The new-generation pan-peroxisome proliferator-activated receptor agonist IVA337 protects the liver from metabolic disorders and fibrosis

Guillaume Wettstein, Jean-Michel Luccarini, Laurence Poekes, Patrick Faye, Francine Kupkowski, Vanessa Adarbes, Evelyne Defrêne, Céline Estivalet, Xavier Gawronski, Ingrid Jantzen, Alain Philippot, Julien Tessier, Pascale Tuyaa-Boustugue, Fiona Oakley, Derek A Mann, Isabelle Leclercq, Sven Francque, Irena Konstantinova, Pierre Broqua, Jean-Louis Junien, Guillaume Wettstein, Jean-Michel Luccarini, Laurence Poekes, Patrick Faye, Francine Kupkowski, Vanessa Adarbes, Evelyne Defrêne, Céline Estivalet, Xavier Gawronski, Ingrid Jantzen, Alain Philippot, Julien Tessier, Pascale Tuyaa-Boustugue, Fiona Oakley, Derek A Mann, Isabelle Leclercq, Sven Francque, Irena Konstantinova, Pierre Broqua, Jean-Louis Junien

Abstract

IVA337 is a pan-peroxisome proliferator-activated receptor (PPAR) agonist with moderate and well-balanced activity on the three PPAR isoforms (α, γ, δ). PPARs are regulators of lipid metabolism, inflammation, insulin resistance, and fibrogenesis. Different single or dual PPAR agonists have been investigated for their therapeutic potential in nonalcoholic steatohepatitis (NASH), a chronic liver condition in which steatosis coexists with necroinflammation, potentially leading to liver fibrosis and cirrhosis. Clinical results have demonstrated variable improvements of histologically assessed hepatic lesions depending on the profile of the tested drug, suggesting that concomitant activation of the three PPAR isoforms would translate into a more substantial therapeutic outcome in patients with NASH. We investigated the effects of IVA337 on several preclinical models reproducing the main metabolic and hepatic features associated with NASH. These models comprised a diet-induced obesity model (high-fat/high-sucrose diet); a methionine- and choline-deficient diet; the foz/foz model; the CCl4-induced liver fibrosis model (prophylactic and therapeutic) and human primary hepatic stellate cells. IVA337 normalized insulin sensitivity while controlling body weight gain, adiposity index, and serum triglyceride increases; it decreased liver steatosis, inflammation, and ballooning. IVA337 demonstrated preventive and curative effects on fibrosis in the CCl4 model and inhibited proliferation and activation of human hepatic stellate cells, the key cells driving liver fibrogenesis in NASH. Moreover, IVA337 inhibited the expression of (pro)fibrotic and inflammasome genes while increasing the expression of β-oxidation-related and fatty acid desaturation-related genes in both the methionine- and choline-deficient diet and the foz/foz model. For all models, IVA337 displayed an antifibrotic efficacy superior to selective PPARα, PPARδ, or PPARγ agonists. Conclusion: The therapeutic potential of IVA337 for the treatment of patients with NASH is supported by our data. (Hepatology Communications 2017;1:524-537).

