Investigation of Content, Stoichiometry and Transfer of miRNA from Human Neural Stem Cell Line Derived Exosomes

Lara Stevanato, Lavaniya Thanabalasundaram, Nickolai Vysokov, John D Sinden, Lara Stevanato, Lavaniya Thanabalasundaram, Nickolai Vysokov, John D Sinden

Abstract

Exosomes are small (30-100 nm) membrane vesicles secreted by a variety of cell types and only recently have emerged as a new avenue for cell-to-cell communication. They are natural shuttles of RNA and protein cargo, making them attractive as potential therapeutic delivery vehicles. MicroRNAs (miRNAs) are short non-coding RNAs which regulate biological processes and can be found in exosomes. Here we characterized the miRNA contents of exosomes derived from human neural stem cells (hNSCs). Our investigated hNSC line is a clonal, conditionally immortalized cell line, compliant with good manufacturing practice (GMP), and in clinical trials for stroke and critical limb ischemia in the UK (clinicaltrials.gov: NCT01151124, NCT02117635, and NCT01916369). By using next generation sequencing (NGS) technology we identified the presence of a variety of miRNAs in both exosomal and cellular preparations. Many of these miRNAs were enriched in exosomes indicating that cells specifically sort them for extracellular release. Although exosomes have been proven to contain miRNAs, the copy number quantification per exosome of a given miRNA remains unclear. Herein we quantified by real-time PCR a highly shuttled exosomal miRNA subtype (hsa-miR-1246) in order to assess its stoichiometry per exosome. Furthermore, we utilized an in vitro system to confirm its functional transfer by measuring the reduction in luciferase expression using a 3' untranslated region dual luciferase reporter assay. In summary, NGS analysis allowed the identification of a unique set of hNSC derived exosomal miRNAs. Stoichiometry and functional transfer analysis of one of the most abundant identified miRNA, hsa-miR-1246, were measured to support biological relevance of exosomal miRNA delivery.

Conflict of interest statement

Competing Interests: LS, LT and JDS are employees, stock and/or stock option holders in ReNeuron Ltd or its parent company. Their commercial affiliation with ReNeuron does not alter their adherence to PLOS ONE policies on sharing data and materials.

Figures

Fig 1. The characterization of exosomes derived…
Fig 1. The characterization of exosomes derived from hNSCs.
Size distribution of exosomes analyzed with the NTA (A) and qNano (B), representative traces. In agreement with exosome sizes, isolated exosomes had a mode of approximately 100 nm. (C) Molecular characterization of exosomes and producer hNSCs by Western blotting. Protein extracts from hNSCs and exosomes were assessed using antibodies against exosomal protein markers (CD81 and CD61), and hNSC protein marker (MYC).
Fig 2. MiRNA next generation sequencing.
Fig 2. MiRNA next generation sequencing.
Cellular (A) and exosomal (B) total RNAs were processed by an Agilent 2100 Bioanalyzer. The corresponding virtual gel images generated by the software are depicted as electropherograms. (C) Representative diagram of differential miRNA distribution in exosomes compared to hNSC producers. MiRNA types preferentially released in exosomes are presented in red or retained within the hNSCs in blue, data expressed as log2 ratio of exosomal/cellular miRNAs normalized read counts. Pie chart representation of the distribution of small RNA categories in hNSC (D) and exosome (E) samples.
Fig 3. Absolute quantification of selected miRNA.
Fig 3. Absolute quantification of selected miRNA.
(A) Example of standard curve obtained for miRNA quantification. MiRNA mimic was diluted to a concentration range of 3.01×1012–3.01×107 copies per well. Each point plotted is an average of triplicate fluorescence values for each standard concentration measured. (B) Diagram showing the quantification of hsa-miR-1246 copy number per hNSC and per exosome (EXO). Exosome particle quantification was performed using two independent methods, NTA and qNano; cell number quantification was performed by hemocytometer analysis. The error bars represent ± SEM.
Fig 4. Functional transfer assessment of exosomal…
Fig 4. Functional transfer assessment of exosomal miRNA.
(A) In vitro assay validation of miR-1246/ 3’UTR-FAM53C mRNA binding was evaluated by measuring the relative luciferase reduction activity caused by the co-transfection of HeLa cells with the dual luciferase reporter plasmid and a range of dilution of hsa-miR-1246. Data were expressed as percent of control (scrambled miRNA) transfections, n = 6. (B) Biological functional transfer assessment of exosomal hsa-miR-1246 cargo. HeLa cells were pre-treated with purified exosomes and transfected with FAM53C 3’UTR dual luciferase plasmid. Relative reduction in luciferase activity in hsa-miR-1246 mimic and exosome treated samples was expressed as percent of control (scrambled miRNA) transfections, n = 6. The error bars represent ± SEM; *** p<0.001. (C) Western blot analysis of FAM53C in untreated (control), scrambled miRNA, hsa-miR-1246 mimic and exosome treated HeLa. FAM53C expression levels were normalised to α-tubulin following quantification by densitometry (ImageJ) and presented as relative ratio to the control sample.

