Protein-bound uremic toxins: new culprits of cardiovascular events in chronic kidney disease patients

Shunsuke Ito, Masayuki Yoshida, Shunsuke Ito, Masayuki Yoshida

Abstract

Chronic kidney disease (CKD) has been considered a major risk factor for cardiovascular diseases. Although great advances have recently been made in the pathophysiology and treatment of cardiovascular diseases, CKD remains a major global health problem. Moreover, the occurrence rates of cardiovascular events among CKD patients increase even in cases in which patients undergo hemodialysis, and the mechanisms underlying the so-called "cardiorenal syndrome" are not clearly understood. Recently, small-molecule uremic toxins have been associated with cardiovascular mortality in CKD and/or dialysis patients. These toxins range from small uncharged solutes to large protein-bound structures. In this review, we focused on protein-bound uremic toxins, such as indoxyl sulfate and p-cresyl sulfate, which are poorly removed by current dialysis techniques. Several studies have demonstrated that protein-bound uremic toxins, especially indoxyl sulfate, induce vascular inflammation, endothelial dysfunction, and vascular calcification, which may explain the relatively poor prognosis of CKD and dialysis patients. The aim of this review is to provide novel insights into the effects of indoxyl sulfate and p-cresyl sulfate on the pathogenesis of atherosclerosis.

Figures

Figure 1
Figure 1
Effects of indoxyl sulfate on leukocyte-endothelial interactions in a mouse model of chronic kidney disease. (A) Representative snapshots from intravital video microscopic analysis of leukocyte adhesion in femoral arteries (vessel walls indicated by dashed lines) of 5/6 nephrectomized mice with (Nx+IS) or without (Nx) indoxyl sulfate treatment. White spots represent fluorescent leukocytes labeled using intravenously injected rhodamine 6G; (B) Quantitative analysis of leukocyte adhesion to femoral arteries. Data are expressed as mean ± SEM (N = 5).
Figure 2
Figure 2
Effects of indoxyl sulfate on tumor necrosis factor-α (TNF-α)-induced leukocyte-endothelial interactions and expression of cell adhesion molecules. (A) Representative phase contrast micrographs showing adhesion of THP-1 cells to 100 pg/mL TNF-α-activated HUVECs with and without indoxyl sulfate (IS+ and IS−, respectively) pretreatment (2.0 mmol/L, 20 h). Arrowheads indicate adhered THP-1 cells (magnification, 200×); (B,C) Adhesion assay (B) and western blot analysis (C) of adhesion molecules in HUVECs treated with various concentrations of IS for 20 h, and then with (+) or without (−) TNF-α (100 pg/mL) for 4 h. Data from the adhesion assay are expressed as mean ± SEM (N = 10). *P < 0.01 vs. TNF (+) IS (−); **P < 0.001 vs. TNF (+) IS (−). The data shown are representative of 3 independent experiments.
Figure 3
Figure 3
Effects of indoxyl sulfate on the vascular endothelium and cardiorenal syndrome. In renal failure conditions, levels of both pro-inflammatory cytokines and uremic toxins, such as indoxyl sulfate, are up-regulated. Indoxyl sulfate enhances cytokine-induced NF-κB and JNK signaling through oxidative stress-dependent pathways, resulting in increased expression of adhesion molecules. Indoxyl sulfate alone also mediates the release of reactive oxygen species (ROS) through activation of NAD(P)H oxidase and reduction in glutathione levels, leading to endothelial dysfunction, inhibition of proliferation, delayed wound healing, and release of tissue factor. These indoxyl sulfate-mediated toxic effects may lead to atherosclerosis resulting in a CVD, such as coronary artery disease.

References

    1. Foley R.N., Parfrey P.S., Sarnak M.J. Epidemiology of cardiovascular disease in chronic renal disease. J. Am. Soc. Nephrol. 1998;9:S16–S23.
    1. Stack A.G., Bloembergen W.E. Prevalence and clinical correlates of coronary artery disease among new dialysis patients in the united states: A cross-sectional study. J. Am. Soc. Nephrol. 2001;12:1516–1523.