Figures

Figure 1
Figure 1
IVA337 dose dependently decreases adiposity index and normalizes glucose and insulinemia in a diet‐induced obesity model. (A) The adipose index (total WAT/body weight) was calculated in mice under a chow diet (ND controls) and mice under an HF/HS diet treated or not with IVA337 at 3, 10, and 30 mg/kg (n = 10 per group). (B‐E) Plasma analyses were performed at sacrifice for nonfasting glucose, insulin, triglycerides, and adiponectin levels. (F) An OGTT was carried out at 5 weeks. Data represented as mean ± SEM. **P <  0.01, ***P <  0.001 versus ND controls; *P <  0.05, **P <  0.01, ***P <  0.001 versus HF/HS diet + vehicle. Abbreviations: OGTT, oral glucose tolerance test; WAT, white adipose tissue.
Figure 2
Figure 2
IVA337 improves steatosis, inflammation, fibrosis, and ALT in the MCD model. (A,B) Steatosis and (C,D) inflammation were histologically measured at magnification ×20 in mice under an MCD diet for 3 weeks receiving or not IVA337 at 10 and 30 mg/kg (n = 10 per group). (E) ALT level was measured in the blood, and (F) the expression of fibrotic genes was evaluated by RT‐qPCR in the liver. Data represented as mean ± SEM. *P <  0.05, **P <  0.01, ***P <  0.001 versus MCD diet + vehicle. Abbreviations: ALT, alanine aminotransferase; col1, collagen type I; RT‐qPCR, real time polymerase chain reaction.
Figure 3
Figure 3
IVA337 normalizes hyperglycemia and reduces steatosis, ballooning, and inflammation in the foz/foz model. During the 12‐week experiment, mice under ND (n = 8), HFD (n = 10), HFD + IVA337 at 10 mg/kg (n = 10), or HFD + IVA337 at 30 mg/kg (n = 12) were followed for (A) body weight and (B) glycemia evaluation once a week. After sacrifice, (C) circulating adiponectin was measured and (D‐F) histologic analyses at magnification ×20 of the liver were performed to quantify steatosis, ballooning, and inflammation foci. Data represented as mean ± SEM. *P < 0.05, **P < 0.01, ***P < 0.001 versus HFD + vehicle.
Figure 4
Figure 4
IVA337 inhibits Inflammasome‐related genes and NF‐κB expression and induces lipid metabolism‐related gene expression in the MCD and foz/foz models. Gene analyses were performed on the liver of mice from (A‐C) the MCD model (n = 10 per group) and (D‐E) the foz/foz model (n = 8‐12 per group). (A,D) Liver inflammasome‐related genes, (B,E) lipid metabolism genes, and (C,F) inflammatory genes. Data represented as mean ± SEM. *P <  0.05, **P <  0.01, ***P <  0.001 versus MCD + vehicle (A‐C) or HFD + vehicle (D‐F). Abbreviations: ASC, apoptosis‐associated speck‐like protein containing a CARD; CCL5, chemokine (C‐C motif) ligand 5; CCR2, C‐C chemokine receptor type 2; mRNA, messenger RNA.
Figure 5
Figure 5
IVA337 reverses fibrosis in a curative CCl4‐induced liver fibrosis model. (A) Liver histologic pictures (magnification × 20) from a 6‐week CCl4 study, (B) liver hydroxyproline content, and (C) PicroSirius Red analysis in mice treated or not with IVA337 10 and 30 mg/kg (n = 8 per group). Data represented as mean ± SEM. ***P < 0.001.
Figure 6
Figure 6
IVA337 reversion of fibrosis in the CCl4 model, comparison with selective PPAR agonists. (A) Liver histologic pictures from a 6‐week CCl4 study, (B) liver hydroxyproline content, and (C) PicroSirius Red analysis in mice treated or not with IVA337 (15 and 30 mg/kg), rosiglitazone (5 mg/kg), GW501516 (10 mg/kg) or fenofibrate (100 mg/kg) (n = 8 per group). Data represented as mean ± SEM. *P < 0.05, **P < 0.01, ***P < 0.001. Abbreviation: PSR, PicroSirius Red.
Figure 7
Figure 7
IVA337 inhibits PDGF‐induced proliferation, stiffness‐induced activation, and TGF‐β1‐induced profibrotic gene expression; comparison with selective PPAR agonists. (A) Effects of IVA337, rosiglitazone, GW501516, and fenofibrate in a dose range (3 nM to 30 µM, with a semi‐log dilution scale) on PDGF (10 ng/mL)‐induced hHSC proliferation. (B) hHSCs plated on plastic differentiated into myofibroblasts after 7 days in culture. Effect of IVA337 (3 µM), rosiglitazone (3 µM), GW501516 (3 µM), and fenofibric acid (30 µM) were evaluated. (C‐F) TGF‐β1‐induced profibrotic gene expression after 24 hours. Data represented as mean ± SEM. ***P <  0.001 versus DMSO; **P <  0.01, ***P <  0.001 versus TGF‐β1. Abbreviations: col1α1, collagen type Iα1; CTGF, connective tissue growth factor; DMSO, dimethyl sulfoxide; EdU, 5‐ethynyl‐2′‐deoxyuridine; mRNA, messenger RNA; PAI‐1, plasminogen activator inhibitor 1.

