Epitranscriptomics of Ischemic Heart Disease-The IHD-EPITRAN Study Design and Objectives

Vilbert Sikorski, Pasi Karjalainen, Daria Blokhina, Kati Oksaharju, Jahangir Khan, Shintaro Katayama, Helena Rajala, Satu Suihko, Suvi Tuohinen, Kari Teittinen, Annu Nummi, Antti Nykänen, Arda Eskin, Christoffer Stark, Fausto Biancari, Jan Kiss, Jarmo Simpanen, Jussi Ropponen, Karl Lemström, Kimmo Savinainen, Maciej Lalowski, Markku Kaarne, Mikko Jormalainen, Outi Elomaa, Pertti Koivisto, Peter Raivio, Pia Bäckström, Sebastian Dahlbacka, Simo Syrjälä, Tiina Vainikka, Tommi Vähäsilta, Nurcan Tuncbag, Mati Karelson, Eero Mervaala, Tatu Juvonen, Mika Laine, Jari Laurikka, Antti Vento, Esko Kankuri, Vilbert Sikorski, Pasi Karjalainen, Daria Blokhina, Kati Oksaharju, Jahangir Khan, Shintaro Katayama, Helena Rajala, Satu Suihko, Suvi Tuohinen, Kari Teittinen, Annu Nummi, Antti Nykänen, Arda Eskin, Christoffer Stark, Fausto Biancari, Jan Kiss, Jarmo Simpanen, Jussi Ropponen, Karl Lemström, Kimmo Savinainen, Maciej Lalowski, Markku Kaarne, Mikko Jormalainen, Outi Elomaa, Pertti Koivisto, Peter Raivio, Pia Bäckström, Sebastian Dahlbacka, Simo Syrjälä, Tiina Vainikka, Tommi Vähäsilta, Nurcan Tuncbag, Mati Karelson, Eero Mervaala, Tatu Juvonen, Mika Laine, Jari Laurikka, Antti Vento, Esko Kankuri

Abstract

Epitranscriptomic modifications in RNA can dramatically alter the way our genetic code is deciphered. Cells utilize these modifications not only to maintain physiological processes, but also to respond to extracellular cues and various stressors. Most often, adenosine residues in RNA are targeted, and result in modifications including methylation and deamination. Such modified residues as N-6-methyl-adenosine (m6A) and inosine, respectively, have been associated with cardiovascular diseases, and contribute to disease pathologies. The Ischemic Heart Disease Epitranscriptomics and Biomarkers (IHD-EPITRAN) study aims to provide a more comprehensive understanding to their nature and role in cardiovascular pathology. The study hypothesis is that pathological features of IHD are mirrored in the blood epitranscriptome. The IHD-EPITRAN study focuses on m6A and A-to-I modifications of RNA. Patients are recruited from four cohorts: (I) patients with IHD and myocardial infarction undergoing urgent revascularization; (II) patients with stable IHD undergoing coronary artery bypass grafting; (III) controls without coronary obstructions undergoing valve replacement due to aortic stenosis and (IV) controls with healthy coronaries verified by computed tomography. The abundance and distribution of m6A and A-to-I modifications in blood RNA are charted by quantitative and qualitative methods. Selected other modified nucleosides as well as IHD candidate protein and metabolic biomarkers are measured for reference. The results of the IHD-EPITRAN study can be expected to enable identification of epitranscriptomic IHD biomarker candidates and potential drug targets.

Keywords: A-to-I; N6-methyladenosine; RNA modifications; adenosine-to-inosine; biomarkers; epitranscriptomics; ischemic heart disease; m6A.

Conflict of interest statement

The authors declare no conflict of interest. The funders had no role in the design of the study; in the collection, analyses, or interpretation of data; or in the writing of the manuscript.

Figures

Figure 1
Figure 1
Overview of the RNA m6A modification and A-to-I RNA editing and their known writers, readers, and erasers. m6A modification and A-to-I editing occur in most RNA species. ADAD1-2, adenosine deaminase domain-containing protein 1-2; ADAR1-3, double-stranded RNA-specific adenosine deaminase 1-3; ADAT1-3, adenosine deaminases acting on tRNAs; ALKBH5, alkB homolog 5 RNA demethylase; A-to-I, adenosine-to-inosine RNA editing; circRNA, circular RNA; ENDOV, human endonuclease V; eIF3, eukaryotic initiation factor 3; EWSR1, Ewing sarcoma breakpoint region 1 protein; FMRP, fragile X retardation protein; FTO, fat mass and obesity associated protein; G3BP1, Ras GTPase-activating protein-binding protein 1; HAKAI, E3 ubiquitin-protein ligase Hakai; HNRNP-A2B1,-C,-G, heterogeneous nuclear ribonucleoprotein A2/B1 and C1/C2 and G; HuR, human antigen R; IGF2BP1-3; The insulin-like growth factor-2 mRNA-binding proteins 1, 2, and 3; LIN28A, Lin-28 homolog A; lncRNA, long non-coding RNA; METTL3,-14,-16, N6- adenosine-methyltransferase catalytic subunit/non-catalytic subunit/METTL16; METTL5, methyltransferase Like 5; mRNA, messenger RNA; miRNA, microRNA; Prcc2a, proline rich coiled-coil 2 A; RBM15, RNA binding motif protein 15; rRNA, ribosomal RNA; snoRNA, small nucleolar RNA; TRMT112, TRNA methyltransferase subunit 11-2; tRNA, transfer RNA; VIRMA, vir like m6A methyltransferase associated; WTAP, Wilm’s tumor associated protein; (YTH)DC1-2, YTH domain-containing protein 1 ja 2; (YTH)DF1-3, YTH N6-methyladenosine RNA binding protein 1-3; ZCCHC4, zinc finger CCHC-type containing 4; ZC3H13, zinc finger CCCH domain-containing protein 13; *, miRNAs can also derive from pre-mRNA introns.
Figure 2
Figure 2
IHD-EPITRAN hypotheses (A). Coronary plaques signal bone marrow residing HSCs to increase proliferation promoting the efflorescence of CH and extramedullary hematopoiesis (Ly-6Chigh monocytosis), which both seed epitranscriptomically distinct cells to the circulation. (B). Leukocytes and platelets patrolling in the proximity and inside the atherosclerotic plaques, ischemic myocardium, and stressed endothelium oscillate back and seed EVs to the circulation with detectable alterations in their m6A and A-to-I RNA signatures. (C). The ischemic myocardium prime patrolling leukocytes and secrete paracrine EVs encasing m6A and A-to-I modified RNA molecules, entering also to the circulation. A-to-I, adenosine-to-inosine; CH, clonal hematopoiesis; EV, extracellular vesicle; HSC, hematopoietic stem cell; Ly6C, lymphocyte antigen 6; m6A, N6-methyladenosine; RBCs, red blood cells; TCs, thrombocytes; WBCs, white blood cells.
Figure 3
Figure 3
Outline and sample collection in the IHD-EPITRAN study. The gray scale provides an arbitrary scale for disease severity across cohorts. STEMI, ST-elevation myocardial infarction; CABG, coronary artery bypass grafting; AVR, aortic valve replacement; CCTA, coronary computed tomography angiogram; ICA, invasive coronary angiography; RAA, right atrial appendage; IHD, ischemic heart disease.
Figure 4
Figure 4
Study samples with respective principal analysis methods of the IHD-EPITRAN study. CVD, cardiovascular disease; FISH, fluorescence in situ hybridization; IHC, immunohistochemistry; IHD, ischemic heart disease; meRIP seq, methylated RNA immunoprecipitation sequencing; MRM, multiple reaction monitoring; RAA, right atrial appendage; UHPLC-MS/MS; ultra-high-performance triple quadrupole liquid chromatography tandem mass spectrometry.
