectives on the implementation of psychosocial risk screening in pediatric cancer. J Pediatr Psychol. 2017;42(6):700–710.
    1. Kazak AE, Prusak A, McSherry M, Simm S, Beele D, Rourke M, et al. The Psychosocial Assessment Tool (PAT)©: pilot data on a brief screening instrument for identifying high risk families in pediatric oncology. Fam. Syst. Health. 2001;19(3):303–317. doi: 10.1037/h0089454.
    1. Kazak AE, Cant MC, Jensen MM, McSherry M, Rourke MT, Hwang WT, et al. Identifying psychosocial risk indicative of subsequent resource utilization in families of newly diagnosed pediatric oncology patients. J Clin Oncol. 2003;21(17):3220–3225.
    1. Pai AL, Patino-Fernandez AM, McSherry M, Beele D, Alderfer MA, Reilly AT, et al. The Psychosocial Assessment Tool (PAT2.0): psychometric properties of a screener for psychosocial distress in families of children newly-diagnosed with cancer. J Pediatr Psychol. 2008;33(1):50–62.
    1. Kazak AE, Barakat LP, Ditaranto S, Biros D, Hwang WT, Beele D, et al. Screening for psychosocial risk at cancer diagnosis: the Psychosocial Assessment Tool. J Pediatr Hematol Oncol. 2011;33(4):289–294.
    1. Kazak AE, Barakat LP, Hwang WT, Ditaranto S, Biros D, Beele D, et al. Association of psychosocial risk screening in pediatric cancer with psychosocial services provided. Psycho-oncology. 2011;20(7):715–723. doi: 10.1002/pon.1972.
    1. Kazak AE. Pediatric Psychosocial Preventative Health Model (PPPHM): research, practice and collaboration in pediatric family systems medicine. Fam. Syst. Health. 2006;24(4):381–395.
    1. Sint Nicolaas SM, Schepers SA, van den Bergh EMM, de Boer Y, Streng I, van Dijk-Lokkart EM, et al. Match of psychosocial risk and psychosocial care in families of a child with cancer. Pediatr Blood Cancer. 2017. 10.1002/pbc.26687.
    1. Barrera M, Hancock K, Rokeach A, Atenafu E, Cataudella D, Punnett A, et al. Does the use of the revised Psychosocial Assessment Tool (PATrev) result in improved quality of life and reduced psychosocial risk in Canadian families with a child newly diagnosed with cancer? Psycho-oncology. 2014;23(2):165–172.
    1. Gilleland J, Reed-Knight B, Brand S, Griffin A, Wasilewski-Masker K, Meacham L, et al. Assessment of family psychosocial functioning in survivors of pediatric cancer using the PAT2.0. Psycho-oncology. 2013; 22(9):2133-2139.
    1. Karlson CW, Smith ML, Haynes S, Faith MA, Pierce J, Elkin TD, et al. Risk for psychosocial problems in pediatric cancer: impact of socioeconomics. Child Health Care. 2013;42(3):231–247. doi: 10.1080/02739615.2013.816602.
    1. McCarthy MC, Clarke NE, Vance A, Ashley DM, Heath JA, Anderson VA. Measuring psychosocial risk in families caring for a child with cancer: the Psychosocial Assessment Tool (PAT2.0) Pediatr Blood Cancer. 2009;53(1):78–83.
    1. McCarthy MC, DeGraves S, Wakefield CE, Bowden MJ, Marks LV, Williams LK. The association of psychosocial screening and service provision in pediatric oncology: the Psychosocial Assessment Tool (PAT2.0) into clinical practice. Support Care Cancer. 2016;24(7):2945–2952.
    1. McCarthy MC, Hearps SJ, Muscara F, Anderson VA, Burke K, Hearps SJ, et al. Family psychosocial risk screening in infants and older children in the acute pediatric hospital setting using the Psychosocial Assessment Tool. J Pediatr Psychol. 2016;41(7):820–829.
    1. Schepers SA, Sint Nicolaas SM, Maurice-Stam H, Haverman L, Verhaak CM, Grootenhuis MA. Parental distress 6 months after a pediatric cancer diagnosis in relation to family psychosocial risk at diagnosis. Cancer. 2018;124(2):381–390.
    1. Sharkey CM, Schepers SA, Drake S, Pai AL, Mullins LL, Grootenhuis MA. Psychosocial risk profiles among American and Dutch families affected by pediatric cancer. J Pediatr Psychol. 2020;45(4):463–473.
    1. Alderfer MA, Mougianis I, Barakat LP, Beele D, DiTaranto S, Hwang WT, et al. Family psychosocial risk, distress, and service utilization in pediatric cancer: predictive validity of the Psychosocial Assessment Tool. Cancer. 2009;115(Suppl 18):4339–4349.
    1. Barrera M, Alexander S, Atenafu EG, Chung J, Hancock K, Solomon A, et al. Psychosocial screening and mental health in pediatric cancer: a randomized controlled trial. Health Psychol. 2020;39(5):381–390.