    1. Go A.S., Chertow G.M., Fan D., McCulloch C.E., Hsu C.Y. Chronic kidney disease and the risks of death, cardiovascular events, and hospitalization. N. Engl. J. Med. 2004;351:1296–1305. doi: 10.1056/NEJMoa041031.
    1. Keith D.S., Nichols G.A., Gullion C.M., Brown J.B., Smith D.H. Longitudinal follow-up and outcomes among a population with chronic kidney disease in a large managed care organization. Arch. Intern. Med. 2004;164:659–663. doi: 10.1001/archinte.164.6.659.
    1. Kidney Disease Outcomes Quality Initiative (K/DOQI) K/DOQI clinical practice guidelines on hypertension and antihypertensive agents in chronic kidney disease. Am. J. Kidney Dis. 2004;43:S1–S290.
    1. Ronco C., Haapio M., House A.A., Anavekar N., Bellomo R. Cardiorenal syndrome. J. Am. Coll. Cardiol. 2008;52:1527–1539. doi: 10.1016/j.jacc.2008.07.051.
    1. Duranton F., Cohen G., de Smet R., Rodriguez M., Jankowski J., Vanholder R., Argiles A., European Uremic Toxin Work Group Normal and pathologic concentrations of uremic toxins. J. Am. Soc. Nephrol. 2012;23:1258–1270. doi: 10.1681/ASN.2011121175.
    1. Vanholder R., Schepers E., Pletinck A., Neirynck N., Glorieux G. An update on protein-bound uremic retention solutes. J. Ren Nutr. 2012;22:90–94. doi: 10.1053/j.jrn.2011.10.026.
    1. Lekawanvijit S., Kompa A.R., Wang B.H., Kelly D.J., Krum H. Cardiorenal syndrome: The emerging role of protein-bound uremic toxins. Circ. Res. 2012;111:1470–1483. doi: 10.1161/CIRCRESAHA.112.278457.
    1. Niwa T., Ise M. Indoxyl sulfate, a circulating uremic toxin, stimulates the progression of glomerular sclerosis. J. Lab. Clin. Med. 1994;124:96–104.
    1. Barreto F.C., Barreto D.V., Liabeuf S., Meert N., Glorieux G., Temmar M., Choukroun G., Vanholder R., Massy Z.A., European Uremic Toxin Work Group (EUTox) Serum indoxyl sulfate is associated with vascular disease and mortality in chronic kidney disease patients. Clin. J. Am. Soc. Nephrol. 2009;4:1551–1558. doi: 10.2215/CJN.03980609.
    1. Liabeuf S., Drueke T.B., Massy Z.A. Protein-bound uremic toxins: New insight from clinical studies. Toxins. 2011;3:911–919. doi: 10.3390/toxins3070911.
    1. Itoh Y., Ezawa A., Kikuchi K., Tsuruta Y., Niwa T. Protein-bound uremic toxins in hemodialysis patients measured by liquid chromatography/tandem mass spectrometry and their effects on endothelial ros production. Anal. Bioanal. Chem. 2012;403:1841–1850. doi: 10.1007/s00216-012-5929-3.
    1. Meijers B.K., Claes K., Bammens B., de Loor H., Viaene L., Verbeke K., Kuypers D., Vanrenterghem Y., Evenepoel P. P-cresol and cardiovascular risk in mild-to-moderate kidney disease. Clin. J. Am. Soc. Nephrol. 2010;5:1182–1189. doi: 10.2215/CJN.07971109.
    1. Meijers B.K., Bammens B., de Moor B., Verbeke K., Vanrenterghem Y., Evenepoel P. Free p-cresol is associated with cardiovascular disease in hemodialysis patients. Kidney Int. 2008;73:1174–1180. doi: 10.1038/ki.2008.31.
    1. Bammens B., Evenepoel P., Keuleers H., Verbeke K., Vanrenterghem Y. Free serum concentrations of the protein-bound retention solute p-cresol predict mortality in hemodialysis patients. Kidney Int. 2006;69:1081–1087. doi: 10.1038/sj.ki.5000115.