References

    1. Vanni E, Bugianesi E, Kotronen A, De Minicis S, Yki‐Järvinen H, Svegliati‐Baroni G. From the metabolic syndrome to NAFLD or vice versa? Dig Liver Dis 2010;42:320‐330.
    1. Harrison S. The natural history of nonalcoholic fatty liver disease: a clinical histopathological study. Am J Gastroenterol 2003;98:2042‐2047.
    1. Poulsen LI, Siersbæk M, Mandrup S. PPARs: fatty acid sensors controlling metabolism. Semin Cell Dev Biol 2012;23:631‐639.
    1. Feige JN, Gelman L, Michalik L, Desvergne B, Wahli W. From molecular action to physiological outputs: peroxisome proliferator‐activated receptors are nuclear receptors at the crossroads of key cellular functions. Prog Lipid Res 2006;45:120‐159.
    1. Grygiel‐Górniak B. Peroxisome proliferator‐activated receptors and their ligands: nutritional and clinical implications ‐‐ a review. Nutr J 2014;13:17.
    1. Lalloyer F, Staels B. Fibrates, glitazones and peroxisome proliferator‐activated receptors. Arterioscler Thromb Vasc Biol 2010;30:894‐899.
    1. Lefebvre P, Chinetti G, Fruchart JC, Staels B. Sorting out the roles of PPAR alpha in energy metabolism and vascular homeostasis. J Clin Invest 2006;116:571‐580.
    1. Zambon A, Gervois P, Pauletto P, Fruchart JC, Staels B. Modulation of hepatic inflammatory risk markers of cardiovascular diseases by PPAR‐alpha activators: clinical and experimental evidence. Arterioscler Thromb Vasc Biol 2006;26:977‐986.
    1. Lee CH, Olson P, Hevener A, Mehl I, Chong L‐W, Olefsky JM, et al. PPARdelta regulates glucose metabolism and insulin sensitivity. Proc Natl Acad Sci U S A 2006;103:3444‐3449.
    1. Tailleux A, Wouters K, Staels B. Roles of PPARs in NAFLD: potential therapeutic targets. Biochim Biophys Acta 2012;1821:809‐818.
    1. Odegaard JI, Ricardo‐Gonzalez RR, Red Eagle A, Vats D, Morel CR, Goforth MH, et al. Alternative M2 activation of Kupffer cells by PPARdelta ameliorates obesity‐induced insulin resistance. Cell Metab 2008;7:496‐507.
    1. Hazra S, Xiong S, Wang J, Rippe RA, Krishna V, Chatterjee K, et al. Peroxisome proliferator‐activated receptor gamma induces a phenotypic switch from activated to quiescent hepatic stellate cells. J Biol Chem 2004;279:11392‐11401.
    1. Marra F, Efsen E, Romanelli RG, Caligiuri A, Pastacaldi S, Batignani G, et al. Ligands of peroxisome proliferator‐activated receptor gamma modulate profibrogenic and proinflammatory actions in hepatic stellate cells. Gastroenterology 2000;119:466‐478.
    1. Ip E, Farrell G, Hall P, Robertson G, Leclercq I. Administration of the potent PPARalpha agonist, Wy‐14,643, reverses nutritional fibrosis and steatohepatitis in mice. Hepatology 2004;39:1286‐1296.
    1. Larter CZ, Yeh MM, Van Rooyen DM, Brooling J, Ghatora K, Farrell GC. Peroxisome proliferator‐activated receptor‐alpha agonist, Wy‐14,643, improves metabolic indices, steatosis and ballooning in diabetic mice with non‐alcoholic steatohepatitis. J Gastroenterol Hepatol 2012;27:341‐350.
    1. Fernández Miranda C, Pérez Carreras M, Colina F, López‐Alonso G, Vargas C, Solís‐Herruzo JA. A pilot trial of fenofibrate for the treatment of non‐alcoholic fatty liver disease. Dig Liver Dis 2008;40:200‐205.
    1. Riserus U, Sprecher D, Johnson T, Olson E, Hirschberg S, Liu A, et al. Activation of peroxisome proliferator‐activated receptor (PPAR)delta promotes reversal of multiple metabolic abnormalities, reduces oxidative stress, and increases fatty acid oxidation in moderately obese men. Diabetes 2008;57:332‐339.