    1. Pai ALH, Madan-Swain AM, Chen FF, Hwang WT, Vega G, Carlson O, et al. Screening for family psychosocial risk in pediatric hematopoietic stem cell transplantation with the Psychosocial Assessment Tool. Biol Blood Marrow Transplant. 2019;25(7):1374–81.
    1. Kazak AE, Madan-Swain AM, Pai AL, Canter, K, Carlson O, Vega G et al. Caregiver perspectives on psychosocial care in pediatric hematopoietic stem cell transplantation (HCT). Clin Pract Pediatr Psychol. 2020;8(1):67-78; doi:10.1037%2Fcpp0000278.
    1. Kazak AE, Madan-Swain AM, Canter K, Vega G, Joffe N, Deatrick JA, et al. A psychosocial clinical care pathway for pediatric hematopoietic stem cell transplantation. Pediatr Blood Cancer. 2019;66(10); doi:10.1002/pbc.27889.
    1. Reader SK, Keeler CN, Chen FF, Ruppe NM, Rash-Ellis DL, Wadman JR, et al. Psychosocial screening in sickle cell disease: validation of the Psychosocial Assessment Tool. J Pediatr Psychol. 2020;45(4):423–433.
    1. Kazak AE, Christofferson J, Gutierrez Richards H, Rivero-Conil S, Sandler E. Implementing the Psychosocial Assessment Tool (PAT) in clinical oncology practice. Clin Pract Pediatr Psychol. 2019;7(2):140–150. doi: 10.1037/cpp0000246.
    1. Wandersman A, Duffy J, Flaspohler P, Noonan R, Lubell K, Stillman L, et al. Bridging the gap between prevention research and practice: the Interactive Systems Framework for Dissemination and Implementation. Am J Community Psychol. 2008;41(3-4):171–181.
    1. Powell BJ, Waltz TJ, Chinman MJ, Damschroder LJ, Smith JL, Matthieu MM, et al. A refined compilation of implementation strategies: results from the Expert Recommendations for Implementing Change (ERIC) project. Implement Sci. 2015;10:21. doi: 10.1186/s13012-015-0209-1.
    1. Kazak AE. Families of chronically ill children: a systems and social-ecological model of adaptation and challenge. J Consult Clin Psychol. 1989;57(1):25–30. doi: 10.1037/0022-006X.57.1.25.
    1. Proctor E, Silmere H, Raghavan R, Hovmand P, Aarons G, Bunger A, et al. Outcomes for implementation research: conceptual distinctions, measurement challenges, and research agenda. Adm Policy Ment Health. 2011;38(2):65–76. doi: 10.1007/s10488-010-0319-7.
    1. Patton MQ. Purposeful sampling. In: Mathison S, editor. Encyclopedia of evaluation. Thousand Oaks, CA: Sage; 2005. pp. 343–344.
    1. Bredart A, Marrel A, Abetz-Webb L, Lasch K, Acquadro C. Interviewing to develop Patient Reported Oucome (PRO) measures for clinical research: elicit patients’ experience. Health Qual Life Outcomes. 2014;12:15.
    1. Stepler R, Lopez MH. Ranking the Latino population in the states. 2016.
    1. Karuga J. 10 states with the largest African-American populations. WorldAtlas. 2019; . .
    1. Child Poverty. NCCP. (n.d.). . .
    1. Geerligs L, Rankin NM, Shepherd HL, Butow P. Hospital-based interventions: a systematic review of staff-reported barriers and facilitators to implementation processes. Implement Sci. 2018;13(36); doi:10.1186/s13012-018-0726-9.
    1. Lewis CC, Fischer S, Weiner BJ, Stanick C, Kim M, Martinez RG. Outcomes for implementation science: an enhanced systematic review of instruments using evidence-based rating criteria. Implement Sci. 2015;10(155); doi:10.1186/s13012-015-0342-x.
    1. Weiner BJ, Lewis CC, Stanick C, Powell BJ, Dorsey CN, Clary AS, et al. Psychometric assessment of three newly developed implementation outcome measures. Implement Sci. 2017;12(1):108.
    1. Alexander GC, Lin S, Sayla MA, Wynia MK. Development of a measure of physician engagement in addressing racial and ethnic health care disparities. Health Serv Res. 2008;43(2):773–784.
    1. Chang E, Cohen J, Koethe B, Smith K, Bir A. Measuring job satisfaction among healthcare staff in the United States: a confirmatory factor analysis of the Satisfaction of Employees in Healthcare (SEHC) survey. Int J Qual Health Care. 2017;29(2):262–268.
    1. Maslach C, Jackson SE, Leiter MP. Maslach Burnout Inventory Manual 4th Edition. Mind Garden, Inc: Menlo Park, CA; 2016.
    1. Jobs by Salary Range. . (n.d.). . Accessed 22 Mar 2018.
    1. Association of Child Life Professionals. . (n.d.). Accessed 22 Mar 2018.
    1. Kichler JC, Valenzuela J, Barker D, Noser AE, Brosig CL, Hilliard ME, et al. Society of Pediatric Psychology workforce survey: updated factors related to compensation. J Pediatr Psychol. 2020;45(4):434–444.