    1. Liabeuf S., Glorieux G., Lenglet A., Diouf M., Schepers E., Desjardins L., Choukroun G., Vanholder R., Massy Z.A., European Uremic Toxin (EUTox) Work Group Does p-cresylglucuronide have the same impact on mortality as other protein-bound uremic toxins? PLoS ONE. 2013;8:e67168.
    1. Meert N., Schepers E., Glorieux G., van Landschoot M., Goeman J.L., Waterloos M.A., Dhondt A., van der Eycken J., Vanholder R. Novel method for simultaneous determination of p-cresylsulphate and p-cresylglucuronide: Clinical data and pathophysiological implications. Nephrol. Dial. Transplant. 2012;27:2388–2396. doi: 10.1093/ndt/gfr672.
    1. O'Hare A., Johansen K. Lower-extremity peripheral arterial disease among patients with end-stage renal disease. J. Am. Soc. Nephrol. 2001;12:2838–2847.
    1. Amann K., Gross M.L., Ritz E. Pathophysiology underlying accelerated atherogenesis in renal disease: Closing in on the target. J. Am. Soc. Nephrol. 2004;15:1664–1666. doi: 10.1097/01.ASN.0000128365.76153.5B.
    1. Ross R. Atherosclerosis—An inflammatory disease. N. Engl. J. Med. 1999;340:115–126. doi: 10.1056/NEJM199901143400207.
    1. Jofre R., Rodriguez-Benitez P., Lopez-Gomez J.M., Perez-Garcia R. Inflammatory syndrome in patients on hemodialysis. J. Am. Soc. Nephrol. 2006;17:S274–S280. doi: 10.1681/ASN.2006080926.
    1. Vaziri N.D., Oveisi F., Ding Y. Role of increased oxygen free radical activity in the pathogenesis of uremic hypertension. Kidney Int. 1998;53:1748–1754. doi: 10.1046/j.1523-1755.1998.00947.x.
    1. Vanholder R., de Smet R. Pathophysiologic effects of uremic retention solutes. J. Am. Soc. Nephrol. 1999;10:1815–1823.
    1. Tumur Z., Shimizu H., Enomoto A., Miyazaki H., Niwa T. Indoxyl sulfate upregulates expression of icam-1 and mcp-1 by oxidative stress-induced nf-kappab activation. Am. J. Nephrol. 2010;31:435–441. doi: 10.1159/000299798.
    1. Ito S., Osaka M., Higuchi Y., Nishijima F., Ishii H., Yoshida M. Indoxyl sulfate induces leukocyte-endothelial interactions through up-regulation of e-selectin. J. Biol. Chem. 2010;285:38869–38875.
    1. Pletinck A., Glorieux G., Schepers E., Cohen G., Gondouin B., van Landschoot M., Eloot S., Rops A., van de Voorde J., de Vriese A., et al. Protein-bound uremic toxins stimulate crosstalk between leukocytes and vessel wall. J. Am. Soc. Nephrol. 2013;24:1981–1994. doi: 10.1681/ASN.2012030281.
    1. Pecoits-Filho R., Barany P., Lindholm B., Heimburger O., Stenvinkel P. Interleukin-6 is an independent predictor of mortality in patients starting dialysis treatment. Nephrol. Dial. Transplant. 2002;17:1684–1688. doi: 10.1093/ndt/17.9.1684.
    1. Schroeder J.C., Dinatale B.C., Murray I.A., Flaveny C.A., Liu Q., Laurenzana E.M., Lin J.M., Strom S.C., Omiecinski C.J., Amin S., et al. The uremic toxin 3-indoxyl sulfate is a potent endogenous agonist for the human aryl hydrocarbon receptor. Biochemistry. 2010;49:393–400. doi: 10.1021/bi901786x.
    1. Watanabe I., Tatebe J., Namba S., Koizumi M., Yamazaki J., Morita T. Activation of aryl hydrocarbon receptor mediates indoxyl sulfate-induced monocyte chemoattractant protein-1 expression in human umbilical vein endothelial cells. Circ. J. 2013;77:224–230. doi: 10.1253/circj.CJ-12-0647.
    1. Steffel J., Luscher T.F., Tanner F.C. Tissue factor in cardiovascular diseases: Molecular mechanisms and clinical implications. Circulation. 2006;113:722–731. doi: 10.1161/CIRCULATIONAHA.105.567297.