Figure 5
Figure 5
Principal study cohort comparisons in the IHD-EPITRAN study. Referred outcomes are listed in Table 3 (A). Venn diagram-based illustration of the preferred four-partite approach, due to its highest degree of adjustments, to acquire inter-cohort comparison-based outcomes. (B). Three-partite comparison scheme to enable comparisons even in the possible case of delay in one cohort recruitment, which is also the case with (C) depicting pairwise comparisons with lest adjustments for inter-cohort outcomes. Intracohort outcomes are achieved via pairwise prospective comparisons. (D). Timeline for the prospective outcome comparisons. Long-term follow-up of the study cohorts I-IV could provide dimensions of detecting incident and IHD exacerbations (Section 2.6 and Discussion). Abbreviations: AVR, aortic valve replacement cohort III; AVS, aortic valve stenosis; CABG, coronary artery bypass grafting cohort II; CCTA, coronary computed tomography angiogram cohort I; CVD, cardiovascular disease; IHD, ischemic heart disease, MACCE, major adverse cardiovascular and cerebrovascular event; PCI, percutaneous coronary intervention; STEMI, ST-elevation myocardial infarction cohort I.

References

    1. James S.L., Abate D., Abate K.H., Abay S.M., Abbafati C., Abbasi N., Abbastabar H., Abd-Allah F., Abdela J., Abdelalim A., et al. Global, regional, and national incidence, prevalence, and years lived with disability for 354 diseases and injuries for 195 countries and territories, 1990–2017: A systematic analysis for the Global Burden of Disease Study 2017. Lancet. 2018;392:1789–1858. doi: 10.1016/S0140-6736(18)32279-7.
    1. Libby P., Buring J.E., Badimon L., Hansson G.K., Deanfield J., Bittencourt M.S., Tokgözoğlu L., Lewis E.F. Atherosclerosis. Nat. Rev. Dis. Prim. 2019;5:56. doi: 10.1038/s41572-019-0106-z.
    1. Bergmann O., Bhardwaj R.D., Bernard S., Zdunek S., Barnabé-Heider F., Walsh S., Zupicich J., Alkass K., Buchholz B.A., Druid H., et al. Evidence for Cardiomyocyte Renewal in Humans. Science. 2009;324:98–102. doi: 10.1126/science.1164680.
    1. Arrigo M., Jessup M., Mullens W., Reza N., Shah A.M., Sliwa K., Mebazaa A. Acute heart failure. Nat. Rev. Dis. Prim. 2020;6:16. doi: 10.1038/s41572-020-0151-7.
    1. Henderson A. Coronary heart disease: Overview. Lancet. 1996;348:S1–S4. doi: 10.1016/S0140-6736(96)98001-0.
    1. Isbister J., Semsarian C. Sudden cardiac death: An update. Intern. Med. J. 2019;49:826–833. doi: 10.1111/imj.14359.
    1. Marchio P., Guerra-Ojeda S., Vila J.M., Aldasoro M., Victor V.M., Mauricio M.D. Targeting Early Atherosclerosis: A Focus on Oxidative Stress and Inflammation. Oxid. Med. Cell. Longev. 2019;2019:8563845. doi: 10.1155/2019/8563845.
    1. Solly E.L., Di Masi C.G., Bursill C.A., Psaltis P.J., Tan J.T.M. MicroRNAs as Therapeutic Targets and Clinical Biomarkers in Atherosclerosis. J. Clin. Med. 2019;8:2199. doi: 10.3390/jcm8122199.
    1. Aimo A., Januzzi J.L., Jr., Bayes-Genis A., Vergaro G., Sciarrone P., Passino C., Emdin M. Clinical and Prognostic Significance of sST2 in Heart Failure: JACC Review Topic of the Week. J. Am. Coll. Cardiol. 2019;74:2193–2203. doi: 10.1016/j.jacc.2019.08.1039.
    1. Tasevska I., Enhörning S., Persson M., Nilsson P.M., Melander O. Copeptin predicts coronary artery disease cardiovascular and total mortality. Heart. 2015;102:127–132. doi: 10.1136/heartjnl-2015-308183.
    1. Tang W.W., Wang Z., Levison B.S., Koeth R.A., Britt E.B., Fu X., Wu Y., Hazen S.L. Intestinal Microbial Metabolism of Phosphatidylcholine and Cardiovascular Risk. N. Engl. J. Med. 2013;368:1575–1584. doi: 10.1056/NEJMoa1109400.
    1. Nemet I., Saha P.P., Gupta N., Zhu W., Romano K.A., Skye S.M., Cajka T., Mohan M.L., Li L., Wu Y., et al. A Cardiovascular Disease-Linked Gut Microbial Metabolite Acts via Adrenergic Receptors. Cell. 2020;180:862–877.e22. doi: 10.1016/j.cell.2020.02.016.
    1. Quispe R., Michos E.D., Martin S.S., Puri R., Toth P.P., Al Suwaidi J., Banach M., Virani S.S., Blumenthal R.S., Jones S.R., et al. High-Sensitivity C-Reactive Protein Discordance With Atherogenic Lipid Measures and Incidence of Atherosclerotic Cardiovascular Disease in Primary Prevention: The ARIC Study. J. Am. Heart Assoc. 2020;9:e013600. doi: 10.1161/JAHA.119.013600.
    1. Collet J.-P., Thiele H., Barbato E., Barthélémy O., Bauersachs J., Bhatt D.L., Dendale P., Dorobantu M., Edvardsen T., Folliguet T., et al. 2020 ESC Guidelines for the management of acute coronary syndromes in patients presenting without persistent ST-segment elevation. Eur. Heart J. 2021;42:ehaa575. doi: 10.1093/eurheartj/ehaa575.
    1. Knuuti J., Wijns W., Saraste A., Capodanno D., Barbato E., Funck-Brentano C., Prescott E., Storey R.F., Deaton C., Cuisset T., et al. 2019 ESC Guidelines for the diagnosis and management of chronic coronary syndromes. Eur. Heart J. 2020;41:407–477. doi: 10.1093/eurheartj/ehz425.
    1. Diamond G.A., Forrester J.S. Analysis of Probability as an Aid in the Clinical Diagnosis of Coronary-Artery Disease. N. Engl. J. Med. 1979;300:1350–1358. doi: 10.1056/NEJM197906143002402.
    1. Piepoli M.F., Hoes A.W., Agewall S., Albus C., Brotons C., Catapano A.L., Cooney M.T., Corra U., Cosyns B., Deaton C., et al. 2016 European Guidelines on cardiovascular disease prevention in clinical practice: The Sixth Joint Task Force of the European Society of Cardiology and Other Societies on Cardiovascular Disease Prevention in Clinical Practice (constituted by representatives of 10 societies and by invited experts)Developed with the special contribution of the European Association for Cardiovascular Prevention & Rehabilitation (EACPR) Eur. Heart J. 2016;37:2315–2381. doi: 10.1093/eurheartj/ehw106.
    1. Libby P. The changing landscape of atherosclerosis. Nature. 2021;592:524–533. doi: 10.1038/s41586-021-03392-8.
    1. Saletore Y., Meyer K., Korlach J., Vilfan I.D., Jaffrey S., Mason C.E. The birth of the Epitranscriptome: Deciphering the function of RNA modifications. Genome Biol. 2012;13:175. doi: 10.1186/gb-2012-13-10-175.
    1. Zaccara S., Ries R.J., Jaffrey S.R. Reading, writing and erasing mRNA methylation. Nat. Rev. Mol. Cell Biol. 2019;20:608–624. doi: 10.1038/s41580-019-0168-5.
    1. Liu J., Li K., Cai J., Zhang M., Zhang X., Xiong X., Meng H., Xu X., Huang Z., Peng J., et al. Landscape and Regulation of m6A and m6Am Methylome across Human and Mouse Tissues. Mol. Cell. 2020;77:426–440.e6. doi: 10.1016/j.molcel.2019.09.032.
    1. Christofi T., Zaravinos A. RNA editing in the forefront of epitranscriptomics and human health. J. Transl. Med. 2019;17:319. doi: 10.1186/s12967-019-2071-4.
    1. Vik E.S., Nawaz M.S., Andersen P.S., Fladeby C., Bjørås M., Dalhus B., Alseth I. Endonuclease V cleaves at inosines in RNA. Nat. Commun. 2013;4:2271. doi: 10.1038/ncomms3271.