References

    1. Raposo G, Nijman HW, Stoorvogel W, Liejendekker R, Harding CV, Melief CJ, et al. B lymphocytes secrete antigen-presenting vesicles. The Journal of experimental medicine. 1996;183(3):1161–72.
    1. Thery C, Amigorena S, Raposo G, Clayton A. Isolation and characterization of exosomes from cell culture supernatants and biological fluids. Current protocols in cell biology / editorial board, Bonifacino Juan S [et al.]. 2006;Chapter 3:Unit 3 22 10.1002/0471143030.cb0322s30 .
    1. Lotvall J, Valadi H. Cell to cell signalling via exosomes through esRNA. Cell adhesion & migration. 2007;1(3):156–8.
    1. Valadi H, Ekstrom K, Bossios A, Sjostrand M, Lee JJ, Lotvall JO. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nature cell biology. 2007;9(6):654–9. 10.1038/ncb1596 .
    1. Stevanato L, Sinden JD. The effects of microRNAs on human neural stem cell differentiation in two- and three-dimensional cultures. Stem cell research & therapy. 2014;5(2):49 10.1186/scrt437
    1. Enright AJ, John B, Gaul U, Tuschl T, Sander C, Marks DS. MicroRNA targets in Drosophila. Genome biology. 2003;5(1):R1 10.1186/gb-2003-5-1-r1
    1. Krek A, Grun D, Poy MN, Wolf R, Rosenberg L, Epstein EJ, et al. Combinatorial microRNA target predictions. Nature genetics. 2005;37(5):495–500. 10.1038/ng1536 .
    1. Bang C, Batkai S, Dangwal S, Gupta SK, Foinquinos A, Holzmann A, et al. Cardiac fibroblast-derived microRNA passenger strand-enriched exosomes mediate cardiomyocyte hypertrophy. The Journal of clinical investigation. 2014;124(5):2136–46. 10.1172/JCI70577
    1. Gray WD, French KM, Ghosh-Choudhary S, Maxwell JT, Brown ME, Platt MO, et al. Identification of therapeutic covariant microRNA clusters in hypoxia-treated cardiac progenitor cell exosomes using systems biology. Circulation research. 2015;116(2):255–63. 10.1161/CIRCRESAHA.116.304360
    1. Chevillet JR, Kang Q, Ruf IK, Briggs HA, Vojtech LN, Hughes SM, et al. Quantitative and stoichiometric analysis of the microRNA content of exosomes. Proceedings of the National Academy of Sciences of the United States of America. 2014;111(41):14888–93. 10.1073/pnas.1408301111
    1. Sverdlov ED. Amedeo Avogadro's cry: what is 1 microg of exosomes? BioEssays: news and reviews in molecular, cellular and developmental biology. 2012;34(10):873–5. 10.1002/bies.201200045 .
    1. Dragovic RA, Gardiner C, Brooks AS, Tannetta DS, Ferguson DJ, Hole P, et al. Sizing and phenotyping of cellular vesicles using Nanoparticle Tracking Analysis. Nanomedicine: nanotechnology, biology, and medicine. 2011;7(6):780–8. 10.1016/j.nano.2011.04.003
    1. Escola JM, Kleijmeer MJ, Stoorvogel W, Griffith JM, Yoshie O, Geuze HJ. Selective enrichment of tetraspan proteins on the internal vesicles of multivesicular endosomes and on exosomes secreted by human B-lymphocytes. The Journal of biological chemistry. 1998;273(32):20121–7. .
    1. Filipe V, Hawe A, Jiskoot W. Critical evaluation of Nanoparticle Tracking Analysis (NTA) by NanoSight for the measurement of nanoparticles and protein aggregates. Pharmaceutical research. 2010;27(5):796–810. 10.1007/s11095-010-0073-2