    1. Gondouin B., Cerini C., Dou L., Sallée M., Duval-Sabatier A., UGent A.P., Calaf R., Lacroix R., Jourde-Chiche N., Poitevin S., et al. Indolic uremic solutes increase tissue factor production in endothelial cells by the aryl hydrocarbon receptor pathway. Kidney Int. 2013;84:733–744. doi: 10.1038/ki.2013.133.
    1. Adelibieke Y., Shimizu H., Muteliefu G., Bolati D., Niwa T. Indoxyl sulfate induces endothelial cell senescence by increasing reactive oxygen species production and p53 activity. J. Ren. Nutr. 2012;22:86–89. doi: 10.1053/j.jrn.2011.10.027.
    1. Peng Y.S., Lin Y.T., Chen Y., Hung K.Y., Wang S.M. Effects of indoxyl sulfate on adherens junctions of endothelial cells and the underlying signaling mechanism. J. Cell. Biochem. 2012;113:1034–1043. doi: 10.1002/jcb.23435.
    1. Ryu J.H., Kim S.J. Clopidogrel effectively suppresses endothelial microparticle generation induced by indoxyl sulfate via inhibition of the p38 mitogen-activated protein kinase pathway. Blood Purif. 2011;32:186–194. doi: 10.1159/000326297.
    1. Meijers B.K., van Kerckhoven S., Verbeke K., Dehaen W., Vanrenterghem Y., Hoylaerts M.F., Evenepoel P. The uremic retention solute p-cresyl sulfate and markers of endothelial damage. Am. J. Kidney Dis. 2009;54:891–901. doi: 10.1053/j.ajkd.2009.04.022.
    1. Himmelfarb J., Stenvinkel P., Ikizler T.A., Hakim R.M. The elephant in uremia: Oxidant stress as a unifying concept of cardiovascular disease in uremia. Kidney Int. 2002;62:1524–1538. doi: 10.1046/j.1523-1755.2002.00600.x.
    1. Vaziri N.D., Dicus M., Ho N.D., Boroujerdi-Rad L., Sindhu R.K. Oxidative stress and dysregulation of superoxide dismutase and nadph oxidase in renal insufficiency. Kidney Int. 2003;63:179–185. doi: 10.1046/j.1523-1755.2003.00702.x.
    1. Oberg B.P., McMenamin E., Lucas F.L., McMonagle E., Morrow J., Ikizler T.A., Himmelfarb J. Increased prevalence of oxidant stress and inflammation in patients with moderate to severe chronic kidney disease. Kidney Int. 2004;65:1009–1016. doi: 10.1111/j.1523-1755.2004.00465.x.
    1. Fujii H., Nakai K., Fukagawa M. Role of oxidative stress and indoxyl sulfate in progression of cardiovascular disease in chronic kidney disease. Ther. Apher. Dial. 2011;15:125–128. doi: 10.1111/j.1744-9987.2010.00883.x.
    1. Adesso S., Popolo A., Bianco G., Sorrentino R., Pinto A., Autore G., Marzocco S. The uremic toxin indoxyl sulphate enhances macrophage response to lps. PLoS One. 2013;8:e76778.
    1. Dou L., Jourde-Chiche N., Faure V., Cerini C., Berland Y., Dignat-George F., Brunet P. The uremic solute indoxyl sulfate induces oxidative stress in endothelial cells. J. Thromb. Haemost. 2007;5:1302–1308. doi: 10.1111/j.1538-7836.2007.02540.x.
    1. Muteliefu G., Enomoto A., Niwa T. Indoxyl sulfate promotes proliferation of human aortic smooth muscle cells by inducing oxidative stress. J. Ren. Nutr. 2009;19:29–32. doi: 10.1053/j.jrn.2008.10.014.
    1. Shimizu H., Yisireyili M., Higashiyama Y., Nishijima F., Niwa T. Indoxyl sulfate upregulates renal expression of icam-1 via production of ros and activation of nf-kappab and p53 in proximal tubular cells. Life Sci. 2013;92:143–148. doi: 10.1016/j.lfs.2012.11.012.