    1. Ueda Y., Ooshio I., Fusamae Y., Kitae K., Kawaguchi M., Jingushi K., Hase H., Harada K., Hirata K., Tsujikawa K. AlkB homolog 3-mediated tRNA demethylation promotes protein synthesis in cancer cells. Sci. Rep. 2017;7:42271. doi: 10.1038/srep42271.
    1. Stellos K., Gatsiou A., Stamatelopoulos K., Matic L.P., John D., Lunella F.F., Jaé N., Rossbach O., Amrhein C., Sigala F., et al. Adenosine-to-inosine RNA editing controls cathepsin S expression in atherosclerosis by enabling HuR-mediated post-transcriptional regulation. Nat. Med. 2016;22:1140–1150. doi: 10.1038/nm.4172.
    1. Frye M., Jaffrey S.R., Pan T., Rechavi G., Suzuki T. RNA modifications: What have we learned and where are we headed? Nat. Rev. Genet. 2016;17:365–372. doi: 10.1038/nrg.2016.47.
    1. Alarcón C.R., Lee H., Goodarzi H., Halberg N., Tavazoie S.F. N6-methyladenosine marks primary microRNAs for processing. Nature. 2015;519:482–485. doi: 10.1038/nature14281.
    1. Li J., Yang X., Qi Z., Sang Y., Liu Y., Xu B., Liu W., Xu Z., Deng Y. The role of mRNA m6A methylation in the nervous system. Cell Biosci. 2019;9:66. doi: 10.1186/s13578-019-0330-y.
    1. Wu J., Frazier K., Zhang J., Gan Z., Wang T., Zhong X. Emerging role of m 6 A RNA methylation in nutritional physiology and metabolism. Obes. Rev. 2020;21:e12942. doi: 10.1111/obr.12942.
    1. Wang T., Kong S., Tao M., Ju S. The potential role of RNA N6-methyladenosine in Cancer progression. Mol. Cancer. 2020;19:88. doi: 10.1186/s12943-020-01204-7.
    1. Vu L.P., Cheng Y., Kharas M.G. The Biology of m6A RNA Methylation in Normal and Malignant Hematopoiesis. Cancer Discov. 2019;9:25–33. doi: 10.1158/-18-0959.
    1. Qin Y., Li L., Luo E., Hou J., Yan G., Wang D., Qiao Y., Tang C. Role of m6A RNA methylation in cardiovascular disease (Review) Int. J. Mol. Med. 2020;46:1958–1972. doi: 10.3892/ijmm.2020.4746.
    1. Wu S., Zhang S., Wu X., Zhou X. m6A RNA Methylation in Cardiovascular Diseases. Mol. Ther. 2020;28:2111–2119. doi: 10.1016/j.ymthe.2020.08.010.
    1. Longenecker J.Z., Gilbert C.J., Golubeva V.A., Martens C.R., Accornero F. Epitranscriptomics in the Heart: A Focus on m6A. Curr. Heart Fail. Rep. 2020;17:205–212. doi: 10.1007/s11897-020-00473-z.
    1. Gao X.-Q., Zhang Y.-H., Liu F., Ponnusamy M., Zhao X.-M., Zhou L.-Y., Zhai M., Liu C.-Y., Li X.-M., Wang M., et al. The piRNA CHAPIR regulates cardiac hypertrophy by controlling METTL3-dependent N6-methyladenosine methylation of Parp10 mRNA. Nat. Cell Biol. 2020;22:1319–1331. doi: 10.1038/s41556-020-0576-y.
    1. Hinger S.A., Wei J., Dorn L.E., Whitson B.A., Janssen P.M., He C., Accornero F. Remodeling of the m6A landscape in the heart reveals few conserved post-transcriptional events underlying cardiomyocyte hypertrophy. J. Mol. Cell. Cardiol. 2021;151:46–55. doi: 10.1016/j.yjmcc.2020.11.002.
    1. Yang C., Fan Z., Yang J. m6A modification of LncRNA MALAT1: A novel therapeutic target for myocardial ischemia-reperfusion injury. Int. J. Cardiol. 2020;306:162. doi: 10.1016/j.ijcard.2019.11.140.
    1. Shen W., Li H., Su H., Chen K., Yan J. FTO overexpression inhibits apoptosis of hypoxia/reoxygenation-treated myocardial cells by regulating m6A modification of Mhrt. Mol. Cell. Biochem. 2021;476:2171–2179. doi: 10.1007/s11010-021-04069-6.
    1. Wang J., Zhang J., Ma Y., Zeng Y., Lu C., Yang F., Jiang N., Zhang X., Wang Y., Xu Y., et al. WTAP promotes myocardial ischemia/reperfusion injury by increasing endoplasmic reticulum stress via regulating m6A modification of ATF4 mRNA. Aging. 2021;13:11135–11149. doi: 10.18632/aging.202770.
    1. Han Z., Wang X., Xu Z., Cao Y., Gong R., Yu Y., Yu Y., Guo X., Liu S., Yu M., et al. ALKBH5 regulates cardiomyocyte proliferation and heart regeneration by demethylating the mRNA of YTHDF1. Theranostics. 2021;11:3000–3016. doi: 10.7150/thno.47354.
    1. Li T., Zhuang Y., Yang W., Xie Y., Shang W., Su S., Dong X., Wu J., Jiang W., Zhou Y., et al. Silencing of METTL3 attenuates cardiac fibrosis induced by myocardial infarction via inhibiting the activation of cardiac fibroblasts. FASEB J. 2021;35:e21162. doi: 10.1096/fj.201903169R.
    1. Zhang B., Xu Y., Cui X., Jiang H., Luo W., Weng X., Wang Y., Zhao Y., Sun A., Ge J. Alteration of m6A RNA Methylation in Heart Failure With Preserved Ejection Fraction. Front. Cardiovasc. Med. 2021;8:647806. doi: 10.3389/fcvm.2021.647806.
    1. Jian D., Wang Y., Jian L., Tang H., Rao L., Chen K., Jia Z., Zhang W., Liu Y., Chen X., et al. METTL14 aggravates endothelial inflammation and atherosclerosis by increasing FOXO1 N6-methyladeosine modifications. Theranostics. 2020;10:8939–8956. doi: 10.7150/thno.45178.
    1. Quiles-Jiménez A., Gregersen I., de Sousa M.M.L., Abbas A., Kong X.Y., Alseth I., Holm S., Dahl T.B., Skagen K., Skjelland M., et al. N6-methyladenosine in RNA of atherosclerotic plaques: An epitranscriptomic signature of human carotid atherosclerosis. Biochem. Biophys. Res. Commun. 2020;533:631–637. doi: 10.1016/j.bbrc.2020.09.057.
    1. Wang L.J., Xue Y., Li H., Huo R., Yan Z., Wang J., Xu H., Wang J., Cao Y., Zhao J. Wilms’ tumour 1-associating protein inhibits endothelial cell angiogenesis by m6A-dependent epigenetic silencing of desmoplakin in brain arteriovenous malformation. J. Cell. Mol. Med. 2020;24:4981–4991. doi: 10.1111/jcmm.15101.
    1. Yao M.-D., Jiang Q., Ma Y., Liu C., Zhu C.-Y., Sun Y.-N., Shan K., Ge H.-M., Zhang Q.-Y., Zhang H.-Y., et al. Role of METTL3-Dependent N6-Methyladenosine mRNA Modification in the Promotion of Angiogenesis. Mol. Ther. 2020;28:2191–2202. doi: 10.1016/j.ymthe.2020.07.022.
    1. Wang L.-J., Xue Y., Huo R., Yan Z., Xu H., Li H., Wang J., Zhang Q., Cao Y., Zhao J.-Z. N6-methyladenosine methyltransferase METTL3 affects the phenotype of cerebral arteriovenous malformation via modulating Notch signaling pathway. J. Biomed. Sci. 2020;27:62. doi: 10.1186/s12929-020-00655-w.
    1. Shan K., Zhou R.-M., Xiang J., Sun Y.-N., Liu C., Lv M.-W., Xu J.-J. FTO regulates ocular angiogenesis via m6A-YTHDF2-dependent mechanism. Exp. Eye Res. 2020;197:108107. doi: 10.1016/j.exer.2020.108107.