    1. Nolte-'t Hoen EN, Buermans HP, Waasdorp M, Stoorvogel W, Wauben MH, t Hoen PA. Deep sequencing of RNA from immune cell-derived vesicles uncovers the selective incorporation of small non-coding RNA biotypes with potential regulatory functions. Nucleic acids research. 2012;40(18):9272–85. 10.1093/nar/gks658
    1. Cheng L, Sun X, Scicluna BJ, Coleman BM, Hill AF. Characterization and deep sequencing analysis of exosomal and non-exosomal miRNA in human urine. Kidney international. 2014;86(2):433–44. 10.1038/ki.2013.502 .
    1. Eminaga S, Christodoulou DC, Vigneault F, Church GM, Seidman JG. Quantification of microRNA expression with next-generation sequencing. Current protocols in molecular biology / edited by Ausubel Frederick M [et al.]. 2013;Chapter 4:Unit 4 17 10.1002/0471142727.mb0417s103
    1. Tam S, de Borja R, Tsao MS, McPherson JD. Robust global microRNA expression profiling using next-generation sequencing technologies. Laboratory investigation; a journal of technical methods and pathology. 2014;94(3):350–8. 10.1038/labinvest.2013.157 .
    1. Stevanato L, Hicks C, Sinden JD. Differentiation of a Human Neural Stem Cell Line on Three Dimensional Cultures, Analysis of MicroRNA and Putative Target Genes. Journal of visualized experiments: JoVE. 2015;(98). 10.3791/52410 .
    1. Hicks C, Stevanato L, Stroemer RP, Tang E, Richardson S, Sinden JD. In vivo and in vitro characterization of the angiogenic effect of CTX0E03 human neural stem cells. Cell transplantation. 2013;22(9):1541–52. 10.3727/096368912X657936 .
    1. Katare R, Stroemer P, Hicks C, Stevanato L, Patel S, Corteling R, et al. Clinical-grade human neural stem cells promote reparative neovascularization in mouse models of hindlimb ischemia. Arteriosclerosis, thrombosis, and vascular biology. 2014;34(2):408–18. 10.1161/ATVBAHA.113.302592 .
    1. Pollock K, Stroemer P, Patel S, Stevanato L, Hope A, Miljan E, et al. A conditionally immortal clonal stem cell line from human cortical neuroepithelium for the treatment of ischemic stroke. Experimental neurology. 2006;199(1):143–55. 10.1016/j.expneurol.2005.12.011 .
    1. Mathivanan S, Simpson RJ. ExoCarta: A compendium of exosomal proteins and RNA. Proteomics. 2009;9(21):4997–5000. 10.1002/pmic.200900351 .
    1. Griffiths-Jones S. The microRNA Registry. Nucleic acids research. 2004;32(Database issue):D109–11. 10.1093/nar/gkh023
    1. Hill AF, Pegtel DM, Lambertz U, Leonardi T, O'Driscoll L, Pluchino S, et al. ISEV position paper: extracellular vesicle RNA analysis and bioinformatics. Journal of extracellular vesicles. 2013;2 10.3402/jev.v2i0.22859
    1. Lewis BP, Burge CB, Bartel DP. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell. 2005;120(1):15–20. 10.1016/j.cell.2004.12.035 .
    1. Camussi G, Deregibus MC, Bruno S, Cantaluppi V, Biancone L. Exosomes/microvesicles as a mechanism of cell-to-cell communication. Kidney international. 2010;78(9):838–48. 10.1038/ki.2010.278 .
    1. Hu G, Drescher KM, Chen XM. Exosomal miRNAs: Biological Properties and Therapeutic Potential. Frontiers in genetics. 2012;3:56 10.3389/fgene.2012.00056