    1. Fujii H., Nishijima F., Goto S., Sugano M., Yamato H., Kitazawa R., Kitazawa S., Fukagawa M. Oral charcoal adsorbent (ast-120) prevents progression of cardiac damage in chronic kidney disease through suppression of oxidative stress. Nephrol. Dial. Transplant. 2009;24:2089–2095. doi: 10.1093/ndt/gfp007.
    1. Ito S., Higuchi Y., Yagi Y., Nishijima F., Yamato H., Ishii H., Osaka M., Yoshida M. Reduction of indoxyl sulfate by ast-120 attenuates monocyte inflammation related to chronic kidney disease. J. Leukoc. Biol. 2013;93:837–845. doi: 10.1189/jlb.0112023.
    1. Watanabe H., Miyamoto Y., Honda D., Tanaka H., Wu Q., Endo M., Noguchi T., Kadowaki D., Ishima Y., Kotani S., et al. P-cresyl sulfate causes renal tubular cell damage by inducing oxidative stress by activation of nadph oxidase. Kidney Int. 2013;83:582–592. doi: 10.1038/ki.2012.448.
    1. Anderson T.J. Nitric oxide, atherosclerosis and the clinical relevance of endothelial dysfunction. Heart Fail. Rev. 2003;8:71–86. doi: 10.1023/A:1022199021949.
    1. Namikoshi T., Tomita N., Satoh M., Sakuta T., Kuwabara A., Kobayashi S., Higuchi Y., Nishijima F., Kashihara N. Oral adsorbent ast-120 ameliorates endothelial dysfunction independent of renal function in rats with subtotal nephrectomy. Hypertens. Res. 2009;32:194–200. doi: 10.1038/hr.2008.29.
    1. Yu M., Kim Y.J., Kang D.H. Indoxyl sulfate-induced endothelial dysfunction in patients with chronic kidney disease via an induction of oxidative stress. Clin. J. Am. Soc. Nephrol. 2011;6:30–39. doi: 10.2215/CJN.05340610.
    1. Hwang Y.J., Yun M.O., Jeong K.T., Park J.H. Uremic toxin indoxyl 3-sulfate regulates the differentiation of th2 but not of th1 cells to lessen allergic asthma. Toxicol. Lett. 2014;225:130–138. doi: 10.1016/j.toxlet.2013.11.027.
    1. Hwang S.J., Hwang Y.J., Yun M.O., Kim J.H., Oh G.S., Park J.H. Indoxyl 3-sulfate stimulates th17 differentiation enhancing phosphorylation of c-src and stat3 to worsen experimental autoimmune encephalomyelitis. Toxicol. Lett. 2013;220:109–117. doi: 10.1016/j.toxlet.2013.04.016.
    1. Ross R. Cell biology of atherosclerosis. Annu. Rev. Physiol. 1995;57:791–804. doi: 10.1146/annurev.ph.57.030195.004043.
    1. Yamamoto H., Tsuruoka S., Ioka T., Ando H., Ito C., Akimoto T., Fujimura A., Asano Y., Kusano E. Indoxyl sulfate stimulates proliferation of rat vascular smooth muscle cells. Kidney Int. 2006;69:1780–1785. doi: 10.1038/sj.ki.5000340.
    1. Shimizu H., Hirose Y., Nishijima F., Tsubakihara Y., Miyazaki H. Ros and pdgf-beta [corrected] receptors are critically involved in indoxyl sulfate actions that promote vascular smooth muscle cell proliferation and migration. Am. J. Physiol. Cell Physiol. 2009;297:C389–C396. doi: 10.1152/ajpcell.00206.2009.
    1. Moe S.M., Chen N.X. Mechanisms of vascular calcification in chronic kidney disease. J. Am. Soc. Nephrol. 2008;19:213–216. doi: 10.1681/ASN.2007080854.
    1. Adijiang A., Goto S., Uramoto S., Nishijima F., Niwa T. Indoxyl sulphate promotes aortic calcification with expression of osteoblast-specific proteins in hypertensive rats. Nephrol. Dial. Transplant. 2008;23:1892–1901. doi: 10.1093/ndt/gfm861.