    1. Picardi E., Manzari C., Mastropasqua F., Aiello I., D’Erchia A.M., Pesole G. Profiling RNA editing in human tissues: Towards the inosinome Atlas. Sci. Rep. 2015;5:14941. doi: 10.1038/srep14941.
    1. Samuel C.E. Adenosine deaminase acting on RNA (ADAR1), a suppressor of double-stranded RNA–triggered innate immune responses. J. Biol. Chem. 2019;294:1710–1720. doi: 10.1074/jbc.TM118.004166.
    1. Van Der Kwast R.V., Quax P.H., Nossent A.Y. An Emerging Role for isomiRs and the microRNA Epitranscriptome in Neovascularization. Cells. 2019;9:61. doi: 10.3390/cells9010061.
    1. Van Der Kwast R.V., Parma L., van der Bent M.L., van Ingen E., Baganha F., Peters H.A., Goossens E.A., Simons K.H., Palmen M., de Vries M.R., et al. Adenosine-to-Inosine Editing of Vasoactive MicroRNAs Alters Their Targetome and Function in Ischemia. Mol. Ther. Nucleic Acids. 2020;21:932–953. doi: 10.1016/j.omtn.2020.07.020.
    1. Jain M., Mann T.D., Stulić M., Rao S.P., Kirsch A., Pullirsch D., Strobl X., Rath C., Reissig L., Moreth K., et al. RNA editing of Filamin A pre- mRNA regulates vascular contraction and diastolic blood pressure. EMBO J. 2018;37:e94813. doi: 10.15252/embj.201694813.
    1. Borik S., Simon A.J., Nevo-Caspi Y., Mishali D., Amariglio N., Rechavi G., Paret G. Increased RNA editing in children with cyanotic congenital heart disease. Intensiv Care Med. 2011;37:1664–1671. doi: 10.1007/s00134-011-2296-z.
    1. Altaf F., Vesely C., Sheikh A.M., Munir R., Shah S.T.A., Tariq A. Modulation of ADAR mRNA expression in patients with congenital heart defects. PLoS ONE. 2019;14:e0200968. doi: 10.1371/journal.pone.0200968.
    1. El Azzouzi H., Vilaça A.P., Feyen D.A.M., Gommans W.M., De Weger R.A., Doevendans P.A.F., Sluijter J.P.G. Cardiomyocyte Specific Deletion of ADAR1 Causes Severe Cardiac Dysfunction and Increased Lethality. Front. Cardiovasc. Med. 2020;7:30. doi: 10.3389/fcvm.2020.00030.
    1. Swirski F.K., Nahrendorf M. Leukocyte Behavior in Atherosclerosis, Myocardial Infarction, and Heart Failure. Science. 2013;339:161–166. doi: 10.1126/science.1230719.
    1. Robbins C.S., Hilgendorf I., Weber G.F., Theurl I., Iwamoto Y., Figueiredo J.-L., Gorbatov R., Sukhova G.K., Gerhardt L.M.S., Smyth D., et al. Local proliferation dominates lesional macrophage accumulation in atherosclerosis. Nat. Med. 2013;19:1166–1172. doi: 10.1038/nm.3258.
    1. Mallat Z., Hugel B., Ohan J., Lesèche G., Freyssinet J.-M., Tedgui A. Shed Membrane Microparticles with Procoagulant Potential in Human Atherosclerotic Plaques. Circulation. 1999;99:348–353. doi: 10.1161/01.CIR.99.3.348.
    1. Gimbrone M.A., Jr., García-Cardeña G. Endothelial Cell Dysfunction and the Pathobiology of Atherosclerosis. Circ. Res. 2016;118:620–636. doi: 10.1161/CIRCRESAHA.115.306301.
    1. Gutiérrez E., Flammer A.J., Lerman L.O., Elízaga J., Lerman A., Fernández-Avilés F. Endothelial dysfunction over the course of coronary artery disease. Eur. Heart J. 2013;34:3175–3181. doi: 10.1093/eurheartj/eht351.
    1. Heyde A., Rohde D., McAlpine C.S., Zhang S., Hoyer F.F., Gerold J.M., Cheek D., Iwamoto Y., Schloss M.J., Vandoorne K., et al. Increased stem cell proliferation in atherosclerosis accelerates clonal hematopoiesis. Cell. 2021;184:1348–1361.e22. doi: 10.1016/j.cell.2021.01.049.
    1. Libby P., Nahrendorf M., Swirski F. Leukocytes Link Local and Systemic Inflammation in Ischemic Cardiovascular Disease: An Expanded “Cardiovascular Continuum”. J. Am. Coll. Cardiol. 2016;67:1091–1103. doi: 10.1016/j.jacc.2015.12.048.
    1. Swirski F.K., Nahrendorf M. Bone Marrow Takes Center Stage in Cardiovascular Disease. Circ. Res. 2016;119:701–703. doi: 10.1161/CIRCRESAHA.116.309584.
    1. Yvan-Charvet L., Pagler T., Gautier E.L., Avagyan S., Siry R.L., Han S., Welch C.L., Wang N., Randolph G.J., Snoeck H.W., et al. ATP-Binding Cassette Transporters and HDL Suppress Hematopoietic Stem Cell Proliferation. Science. 2010;328:1689–1693. doi: 10.1126/science.1189731.
    1. Murphy A.J., Akhtari M., Tolani S., Pagler T., Bijl N., Kuo C.-L., Wang M., Sanson M., Abramowicz S., Welch C., et al. ApoE regulates hematopoietic stem cell proliferation, monocytosis, and monocyte accumulation in atherosclerotic lesions in mice. J. Clin. Investig. 2011;121:4138–4149. doi: 10.1172/JCI57559.
    1. Robbins C.S., Chudnovskiy A., Rauch P.J., Figueiredo J., Iwamoto Y., Gorbatov R., Etzrodt M., Weber G.F., Ueno T., van Rooijen N., et al. Extramedullary hematopoiesis generates Ly-6C(high) monocytes that infiltrate atherosclerotic lesions. Circulation. 2012;125:364–374. doi: 10.1161/CIRCULATIONAHA.111.061986.
    1. Swirski F., Libby P., Aikawa E., Alcaide P., Luscinskas F.W., Weissleder R., Pittet M.J. Ly-6Chi monocytes dominate hypercholesterolemia-associated monocytosis and give rise to macrophages in atheromata. J. Clin. Investig. 2007;117:195–205. doi: 10.1172/JCI29950.
    1. Moore K.J., Sheedy F., Fisher E.A. Macrophages in atherosclerosis: A dynamic balance. Nat. Rev. Immunol. 2013;13:709–721. doi: 10.1038/nri3520.
    1. Schloss M.J., Hilby M., Nitz K., Prats R.G., Ferraro B., Leoni G., Soehnlein O., Kessler T., He W., Luckow B., et al. Ly6C high Monocytes Oscillate in the Heart During Homeostasis and After Myocardial Infarction—Brief Report. Arter. Thromb. Vasc. Biol. 2017;37:1640–1645. doi: 10.1161/ATVBAHA.117.309259.
    1. Swirski F.K., Nahrendorf M. Cardioimmunology: The immune system in cardiac homeostasis and disease. Nat. Rev. Immunol. 2018;18:733–744. doi: 10.1038/s41577-018-0065-8.
    1. Neto A.A., Mansur A.D.P., Avakian S.D., Gomes E.P.S.G., Ramires J.A.F. Monocitose é um marcador de risco independente para a doença arterial coronariana. Arq. Bras. Cardiol. 2006;86:240–244. doi: 10.1590/s0066-782x2006000300013.
    1. Welsh C., Welsh P., Mark P.B., Celis-Morales C.A., Lewsey J., Gray S.R., Lyall D.M., Iliodromiti S., Gill J.M., Pell J., et al. Association of Total and Differential Leukocyte Counts With Cardiovascular Disease and Mortality in the UK Biobank. Arter. Thromb. Vasc. Biol. 2018;38:1415–1423. doi: 10.1161/ATVBAHA.118.310945.
    1. Wang H., Hu X., Huang M., Liu J., Gu Y., Ma L., Zhou Q., Cao X. Mettl3-mediated mRNA m6A methylation promotes dendritic cell activation. Nat. Commun. 2019;10:1898. doi: 10.1038/s41467-019-09903-6.