    1. Bays HE, Schwartz S, Littlejohn T 3rd, Kerzner B, Krauss RM, Karpf DB, et al. MBX‐8025, a novel peroxisome proliferator receptor‐delta agonist: lipid and other metabolic effects in dyslipidemic overweight patients treated with and without atorvastatin. J Clin Endocrinol Metab 2011;96:2889‐2897.
    1. Staels B, Rubenstrunk A, Noel B, Rigou G, Delataille P, Millatt LJ, et al. Hepatoprotective effects of the dual peroxisome proliferator‐activated receptor alpha/delta agonist, GFT505, in rodent models of nonalcoholic fatty liver disease/nonalcoholic steatohepatitis. Hepatology 2013;58:1941‐1952.
    1. Yu J, Zhang S, Chu ES, Go MY, Lau RH, Zhao J, et al. Peroxisome proliferator‐activated receptors gamma reverses hepatic nutritional fibrosis in mice and suppresses activation of hepatic stellate cells in vitro. Int J Biochem Cell Biol 2010;42:948‐957.
    1. Ip E, Farrell GC, Robertson G, Hall P, Kirsch R, Leclercq I. Central role of PPARalpha‐dependent hepatic lipid turnover in dietary steatohepatitis in mice. Hepatology 2003;38:123‐132.
    1. Wu CW, Chu ES, Lam CN, Cheng AS, Lee CW, Wong VW, et al. PPARgamma is essential for protection against nonalcoholic steatohepatitis. Gene Ther 2010;17:790‐798.
    1. Nagasawa T, Inada Y, Nakano S, Tamura T, Takahashi T, Maruyama K, et al. Effects of bezafibrate, PPAR pan‐agonist, and GW501516, PPARdelta agonist, on development of steatohepatitis in mice fed a methionine‐ and choline‐deficient diet. Eur J Pharmacol 2006;536:182‐191.
    1. Hsiao PJ, Hsieh TJ, Kuo KK, Hung WW, Tsai KB, Yang CH, et al. Pioglitazone retrieves hepatic antioxidant DNA repair in a mice model of high fat diet. BMC Mol Biol 2008;9:82.
    1. Leclercq IA, Lebrun VA, Stärkel P, Horsmans YJ. Intrahepatic insulin resistance in a murine model of steatohepatitis: effect of PPARγgamma agonist pioglitazone. Lab Invest 2007;87:56‐65.
    1. L'homme L, Esser N, Riva L, Scheen A, Paquot N, Piette J, et al. Unsaturated fatty acids prevent activation of NLRP3 inflammasome in human monocytes/macrophages. J Lipid Res 2013;54:2998‐3008.
    1. Wan X, Xu C, Yu C, Li Y. Role of NLRP3 inflammasome in the progression of NAFLD to NASH. Can J Gastroenterol Hepatol 2016;2016:6489012.
    1. Csak T, Ganz M, Pespisa J, Kodys K, Dolganiuc A, Szabo G. Fatty acid and endotoxin activate inflammasomes in mouse hepatocytes that release danger signals to stimulate immune cells. Hepatology. 2011;54:133‐144.
    1. Wree A, McGeough MD, Peña CA, Schlattjan M, Li H, Inzaugarat ME, et al. NLRP3 inflammasome activation is required for fibrosis development in NAFLD. J Mol Med (Berl) 2014;92:1069‐1082.
    1. Stienstra R, van Diepen JA, Tack CJ, Zaki MH, Van de Veerdonk FL, Perera D, et al. Inflammasome is a central player in the induction of obesity and insulin resistance. Proc Natl Acad Sci U S A 2011;108:15324‐15329.
    1. Vandanmagsar B, Youm YH, Ravussin A, Galgani JE, Stadler K, Mynatt RL, et al. The NLRP3 inflammasome instigates obesity‐induced inflammation and insulin resistance. Nat Med 2011;17:179‐188.
    1. Lee HJ, Yeon JE, Ko EJ, Yoon EL, Suh SJ, Kang K, et al. Peroxisome proliferator‐activated receptor‐delta agonist ameliorated inflammasome activation in nonalcoholic fatty liver disease. World J Gastroenterol 2015;21:12787‐12799.
    1. Cusi K, Orsak B, Bril F, Lomonaco R, Hecht J, Ortiz‐Lopez C, et al. Long‐term pioglitazone treatment for patients with nonalcoholic steatohepatitis and prediabetes or type 2 diabetes mellitus: a randomized trial. Ann Intern Med 2016;165:305‐315.