    1. Ohno S, Takanashi M, Sudo K, Ueda S, Ishikawa A, Matsuyama N, et al. Systemically injected exosomes targeted to EGFR deliver antitumor microRNA to breast cancer cells. Molecular therapy: the journal of the American Society of Gene Therapy. 2013;21(1):185–91. 10.1038/mt.2012.180
    1. Hurd PJ, Nelson CJ. Advantages of next-generation sequencing versus the microarray in epigenetic research. Briefings in functional genomics & proteomics. 2009;8(3):174–83. 10.1093/bfgp/elp013 .
    1. Chen TS, Lim SK. Measurement of precursor miRNA in exosomes from human ESC-derived mesenchymal stem cells. Methods in molecular biology. 2013;1024:69–86. 10.1007/978-1-62703-453-1_6 .
    1. Morin RD, O'Connor MD, Griffith M, Kuchenbauer F, Delaney A, Prabhu AL, et al. Application of massively parallel sequencing to microRNA profiling and discovery in human embryonic stem cells. Genome Res. 2008;18(4):610–21. 10.1101/gr.7179508
    1. Zhang Y, Liao JM, Zeng SX, Lu H. p53 downregulates Down syndrome-associated DYRK1A through miR-1246. EMBO Rep. 2011;12(8):811–7. 10.1038/embor.2011.98
    1. Jones CI, Zabolotskaya MV, King AJ, Stewart HJ, Horne GA, Chevassut TJ, et al. Identification of circulating microRNAs as diagnostic biomarkers for use in multiple myeloma. Br J Cancer. 2012;107(12):1987–96. 10.1038/bjc.2012.525
    1. Yang Y, Xie YJ, Xu Q, Chen JX, Shan NC, Zhang Y. Down-regulation of miR-1246 in cervical cancer tissues and its clinical significance. Gynecol Oncol. 2015;138(3):683–8. 10.1016/j.ygyno.2015.06.015 .
    1. Liao JM, Zhou X, Zhang Y, Lu H. MiR-1246: a new link of the p53 family with cancer and Down syndrome. Cell Cycle. 2012;11(14):2624–30. 10.4161/cc.20809
    1. Li W, Wu YF, Xu RH, Lu H, Hu C, Qian H. miR-1246 releases RTKN2-dependent resistance to UVB-induced apoptosis in HaCaT cells. Mol Cell Biochem. 2014;394(1–2):299–306. 10.1007/s11010-014-2108-1 .
    1. Xu LJ, Jiang T, Zhao W, Han JF, Liu J, Deng YQ, et al. Parallel mRNA and microRNA profiling of HEV71-infected human neuroblastoma cells reveal the up-regulation of miR-1246 in association with DLG3 repression. PLoS One. 2014;9(4):e95272 10.1371/journal.pone.0095272
    1. Martinez T, Gonzalez MV, Roehl I, Wright N, Paneda C, Jimenez AI. In vitro and in vivo efficacy of SYL040012, a novel siRNA compound for treatment of glaucoma. Molecular therapy: the journal of the American Society of Gene Therapy. 2014;22(1):81–91. 10.1038/mt.2013.216
    1. Bader AG. miR-34—a microRNA replacement therapy is headed to the clinic. Frontiers in genetics. 2012;3:120 10.3389/fgene.2012.00120
    1. Li XJ, Ren ZJ, Tang JH. MicroRNA-34a: a potential therapeutic target in human cancer. Cell Death Dis. 2014;5:e1327 10.1038/cddis.2014.270
    1. Lotvall J, Hill AF, Hochberg F, Buzas EI, Di Vizio D, Gardiner C, et al. Minimal experimental requirements for definition of extracellular vesicles and their functions: a position statement from the International Society for Extracellular Vesicles. Journal of extracellular vesicles. 2014;3:26913 10.3402/jev.v3.26913
    1. Jin Y, Chen Z, Liu X, Zhou X. Evaluating the microRNA targeting sites by luciferase reporter gene assay. Methods in molecular biology. 2013;936:117–27. 10.1007/978-1-62703-083-0_10

Source: PubMed

3
Abonnieren