    1. Chien C.-S., Li J.Y.-S., Chien Y., Wang M.-L., Yarmishyn A.A., Tsai P.-H., Juan C.-C., Nguyen P., Cheng H.-M., Huo T.-I., et al. METTL3-dependent N6-methyladenosine RNA modification mediates the atherogenic inflammatory cascades in vascular endothelium. Proc. Natl. Acad. Sci. USA. 2021;118:e2025070118. doi: 10.1073/pnas.2025070118.
    1. Chistiakov D.A., Orekhov A.N., Bobryshev Y.V. Cardiac Extracellular Vesicles in Normal and Infarcted Heart. Int. J. Mol. Sci. 2016;17:63. doi: 10.3390/ijms17010063.
    1. Rezaie J., Rahbarghazi R., Pezeshki M., Mazhar M., Yekani F., Khaksar M., Shokrollahi E., Amini H., Hashemzadeh S., Sokullu S.E., et al. Cardioprotective role of extracellular vesicles: A highlight on exosome beneficial effects in cardiovascular diseases. J. Cell. Physiol. 2019;234:21732–21745. doi: 10.1002/jcp.28894.
    1. Preston R.A., Jy W., Jimenez J.J., Mauro L.M., Horstman L.L., Valle M., Aime G., Ahn Y.S. Effects of Severe Hypertension on Endothelial and Platelet Microparticles. Hypertension. 2003;41:211–217. doi: 10.1161/01.HYP.0000049760.15764.2D.
    1. Burnouf T., Goubran H.A., Chou M.-L., Devos D., Radosevic M. Platelet microparticles: Detection and assessment of their paradoxical functional roles in disease and regenerative medicine. Blood Rev. 2014;28:155–166. doi: 10.1016/j.blre.2014.04.002.
    1. Tan K.T., Lip G.Y.H. The potential role of platelet microparticles in atherosclerosis. Thromb. Haemost. 2005;94:488–492. doi: 10.1160/TH05-03-0201.
    1. Hafiane A., Daskalopoulou S.S. Extracellular vesicles characteristics and emerging roles in atherosclerotic cardiovascular disease. Metabolism. 2018;85:213–222. doi: 10.1016/j.metabol.2018.04.008.
    1. Xia H., Wu Y., Zhao J., Li W., Lu L., Ma H., Cheng C., Sun J., Xiang Q., Bian T., et al. The aberrant cross-talk of epithelium–macrophages via METTL3-regulated extracellular vesicle miR-93 in smoking-induced emphysema. Cell Biol. Toxicol. 2021;4:1–17. doi: 10.1007/s10565-021-09585-1.
    1. Zink F., Stacey S.N., Norddahl G.L., Frigge M.L., Magnusson O.T., Jonsdottir I., Thorgeirsson T., Sigurdsson A., Gudjonsson S.A., Gudmundsson J., et al. Clonal hematopoiesis, with and without candidate driver mutations, is common in the elderly. Blood. 2017;130:742–752. doi: 10.1182/blood-2017-02-769869.
    1. Hartner J.C., Walkley C., Lu J., Orkin S.H. ADAR1 is essential for the maintenance of hematopoiesis and suppression of interferon signaling. Nat. Immunol. 2008;10:109–115. doi: 10.1038/ni.1680.
    1. Vu L.P., Pickering B.F., Cheng Y., Zaccara S., Nguyen D., Minuesa G., Chou T., Chow A., Saletore Y., Mackay M., et al. The N6-methyladenosine (m6A)-forming enzyme METTL3 controls myeloid differentiation of normal hematopoietic and leukemia cells. Nat. Med. 2017;23:1369–1376. doi: 10.1038/nm.4416.
    1. Weng H., Huang H., Wu H., Qin X., Zhao B.S., Dong L., Shi H., Skibbe J., Shen C., Hu C., et al. METTL14 Inhibits Hematopoietic Stem/Progenitor Differentiation and Promotes Leukemogenesis via mRNA m6A Modification. Cell Stem Cell. 2018;22:191–205.e9. doi: 10.1016/j.stem.2017.11.016.
    1. Li Z., Qian P., Shao W., Shi H., He X.C., Gogol M., Yu Z., Wang Y., Qi M., Zhu Y., et al. Suppression of m6A reader Ythdf2 promotes hematopoietic stem cell expansion. Cell Res. 2018;28:904–917. doi: 10.1038/s41422-018-0072-0.
    1. Mapperley C., Van De Lagemaat L.N., Lawson H., Tavosanis A., Paris J., Campos J., Wotherspoon D., Durko J., Sarapuu A., Choe J., et al. The mRNA m6A reader YTHDF2 suppresses proinflammatory pathways and sustains hematopoietic stem cell function. J. Exp. Med. 2021;218:20200829. doi: 10.1084/jem.20200829.
    1. WMA Declaration of Helsinki—Ethical Principles for Medical Research Involving Human Subjects. [(accessed on 28 January 2021)];2018 Available online:
    1. D’Agostino S.R.B., Vasan R.S., Pencina M.J., Wolf P.A., Cobain M., Massaro J.M., Kannel W.B. General Cardiovascular Risk Profile for Use in Primary Care: The Framingham Heart Study. Circulation. 2008;117:743–753. doi: 10.1161/CIRCULATIONAHA.107.699579.
    1. Russell S.D., Saval M.A., Robbins J.L., Ellestad M.H., Gottlieb S.S., Handberg E.M., Zhou Y., Chandler B., HF-ACTION Investigators New York Heart Association functional class predicts exercise parameters in the current era. Am Heart J. 2009;158:S24–S30. doi: 10.1016/j.ahj.2009.07.017.
    1. Huber A., Oldridge N., Höfer S. International SF-36 reference values in patients with ischemic heart disease. Qual. Life Res. 2016;25:2787–2798. doi: 10.1007/s11136-016-1316-4.
    1. Bundhun P.K., Yanamala C.M., Huang F. Percutaneous Coronary Intervention, Coronary Artery Bypass Surgery and the SYNTAX score: A systematic review and meta-analysis. Sci. Rep. 2017;7:43801. doi: 10.1038/srep43801.
    1. Nagueh S.F., Smiseth O.A., Appleton C.P., Byrd B.F., Dokainish H., Edvardsen T., Flachskampf F.A., Gillebert T., Klein A.L., Lancellotti P., et al. Recommendations for the Evaluation of Left Ventricular Diastolic Function by Echocardiography: An Update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J. Am. Soc. Echocardiogr. 2016;29:277–314. doi: 10.1016/j.echo.2016.01.011.
    1. Didier R., Morice M.C., Barragan P., Noryani A.A., Noor H.A., Majwal T., Hovasse T., Castellant P., Schneeberger M., Maillard L., et al. 6- Versus 24-Month Dual Antiplatelet Therapy After Implantation of Drug-Eluting Stents in Patients Nonresistant to Aspirin. JACC Cardiovasc. Interv. 2017;10:1202–1210. doi: 10.1016/j.jcin.2017.03.049.
    1. Vranckx P., White H.D., Huang Z., Mahaffey K.W., Armstrong P., Van de Werf F., Moliterno D.J., Wallentin L., Held C., Aylward P.E., et al. Validation of BARC Bleeding Criteria in Patients With Acute Coronary Syndromes: The TRACER Trial. J. Am. Coll. Cardiol. 2016;67:2135–2144. doi: 10.1016/j.jacc.2016.02.056.
    1. Shiotsu H., Okada K., Shibuta T., Kobayashi Y., Shirahama S., Kuroki C., Ueda S., Ohkuma M., Ikeda K., Ando Y., et al. The Influence of Pre-analytical Factors on the Analysis of Circulating MicroRNA. MicroRNA. 2018;7:195–203. doi: 10.2174/2211536607666180709143335.
    1. McKie P.M., Burnett J.C. NT-proBNP: The Gold Standard Biomarker in Heart Failure. J. Am. Coll. Cardiol. 2016;68:2437–2439. doi: 10.1016/j.jacc.2016.10.001.