    1. Glosli H, Gudbrandsen OA, Mullen AJ, Halvorsen B, Røst TH, Wergedahl H, et al. Down‐regulated expression of PPARalpha target genes, reduced fatty acid oxidation and altered fatty acid composition in the liver of mice transgenic for hTNFalpha. Biochim Biophys Acta 2005;1734:235‐246.
    1. Kersten S, Seydoux J, Peters JM, Gonzalez FJ, Desvergne B, Wahli W. Peroxisome proliferator‐activated receptor alpha mediates the adaptive response to fasting. J Clin Invest 1999;103:1489‐1498.
    1. Yao‐Borengasser A, Rassouli N, Varma V, Bodles AM, Rasouli N, Unal R, et al. Stearoyl‐coenzyme A desaturase 1 gene expression increases after pioglitazone treatment and is associated with peroxisomal proliferator‐activated receptor‐gamma responsiveness. J Clin Endocrinol Metab 2008;93:4431‐4439.
    1. Li ZZ, Berk M, McIntyre TM, Feldstein AE. Hepatic lipid partitioning and liver damage in nonalcoholic fatty liver disease: role of stearoyl‐CoA desaturase. J Biol Chem 2009;284:5637‐5644.
    1. Finucane OM, Lyons CL, Murphy AM, Reynolds CM, Klinger R, Healy NP, et al. Monounsaturated fatty acid‐enriched high‐fat diets impede adipose NLRP3 inflammasome‐mediated IL‐1β secretion and insulin resistance despite obesity. Diabetes 2015;64:2116‐2128.
    1. Iwaisako K, Haimerl M, Paik Y‐H, Taura K, Kodama Y, Sirlin C, et al. Protection from liver fibrosis by a peroxisome proliferator‐activated receptor delta agonist. Proc Natl Acad Sci U S A 2012;109:E1369‐E1376.
    1. Camp HS, Li O, Wise SC, Hong YH, Frankowski CL, Shen X, et al. Differential activation of peroxisome proliferator‐activated receptor‐gamma by troglitazone and rosiglitazone. Diabetes 2000;49:539‐547.
    1. Ruzehaji N, Frantz C, Ponsoye M, Avouac J, Pezet S, Guilbert T, et al. Pan PPAR agonist IVA337 is effective in prevention and treatment of experimental skin fibrosis. Ann Rheum Dis 2016;75:2175‐2183.
    1. Fernandes Santos C, Carneiro RE, de Souza Mendonca L, Aguila MB, Mandarim‐de‐Lacerda CA. Pan‐PPAR agonist beneficial effects in overweight mice fed a high‐fat high‐sucrose diet. Nutrition 2009;25:818‐827.
    1. Toral M, Gómez‐Guzmán M, Jiménez R, Romero M, Zarzuelo MJ, Utrilla MP, et al. Chronic peroxisome proliferator‐activated receptorβ/δ agonist GW0742 prevents hypertension, vascular inflammatory and oxidative status, and endothelial dysfunction in diet‐induced obesity. J Hypertens 2015;33:1831‐1844.
    1. Barroso E, Rodríguez‐Calvo R, Serrano‐Marco L, Astudillo AM, Balsinde J, Palomer X, et al. The PPARβ/δ activator GW501516 prevents the down‐regulation of AMPK caused by a high‐fat diet in liver and amplifies the PGC‐1α‐Lipin 1‐PPARα pathway leading to increased fatty acid oxidation. Endocrinology 2011;152:1848‐1859.
    1. Kaser S, Moschen A, Cayon A, Kaser A, Crespo J, Pons‐Romero F, et al. Adiponectin and its receptors in non‐alcoholic steatohepatitis. Gut 2005;54:117‐121.
    1. Francque S, Verrijken A, Caron S, Prawitt J, Paumelle R, Derudas B, et al. PPARα gene expression correlates with severity and histological treatment response in patients with non‐alcoholic steatohepatitis. J Hepatol 2015;63:164‐173.
    1. Ratziu V, Harrison S, Francque S, Bedossa P, Lehert P, Serfaty L, et al. Elafibranor, an agonist of the peroxisome proliferator‐activated receptor‐alpha and ‐delta, induces resolution of nonalcoholic steatohepatitis without fibrosis worsening. Gastroenterology 2016;150:1147‐1159.
    1. Sanyal AJ, Chalasani N, Kowdley KV, McCullough A, Diehl AM, Bass NM, et al; NASH CRN . Pioglitazone, vitamin E, or placebo for nonalcoholic steatohepatitis. N Engl J Med 2010;362:1675‐1685.

Source: PubMed

3
Abonnieren