    1. Muteliefu G., Enomoto A., Jiang P., Takahashi M., Niwa T. Indoxyl sulphate induces oxidative stress and the expression of osteoblast-specific proteins in vascular smooth muscle cells. Nephrol. Dial. Transplant. 2009;24:2051–2058. doi: 10.1093/ndt/gfn757.
    1. Sun C.Y., Chang S.C., Wu M.S. Uremic toxins induce kidney fibrosis by activating intrarenal renin-angiotensin-aldosterone system associated epithelial-to-mesenchymal transition. PLoS One. 2012;7:e34026.
    1. Bolati D., Shimizu H., Higashiyama Y., Nishijima F., Niwa T. Indoxyl sulfate induces epithelial-to-mesenchymal transition in rat kidneys and human proximal tubular cells. Am. J. Nephrol. 2011;34:318–323. doi: 10.1159/000330852.
    1. Bolati D., Shimizu H., Niwa T. Ast-120 ameliorates epithelial-to-mesenchymal transition and interstitial fibrosis in the kidneys of chronic kidney disease rats. J. Ren. Nutr. 2012;22:176–180. doi: 10.1053/j.jrn.2011.10.015.
    1. Luo F.J., Patel K.P., Marquez I.O., Plummer N.S., Hostetter T.H., Meyer T.W. Effect of increasing dialyzer mass transfer area coefficient and dialysate flow on clearance of protein-bound solutes: A pilot crossover trial. Am. J. Kidney Dis. 2009;53:1042–1049. doi: 10.1053/j.ajkd.2009.01.265.
    1. Meyer T.W., Leeper E.C., Bartlett D.W., Depner T.A., Lit Y.Z., Robertson C.R., Hostetter T.H. Increasing dialysate flow and dialyzer mass transfer area coefficient to increase the clearance of protein-bound solutes. J. Am. Soc. Nephrol. 2004;15:1927–1935. doi: 10.1097/01.ASN.0000131521.62256.F0.
    1. Meyer T.W., Peattie J.W., Miller J.D., Dinh D.C., Recht N.S., Walther J.L., Hostetter T.H. Increasing the clearance of protein-bound solutes by addition of a sorbent to the dialysate. J. Am. Soc. Nephrol. 2007;18:868–874. doi: 10.1681/ASN.2006080863.
    1. Niwa T., Tsukushi S., Ise M., Miyazaki T., Tsubakihara Y., Owada A., Shiigai T. Indoxyl sulfate and progression of renal failure: Effects of a low-protein diet and oral sorbent on indoxyl sulfate production in uremic rats and undialyzed uremic patients. Miner. Electrolyte Metab. 1997;23:179–184.
    1. Menon V., Kopple J.D., Wang X., Beck G.J., Collins A.J., Kusek J.W., Greene T., Levey A.S., Sarnak M.J. Effect of a very low-protein diet on outcomes: Long-term follow-up of the modification of diet in renal disease (mdrd) study. Am. J. Kidney Dis. 2009;53:208–217. doi: 10.1053/j.ajkd.2008.08.009.
    1. Birkett A., Muir J., Phillips J., Jones G., O’Dea K. Resistant starch lowers fecal concentrations of ammonia and phenols in humans. Am. J. Clin. Nutr. 1996;63:766–772.
    1. Bliss D.Z., Stein T.P., Schleifer C.R., Settle R.G. Supplementation with gum arabic fiber increases fecal nitrogen excretion and lowers serum urea nitrogen concentration in chronic renal failure patients consuming a low-protein diet. Am. J. Clin. Nutr. 1996;63:392–398.
    1. De Preter V., Coopmans T., Rutgeerts P., Verbeke K. Influence of long-term administration of lactulose and saccharomyces boulardii on the colonic generation of phenolic compounds in healthy human subjects. J. Am. Coll. Nutr. 2006;25:541–549. doi: 10.1080/07315724.2006.10719570.
    1. De Preter V., Vanhoutte T., Huys G., Swings J., de Vuyst L., Rutgeerts P., Verbeke K. Effects of lactobacillus casei shirota, bifidobacterium breve, and oligofructose-enriched inulin on colonic nitrogen-protein metabolism in healthy humans. Am. J. Physiol. Gastrointest. Liver Physiol. 2007;292:G358–G368.