    1. Aimo A., Vergaro G., Ripoli A., Bayes-Genis A., Figal D.A.P., de Boer R.A., Lassus J., Mebazaa A., Gayat E., Breidthardt T., et al. Meta-Analysis of Soluble Suppression of Tumorigenicity-2 and Prognosis in Acute Heart Failure. JACC Heart Fail. 2017;5:287–296. doi: 10.1016/j.jchf.2016.12.016.
    1. Huang D.-H., Sun H., Shi J.-P. Diagnostic Value of Soluble Suppression of Tumorigenicity-2 for Heart Failure. Chin. Med. J. 2016;129:570–577. doi: 10.4103/0366-6999.177000.
    1. Aimo A., Vergaro G., Passino C., Ripoli A., Ky B., Miller W.L., Bayes-Genis A., Anand I., Januzzi J.L., Emdin M. Prognostic Value of Soluble Suppression of Tumorigenicity-2 in Chronic Heart Failure. JACC Heart Fail. 2017;5:280–286. doi: 10.1016/j.jchf.2016.09.010.
    1. Sabatine M.S., Morrow D.A., Higgins L.J., MacGillivray C., Guo W., Bode C., Rifai N., Cannon C.P., Gerszten R.E., Lee R.T. Complementary Roles for Biomarkers of Biomechanical Strain ST2 and N-Terminal Prohormone B-Type Natriuretic Peptide in Patients With ST-Elevation Myocardial Infarction. Circulation. 2008;117:1936–1944. doi: 10.1161/CIRCULATIONAHA.107.728022.
    1. Van Vark L.C., Lesman-Leegte I., Baart S.J., Postmus D., Pinto Y.M., Orsel J.G., Westenbrink B.D., Rocca H.P.B.-L., van Miltenburg A.J., Boersma E., et al. Prognostic Value of Serial ST2 Measurements in Patients with Acute Heart Failure. J. Am. Coll. Cardiol. 2017;70:2378–2388. doi: 10.1016/j.jacc.2017.09.026.
    1. Wang Z., Klipfell E., Bennett B.J., Koeth R.A., Levison B.S., Dugar B., Feldstein A.E., Britt E.B., Fu X., Chung Y.-M., et al. Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature. 2011;472:57–63. doi: 10.1038/nature09922.
    1. Senthong V., Wang Z., Li X.S., Fan Y., Wu Y., Tang W.H.W., Hazen S.L. Intestinal Microbiota-Generated Metabolite Trimethylamine- N- Oxide and 5-Year Mortality Risk in Stable Coronary Artery Disease: The Contributory Role of Intestinal Microbiota in a COURAGE-Like Patient Cohort. J. Am. Heart Assoc. 2016;5:e002816. doi: 10.1161/JAHA.115.002816.
    1. Zile M.R., Claggett B.L., Prescott M.F., McMurray J.J., Packer M., Rouleau J.L., Swedberg K., Desai A.S., Gong J., Shi V.C., et al. Prognostic Implications of Changes in N-Terminal Pro-B-Type Natriuretic Peptide in Patients With Heart Failure. J. Am. Coll. Cardiol. 2016;68:2425–2436. doi: 10.1016/j.jacc.2016.09.931.
    1. McKie P.M., Cataliotti A., Lahr B.D., Martin F.L., Redfield M.M., Bailey K.R., Rodeheffer R.J., Burnett J.C. The Prognostic Value of N-Terminal Pro–B-Type Natriuretic Peptide for Death and Cardiovascular Events in Healthy Normal and Stage A/B Heart Failure Subjects. J. Am. Coll. Cardiol. 2010;55:2140–2147. doi: 10.1016/j.jacc.2010.01.031.
    1. Lainchbury J.G., Campbell E., Frampton C.M., Yandle T.G., Nicholls M., Richards A. Brain natriuretic peptide and n-terminal brain natriuretic peptide in the diagnosis of heart failure in patients with acute shortness of breath. J. Am. Coll. Cardiol. 2003;42:728–735. doi: 10.1016/S0735-1097(03)00787-3.
    1. Clerico A., Fontana M., Zyw L., Passino C., Emdin M. Comparison of the Diagnostic Accuracy of Brain Natriuretic Peptide (BNP) and the N-Terminal Part of the Propeptide of BNP Immunoassays in Chronic and Acute Heart Failure: A Systematic Review. Clin. Chem. 2007;53:813–822. doi: 10.1373/clinchem.2006.075713.
    1. Buckley D.I., Fu R., Freeman M., Rogers K., Helfand M. C-Reactive Protein as a Risk Factor for Coronary Heart Disease: A Systematic Review and Meta-analyses for the U.S. Preventive Services Task Force. Ann. Intern. Med. 2009;151:483–495. doi: 10.7326/0003-4819-151-7-200910060-00009.
    1. Januzzi J.L., Camargo C.A., Anwaruddin S., Baggish A.L., Chen A.A., Krauser D.G., Tung R., Cameron R., Nagurney J.T., Chae C.U., et al. The N-terminal Pro-BNP Investigation of Dyspnea in the Emergency department (PRIDE) study. Am. J. Cardiol. 2005;95:948–954. doi: 10.1016/j.amjcard.2004.12.032.
    1. McMurray J.J., Packer M., Desai A.S., Gong J., Lefkowitz M.P., Rizkala A.R., Rouleau J.L., Shi V.C., Solomon S.D., Swedberg K., et al. Angiotensin–Neprilysin Inhibition versus Enalapril in Heart Failure. N. Engl. J. Med. 2014;371:993–1004. doi: 10.1056/NEJMoa1409077.
    1. The Atherosclerosis Risk in Communities (ARIC) Study: Design and objectives. The ARIC investigators. Am. J. Epidemiol. 1989;129:687–702. doi: 10.1093/oxfordjournals.aje.a115184.
    1. Nummi A., Nieminen T., Pätilä T., Lampinen M., Lehtinen M.L., Kivistö S., Holmström M., Wilkman E., Teittinen K., Laine M., et al. Epicardial delivery of autologous atrial appendage micrografts during coronary artery bypass surgery—Safety and feasibility study. Pilot Feasibility Stud. 2017;3:1–9. doi: 10.1186/s40814-017-0217-9.
    1. Xie Y., Lampinen M., Takala J., Sikorski V., Soliymani R., Tarkia M., Lalowski M., Mervaala E., Kupari M., Zheng Z., et al. Epicardial transplantation of atrial appendage micrograft patch salvages myocardium after infarction. J. Heart Lung Transplant. 2020;39:707–718. doi: 10.1016/j.healun.2020.03.023.
    1. Selberg S., Blokhina D., Aatonen M., Koivisto P., Siltanen A., Mervaala E., Kankuri E., Karelson M. Discovery of Small Molecules that Activate RNA Methylation through Cooperative Binding to the METTL3-14-WTAP Complex Active Site. Cell Rep. 2019;26:3762–3771.e5. doi: 10.1016/j.celrep.2019.02.100.
    1. Dominissini D., Moshitch-Moshkovitz S., Schwartz S., Salmon-Divon M., Ungar L., Osenberg S., Cesarkas K., Jacob-Hirsch J., Amariglio N., Kupiec M., et al. Topology of the human and mouse m6A RNA methylomes revealed by m6A-seq. Nature. 2012;485:201–206. doi: 10.1038/nature11112.
    1. Meyer K., Saletore Y., Zumbo P., Elemento O., Mason C.E., Jaffrey S.R. Comprehensive Analysis of mRNA Methylation Reveals Enrichment in 3′ UTRs and near Stop Codons. Cell. 2012;149:1635–1646. doi: 10.1016/j.cell.2012.05.003.
    1. Liu H., Begik O., Lucas M.C., Ramirez J.M., Mason C.E., Wiener D., Schwartz S., Mattick J.S., Smith M.A., Novoa E.M. Accurate detection of m6A RNA modifications in native RNA sequences. Nat. Commun. 2019;10:4079. doi: 10.1038/s41467-019-11713-9.
    1. García-Campos M.A., Edelheit S., Toth U., Safra M., Shachar R., Viukov S., Winkler R., Nir R., Lasman L., Brandis A., et al. Deciphering the “m6A Code” via Antibody-Independent Quantitative Profiling. Cell. 2019;178:731–747.e16. doi: 10.1016/j.cell.2019.06.013.