    1. Kazak AE, Hocking MC, Ittenbach RF, Meadows AT, Hobbie W, DeRosa BW, et al. A revision of the Intensity of Treatment Rating Scale: classifying the intensity of pediatric cancer treatment. Pediatr Blood Cancer. 2012;59(1):96–99.
    1. Forrest CB, Bevans KB, Tucker C, Riley AW, Ravens-Sieberer U, Gardner W, et al. The Patient-Reported Outcome Measurement Information System (PROMIS ®) for children and youth: application to pediatric psychology. J Pediatr Psychol. 2012;37(6):614–621.
    1. Knafl K, Deatrick J, Gallo A, Holcombe G, Bakitas M, Dixon J, et al. The analysis and interpretation of cognitive interviews for instrument development. Res Nurs Health. 2007;30(2):224–234.
    1. Willis G, Boeije H. Reflections on the Cognitive Interviewing Reporting Framework: efficacy, expectations, and promise for the future. Methodology. 2013;9(3):123–128. doi: 10.1027/1614-2241/a000074.
    1. Hsieh HF, Shannon SE. Three approaches to qualitative content analysis. Qual Health Res. 2005;15(9):1277–1288.
    1. Elo S, Kääriäinen M, Kanste O, Pölkki T, Utriainen K, Kyngäs H. Qualitative content analysis: a focus on trustworthiness. SAGE Open. 2014;4(1):1–10.
    1. Glaser BG. Basics of grounded theory analysis: emergence vs. forcing. Mill Valley, CA: Sociology Press; 1992.
    1. Tong A, Sainsbury P, Craig J. Consolidated criteria for reporting qualitative research (COREQ): a 32-item checklist for interviews and focus groups. Int J Qual Health Care. 2007;19(6):349–357. doi: 10.1093/intqhc/mzm042.
    1. Levitt HM, Bamberg M, Creswell JW, Frost DM, Josselson R, Suárez-Orozco C. Journal article reporting standards for qualitative primary, qualitative meta-analytic, and mixed methods research in psychology: the APA Publications and Communications Board Task Force Report. Am Psychol. 2018;73(1):26–46. doi: 10.1037/amp0000151.
    1. Wu YP, Thompson D, Aroian KJ, McQuaid EL, Deatrick JA. Commentary: writing and evaluating qualitative research reports. J Pediatr Psychol. 2016;41(5):493-505. doi:1093/jpepsy/jsw0321.
    1. Creswell JW. Klassen AC. Smith KC. Best practices for mixed methods research in the health sciences. NIH Office of Behavioral and Social Sciences Research: Plano Clark VL; 2011.
    1. McGraw KO, Wong SP. Forming inferences about some intraclass correlation coefficients. Psychol Methods. 1996;1(1):30–46. 10.1037/1082-989X.1.30.
    1. Forman-Hoffman VL, Middleton JC, McKeeman JL, Stambaugh LF, Christian RB, Gaynes BN, et al. Quality improvement, implementation and dissemination strategies to improve mental health care for children and adolescents: a systematic review. Implement Sci. 2017;12:93.
    1. Hedges LV, Rhoads CH. Correcting an analysis of variance for clustering. Br J Math Stat Psychol. 2011;64(Pt 1):20–37.
    1. Wears RL. Advanced statistics: statistical methods for analyzing cluster and cluster-randomized data. Acad Emerg Med. 2002;9(4):330–341.
    1. Hoyle RH, editor. Structural equation modeling: concepts, issues, and applications. Thousand Oaks: Sage; 1995.
    1. Ullman JB, Bentler PM. Structural equation modeling. In: Weiner IB, editor. Handbook of psychology. John Wiley & Sons, Inc.; 2003.
    1. Byrne BM, Crombie G. Modeling and testing change: an introduction to the latent growth curve model. Understand Stat. 2003;2(3):177–203.
    1. DeLucia C, Pitts SC. Applications of individual growth curve modeling for pediatric psychology research. J Pediatr Psychol. 2005;31(10):1002–1023.
    1. Duncan TE, Duncan SC, Strycker LA. An introduction to latent variable growth curve modeling: concepts, issues, and applications. 2. Mahwah, NJ: Lawrence Erlbaum Associates Publishers; 2006.
    1. Muthen LK, Muthen BO. Mplus user’s guide. 5. Muthen & Muthen: Los Angeles, CA; 2009.
    1. Patrick DL, Burke LB, Gwaltney CJ, Leidy NK, Martin ML, Molsen E, et al. Content validity - establishing and reporting the evidence in newly developed patient-reported outcomes (PRO) instruments for medical product evaluation: ISPOR PRO Good Research Practices Task Force Report: part 2--assessing respondent understanding. Value Health. 2011;14(8):978–988.

Source: PubMed

3
Abonnieren