    1. Ranganathan N., Patel B.G., Ranganathan P., Marczely J., Dheer R., Pechenyak B., Dunn S.R., Verstraete W., Decroos K., Mehta R., et al. In vitro and in vivo assessment of intraintestinal bacteriotherapy in chronic kidney disease. ASAIO J. 2006;52:70–79. doi: 10.1097/01.mat.0000191345.45735.00.
    1. Taki K., Takayama F., Niwa T. Beneficial effects of bifidobacteria in a gastroresistant seamless capsule on hyperhomocysteinemia in hemodialysis patients. J. Ren. Nutr. 2005;15:77–80. doi: 10.1053/j.jrn.2004.09.028.
    1. Shibahara H., Shibahara N. Cardiorenal protective effect of the oral uremic toxin absorbent ast-120 in chronic heart disease patients with moderate ckd. J. Nephrol. 2010;23:535–540.
    1. Owada S., Maeba T., Sugano Y., Hirayama A., Ueda A., Nagase S., Goto S., Nishijima F., Bannai K., Yamato H. Spherical carbon adsorbent (ast-120) protects deterioration of renal function in chronic kidney disease rats through inhibition of reactive oxygen species production from mitochondria and reduction of serum lipid peroxidation. Nephron Exp. Nephrol. 2010;115:e101–e111. doi: 10.1159/000313491.
    1. Nakamura T., Sato E., Fujiwara N., Kawagoe Y., Suzuki T., Ueda Y., Yamagishi S. Oral adsorbent ast-120 ameliorates tubular injury in chronic renal failure patients by reducing proteinuria and oxidative stress generation. Metabolism. 2011;60:260–264. doi: 10.1016/j.metabol.2010.01.023.
    1. Maeda K., Hamada C., Hayashi T., Shou I., Wakabayashi M., Fukui M., Horikoshi S., Tomino Y. Long-term effects of the oral adsorbent, ast-120, in patients with chronic renal failure. J. Int. Med. Res. 2009;37:205–213. doi: 10.1177/147323000903700125.
    1. Konishi K., Nakano S., Tsuda S., Nakagawa A., Kigoshi T., Koya D. Ast-120 (kremezin) initiated in early stage chronic kidney disease stunts the progression of renal dysfunction in type 2 diabetic subjects. Diabetes Res. Clin. Pract. 2008;81:310–315. doi: 10.1016/j.diabres.2008.04.024.
    1. Ueda H., Shibahara N., Takagi S., Inoue T., Katsuoka Y. Ast-120, an oral adsorbent, delays the initiation of dialysis in patients with chronic kidney diseases. Ther. Apher. Dial. 2007;11:189–195. doi: 10.1111/j.1744-9987.2007.00430.x.
    1. Akizawa T., Asano Y., Morita S., Wakita T., Onishi Y., Fukuhara S., Gejyo F., Matsuo S., Yorioka N., Kurokawa K., et al. Effect of a carbonaceous oral adsorbent on the progression of ckd: A multicenter, randomized, controlled trial. Am. J. Kidney Dis. 2009;54:459–467. doi: 10.1053/j.ajkd.2009.05.011.
    1. Yamamoto S., Zuo Y., Ma J., Yancey P.G., Hunley T.E., Motojima M., Fogo A.B., Linton M.F., Fazio S., Ichikawa I., et al. Oral activated charcoal adsorbent (ast-120) ameliorates extent and instability of atherosclerosis accelerated by kidney disease in apolipoprotein e-deficient mice. Nephrol. Dial. Transplant. 2011;26:2491–2497. doi: 10.1093/ndt/gfq759.
    1. Nakamura T., Kawagoe Y., Matsuda T., Ueda Y., Shimada N., Ebihara I., Koide H. Oral adsorbent ast-120 decreases carotid intima-media thickness and arterial stiffness in patients with chronic renal failure. Kidney Blood Press. Res. 2004;27:121–126. doi: 10.1159/000077536.

Source: PubMed

3
Abonnieren