    1. Xiao Y., Wang Y., Tang Q., Wei L., Zhang X., Jia G. An Elongation- and Ligation-Based qPCR Amplification Method for the Radiolabeling-Free Detection of Locus-Specific N 6 -Methyladenosine Modification. Angew. Chem. Int. Ed. Engl. 2018;57:15995–16000. doi: 10.1002/anie.201807942.
    1. McIntyre A.B.R., Gokhale N., Cerchietti L., Jaffrey S.R., Horner S.M., Mason C.E. Limits in the detection of m6A changes using MeRIP/m6A-seq. Sci. Rep. 2020;10:6590. doi: 10.1038/s41598-020-63355-3.
    1. Molinie B., Wang J., Lim K.S., Hillebrand R., Lu Z.-X., Van Wittenberghe N., Howard B.D., Daneshvar K., Mullen A.C., Dedon P., et al. m6A-LAIC-seq reveals the census and complexity of the m6A epitranscriptome. Nat. Methods. 2016;13:692–698. doi: 10.1038/nmeth.3898.
    1. Wang Y., Li Y., Toth J.I., Petroski M.D., Zhang Z., Zhao J.C. N6-methyladenosine modification destabilizes developmental regulators in embryonic stem cells. Nat. Cell Biol. 2014;16:191–198. doi: 10.1038/ncb2902.
    1. Ke S., Alemu E.A., Mertens C., Gantman E.C., Fak J.J., Mele A., Haripal B., Zucker-Scharff I., Moore M.J., Park C.Y., et al. A majority of m6A residues are in the last exons, allowing the potential for 3′ UTR regulation. Genes Dev. 2015;29:2037–2053. doi: 10.1101/gad.269415.115.
    1. Linder B., Grozhik A.V., Olarerin-George A.O., Meydan C., Mason C.E., Jaffrey S.R. Single-nucleotide-resolution mapping of m6A and m6Am throughout the transcriptome. Nat. Methods. 2015;12:767–772. doi: 10.1038/nmeth.3453.
    1. Bringmann P., Lührmann R. Antibodies specific for N6-methyladenosine react with intact snRNPs U2 and U4/U6. FEBS Lett. 1987;213:309–315. doi: 10.1016/0014-5793(87)81512-0.
    1. Thüring K., Schmid K., Keller P., Helm M. LC-MS Analysis of Methylated RNA. Methods Mol. Biol. 2017;1562:3–18. doi: 10.1007/978-1-4939-6807-7_1.
    1. Liu N., Pan T. Probing RNA Modification Status at Single-Nucleotide Resolution in Total RNA. Methods Enzymol. 2015;560:149–159. doi: 10.1016/bs.mie.2015.03.005.
    1. Imanishi M., Tsuji S., Suda A., Futaki S. Detection of N6-methyladenosine based on the methyl-sensitivity of MazF RNA endonuclease. Chem. Commun. 2017;53:12930–12933. doi: 10.1039/C7CC07699A.
    1. Bodi Z., Fray R.G. Detection and Quantification of N 6-Methyladenosine in Messenger RNA by TLC. Methods Mol. Biol. 2017;1562:79–87. doi: 10.1007/978-1-4939-6807-7_6.
    1. Sednev M.V., Mykhailiuk V., Choudhury P., Halang J., Sloan K.E., Bohnsack M.T., Höbartner C. N 6 -Methyladenosine-Sensitive RNA-Cleaving Deoxyribozymes. Angew. Chem. Int. Ed. 2018;57:15117–15121. doi: 10.1002/anie.201808745.
    1. Hong T., Yuan Y., Chen Z., Xi K., Wang T., Xie Y., He Z., Su H., Zhou Y., Tan Z.-J., et al. Precise Antibody-Independent m6A Identification via 4SedTTP-Involved and FTO-Assisted Strategy at Single-Nucleotide Resolution. J. Am. Chem. Soc. 2018;140:5886–5889. doi: 10.1021/jacs.7b13633.
    1. Harcourt E., Ehrenschwender T., Batista P.J., Chang H.Y., Kool E.T. Identification of a Selective Polymerase Enables Detection of N6-Methyladenosine in RNA. J. Am. Chem. Soc. 2013;135:19079–19082. doi: 10.1021/ja4105792.
    1. Aschenbrenner J., Werner S., Marchand V., Adam M., Motorin Y., Helm M., Marx A. Engineering of a DNA Polymerase for Direct m6A Sequencing. Angew. Chem. Int. Ed. 2018;57:417–421. doi: 10.1002/anie.201710209.
    1. Liu W., Yan J., Zhang Z., Pian H., Liu C., Li Z. Identification of a selective DNA ligase for accurate recognition and ultrasensitive quantification of N6-methyladenosine in RNA at one-nucleotide resolution. Chem. Sci. 2018;9:3354–3359. doi: 10.1039/C7SC05233B.
    1. Castellanos-Rubio A., Santin I., Olazagoitia-Garmendia A., Romero-Garmendia I., Jauregi-Miguel A., Legarda M., Bilbao J.R. A novel RT-QPCR-based assay for the relative quantification of residue specific m6A RNA methylation. Sci. Rep. 2019;9:4220. doi: 10.1038/s41598-019-40018-6.
    1. Garalde D.R., Snell E.A., Jachimowicz D., Sipos B., Lloyd J.H., Bruce M., Pantic N., Admassu T., James P., Warland A., et al. Highly parallel direct RNA sequencing on an array of nanopores. Nat. Methods. 2018;15:201–206. doi: 10.1038/nmeth.4577.
    1. Chen Y., Wu Y., Liu L., Feng J., Zhang T., Qin S., Zhao X., Wang C., Li D., Han W., et al. Study of the whole genome, methylome and transcriptome of Cordyceps militaris. Sci. Rep. 2019;9:1–15. doi: 10.1038/s41598-018-38021-4.
    1. Wang Y., Xiao Y., Dong S., Yu Q., Jia G. Antibody-free enzyme-assisted chemical approach for detection of N6-methyladenosine. Nat. Chem. Biol. 2020;16:896–903. doi: 10.1038/s41589-020-0525-x.
    1. Meyer K.D. DART-seq: An antibody-free method for global m6A detection. Nat. Methods. 2019;16:1275–1280. doi: 10.1038/s41592-019-0570-0.
    1. Chen K., Lu Z., Wang X., Fu Y., Luo G.-Z., Liu N., Han D., Dominissini D., Dai Q., Pan T., et al. High-ResolutionN6-Methyladenosine (m6A) Map Using Photo-Crosslinking-Assisted m6A Sequencing. Angew. Chem. Int. Ed. Engl. 2015;54:1587–1590. doi: 10.1002/anie.201410647.
    1. Bahn J.H., Lee J.-H., Li G., Greer C., Peng G., Xiao X. Accurate identification of A-to-I RNA editing in human by transcriptome sequencing. Genome Res. 2011;22:142–150. doi: 10.1101/gr.124107.111.
    1. Ranasinghe R.T., Challand M.R., Ganzinger K.A., Lewis B.W., Softley C., Schmied W.H., Horrocks M.H., Shivji N., Chin J.W., Spencer J., et al. Detecting RNA base methylations in single cells by in situ hybridization. Nat. Commun. 2018;9:655. doi: 10.1038/s41467-017-02714-7.
    1. Kontostathi G., Makridakis M., Zoidakis J., Vlahou A. Applications of multiple reaction monitoring targeted proteomics assays in human plasma. Expert Rev. Mol. Diagn. 2019;19:499–515. doi: 10.1080/14737159.2019.1615448.
    1. Gholizadeh E., Karbalaei R., Khaleghian A., Salimi M., Gilany K., Soliymani R., Tanoli Z., Rezadoost H., Baumann M., Jafari M., et al. Identification of Celecoxib targeted proteins using label-free thermal proteome profiling on rat hippocampus. Mol. Pharmacol. 2021 doi: 10.1124/molpharm.120.000210.
    1. Guo Y., Zhao S., Li C.-I., Sheng Q., Shyr Y. RNAseqPS: A Web Tool for Estimating Sample Size and Power for RNAseq Experiment. Cancer Inform. 2014;13:1–5. doi: 10.4137/CIN.S17688.
    1. Berulava T., Buchholz E., Elerdashvili V., Pena T., Islam R., Lbik D., Mohamed B.A., Renner A., Von Lewinski D., Sacherer M., et al. Changes in m6A RNA methylation contribute to heart failure progression by modulating translation. Eur. J. Heart Fail. 2020;22:54–66. doi: 10.1002/ejhf.1672.
    1. Yoon S., Nam D. Gene dispersion is the key determinant of the read count bias in differential expression analysis of RNA-seq data. BMC Genom. 2017;18:408. doi: 10.1186/s12864-017-3809-0.
    1. Wilson J.M., Jungner Y.G. Principios y metodos del examen colectivo para identificar enfermedades [Principles and practice of mass screening for disease] Bol. Oficina Sanit. Panam. 1968;65:281–393.
    1. Deng K., Ning X., Ren X., Yang B., Li J., Cao J., Chen J., Lu X., Chen S., Wang L. Transcriptome-wide N6-methyladenosine methylation landscape of coronary artery disease. Epigenomics. 2021;13:793–808. doi: 10.2217/epi-2020-0372.
    1. Jantsch M.F., Quattrone A., O’Connell M., Helm M., Frye M., Gonzales M.M., Öhman M., Ameres S., Willems L., Fuks F., et al. Positioning Europe for the Epitranscriptomics challenge. RNA Biol. 2018;15:829–831. doi: 10.1080/15476286.2018.1460996.
    1. Stary H.C. Lipid and macrophage accumulations in arteries of children and the development of atherosclerosis. Am. J. Clin. Nutr. 2000;72:1297s–1306s. doi: 10.1093/ajcn/72.5.1297s.
    1. Paulson K.E., Zhu S.-N., Chen M., Nurmohamed S., Jongstra-Bilen J., Cybulsky M.I. Resident Intimal Dendritic Cells Accumulate Lipid and Contribute to the Initiation of Atherosclerosis. Circ. Res. 2010;106:383–390. doi: 10.1161/CIRCRESAHA.109.210781.
    1. Zuchtriegel G., Uhl B., Puhr-Westerheide D., Pörnbacher M., Lauber K., Krombach F., Reichel C.A. Platelets Guide Leukocytes to Their Sites of Extravasation. PLoS Biol. 2016;14:e1002459. doi: 10.1371/journal.pbio.1002459.
    1. Mause S.F., von Hundelshausen P., Zernecke A., Koenen R.R., Weber C. Platelet Microparticles. Arter. Thromb. Vasc. Biol. 2005;25:1512–1518. doi: 10.1161/01.ATV.0000170133.43608.37.
    1. van Gils J., Derby M.C., Fernandes L.R., Ramkhelawon B., Ray T.D., Rayner K., Parathath S., Distel E., Feig J.L., Alvarez-Leite J.I., et al. The neuroimmune guidance cue netrin-1 promotes atherosclerosis by inhibiting the emigration of macrophages from plaques. Nat. Immunol. 2012;13:136–143. doi: 10.1038/ni.2205.
    1. Geissler A., Ryzhov S., Sawyer D.B. Neuregulins: Protective and reparative growth factors in multiple forms of cardiovascular disease. Clin. Sci. 2020;134:2623–2643. doi: 10.1042/CS20200230.
    1. Zhao B.S., Nachtergaele S., Roundtree I.A., He C. Our views of dynamic N6-methyladenosine RNA methylation. RNA. 2017;24:268–272. doi: 10.1261/rna.064295.117.
    1. Schaefer M. The Regulation of RNA Modification Systems: The Next Frontier in Epitranscriptomics? Genes. 2021;12:345. doi: 10.3390/genes12030345.
    1. Ke S., Pandya-Jones A., Saito Y., Fak J.J., Vågbø C.B., Geula S., Hanna J.H., Black D.L., Darnell J.E., Jr., Darnell R. m6A mRNA modifications are deposited in nascent pre-mRNA and are not required for splicing but do specify cytoplasmic turnover. Genes Dev. 2017;31:990–1006. doi: 10.1101/gad.301036.117.
    1. Xiang Y., Laurent B., Hsu C.-H., Nachtergaele S., Lu Z., Sheng W., Xu C., Chen H., Ouyang J., Wang S., et al. RNA m6A methylation regulates the ultraviolet-induced DNA damage response. Nature. 2017;543:573–576. doi: 10.1038/nature21671.
    1. Darnell R., Ke S., Darnell J.E., Jr. Pre-mRNA processing includesN6methylation of adenosine residues that are retained in mRNA exons and the fallacy of “RNA epigenetics”. RNA. 2018;24:262–267. doi: 10.1261/rna.065219.117.
    1. Rosa-Mercado N.A., Withers J.B., Steitz J.A. Settling the m6A debate: Methylation of mature mRNA is not dynamic but accelerates turnover. Genes Dev. 2017;31:957–958. doi: 10.1101/gad.302695.117.
    1. Xiao H., Fan X., Zhang R., Wu G. Upregulated N6-Methyladenosine RNA in Peripheral Blood: Potential Diagnostic Biomarker for Breast Cancer. Cancer Res. Treat. 2021;53:399–408. doi: 10.4143/crt.2020.870.
    1. Ge L., Zhang N., Chen Z., Song J., Wu Y., Li Z., Chen F., Wu J., Li D., Li J., et al. Level of N6-Methyladenosine in Peripheral Blood RNA: A Novel Predictive Biomarker for Gastric Cancer. Clin. Chem. 2020;66:342–351. doi: 10.1093/clinchem/hvz004.
    1. Pei Y., Lou X., Li K., Xu X., Guo Y., Xu D., Yang Z., Xu D., Cui W., Zhang D. Peripheral Blood Leukocyte N6-methyladenosine is a Noninvasive Biomarker for Non-small-cell Lung Carcinoma. OncoTargets Ther. 2020;13:11913–11921. doi: 10.2147/OTT.S267344.
    1. Luo Q., Rao J., Zhang L., Fu B., Guo Y., Huang Z., Li J. The study of METTL14, ALKBH5, and YTHDF2 in peripheral blood mononuclear cells from systemic lupus erythematosus. Mol. Genet. Genom. Med. 2020;8:e1298. doi: 10.1002/mgg3.1298.
    1. Luo Q., Gao Y., Zhang L., Rao J., Guo Y., Huang Z., Li J. Decreased ALKBH5, FTO, and YTHDF2 in Peripheral Blood Are as Risk Factors for Rheumatoid Arthritis. BioMed Res. Int. 2020;20:5735279. doi: 10.1155/2020/5735279.
    1. Selberg S., Yu L.-Y., Bondarenko O., Kankuri E., Seli N., Kovaleva V., Herodes K., Saarma M., Karelson M. Small-Molecule Inhibitors of the RNA M6A Demethylases FTO Potently Support the Survival of Dopamine Neurons. Int. J. Mol. Sci. 2021;22:4537. doi: 10.3390/ijms22094537.
    1. Selberg S., Seli N., Kankuri E., Karelson M. Rational Design of Novel Anticancer Small-Molecule RNA m6A Demethylase ALKBH5 Inhibitors. ACS Omega. 2021;6:13310–13320. doi: 10.1021/acsomega.1c01289.
    1. Yankova E., Blackaby W., Albertella M., Rak J., De Braekeleer E., Tsagkogeorga G., Pilka E.S., Aspris D., Leggate D., Hendrick A.G., et al. Small-molecule inhibition of METTL3 as a strategy against myeloid leukaemia. Nature. 2021;593:597–601. doi: 10.1038/s41586-021-03536-w.
    1. Nummi A., Mulari S., Stewart J.A., Kivistö S., Teittinen K., Nieminen T., Lampinen M., Pätilä T., Sintonen H., Juvonen T., et al. Autologous cardiac micrografts as support therapy to coronary artery bypass surgery. medRxiv. 2021 doi: 10.1101/2021.03.05.21252995.

Source: PubMed

3
Suscribir