Robust T Cell Immunity in Convalescent Individuals with Asymptomatic or Mild COVID-19

Takuya Sekine, André Perez-Potti, Olga Rivera-Ballesteros, Kristoffer Strålin, Jean-Baptiste Gorin, Annika Olsson, Sian Llewellyn-Lacey, Habiba Kamal, Gordana Bogdanovic, Sandra Muschiol, David J Wullimann, Tobias Kammann, Johanna Emgård, Tiphaine Parrot, Elin Folkesson, Karolinska COVID-19 Study Group, Olav Rooyackers, Lars I Eriksson, Jan-Inge Henter, Anders Sönnerborg, Tobias Allander, Jan Albert, Morten Nielsen, Jonas Klingström, Sara Gredmark-Russ, Niklas K Björkström, Johan K Sandberg, David A Price, Hans-Gustaf Ljunggren, Soo Aleman, Marcus Buggert, Mira Akber, Lena Berglin, Helena Bergsten, Susanna Brighenti, Demi Brownlie, Marta Butrym, Benedict Chambers, Puran Chen, Martin Cornillet Jeannin, Jonathan Grip, Angelica Cuapio Gomez, Lena Dillner, Isabel Diaz Lozano, Majda Dzidic, Malin Flodström Tullberg, Anna Färnert, Hedvig Glans, Alvaro Haroun-Izquierdo, Elizabeth Henriksson, Laura Hertwig, Sadaf Kalsum, Efthymia Kokkinou, Egle Kvedaraite, Marco Loreti, Magalini Lourda, Kimia Maleki, Karl-Johan Malmberg, Nicole Marquardt, Christopher Maucourant, Jakob Michaelsson, Jenny Mjösberg, Kirsten Moll, Jagadees Muva, Johan Mårtensson, Pontus Nauclér, Anna Norrby-Teglund, Laura Palma Medina, Björn Persson, Lena Radler, Emma Ringqvist, John Tyler Sandberg, Ebba Sohlberg, Tea Soini, Mattias Svensson, Janne Tynell, Renata Varnaite, Andreas Von Kries, Christian Unge, Takuya Sekine, André Perez-Potti, Olga Rivera-Ballesteros, Kristoffer Strålin, Jean-Baptiste Gorin, Annika Olsson, Sian Llewellyn-Lacey, Habiba Kamal, Gordana Bogdanovic, Sandra Muschiol, David J Wullimann, Tobias Kammann, Johanna Emgård, Tiphaine Parrot, Elin Folkesson, Karolinska COVID-19 Study Group, Olav Rooyackers, Lars I Eriksson, Jan-Inge Henter, Anders Sönnerborg, Tobias Allander, Jan Albert, Morten Nielsen, Jonas Klingström, Sara Gredmark-Russ, Niklas K Björkström, Johan K Sandberg, David A Price, Hans-Gustaf Ljunggren, Soo Aleman, Marcus Buggert, Mira Akber, Lena Berglin, Helena Bergsten, Susanna Brighenti, Demi Brownlie, Marta Butrym, Benedict Chambers, Puran Chen, Martin Cornillet Jeannin, Jonathan Grip, Angelica Cuapio Gomez, Lena Dillner, Isabel Diaz Lozano, Majda Dzidic, Malin Flodström Tullberg, Anna Färnert, Hedvig Glans, Alvaro Haroun-Izquierdo, Elizabeth Henriksson, Laura Hertwig, Sadaf Kalsum, Efthymia Kokkinou, Egle Kvedaraite, Marco Loreti, Magalini Lourda, Kimia Maleki, Karl-Johan Malmberg, Nicole Marquardt, Christopher Maucourant, Jakob Michaelsson, Jenny Mjösberg, Kirsten Moll, Jagadees Muva, Johan Mårtensson, Pontus Nauclér, Anna Norrby-Teglund, Laura Palma Medina, Björn Persson, Lena Radler, Emma Ringqvist, John Tyler Sandberg, Ebba Sohlberg, Tea Soini, Mattias Svensson, Janne Tynell, Renata Varnaite, Andreas Von Kries, Christian Unge

Abstract

SARS-CoV-2-specific memory T cells will likely prove critical for long-term immune protection against COVID-19. Here, we systematically mapped the functional and phenotypic landscape of SARS-CoV-2-specific T cell responses in unexposed individuals, exposed family members, and individuals with acute or convalescent COVID-19. Acute-phase SARS-CoV-2-specific T cells displayed a highly activated cytotoxic phenotype that correlated with various clinical markers of disease severity, whereas convalescent-phase SARS-CoV-2-specific T cells were polyfunctional and displayed a stem-like memory phenotype. Importantly, SARS-CoV-2-specific T cells were detectable in antibody-seronegative exposed family members and convalescent individuals with a history of asymptomatic and mild COVID-19. Our collective dataset shows that SARS-CoV-2 elicits broadly directed and functionally replete memory T cell responses, suggesting that natural exposure or infection may prevent recurrent episodes of severe COVID-19.

Conflict of interest statement

Declaration of Interests The authors declare no competing interests.

Copyright © 2020 The Author(s). Published by Elsevier Inc. All rights reserved.

Figures

Graphical abstract
Graphical abstract
Figure 1
Figure 1
T Cell Perturbations in COVID-19 (A) Dot plots summarizing the absolute counts and relative frequencies of CD3+ (left), CD4+ (center), and CD8+ T cells (right) in healthy blood donors from 2020 (2020 BD ) and patients with acute moderate (AM ) or acute severe COVID-19 (AS). Each dot represents one donor. Data are shown as median ± IQR. ∗p < 0.05, ∗∗∗p < 0.001. Kruskal-Wallis rank-sum test with Dunn’s post hoc test for multiple comparisons. (B) Top: PCA plots showing the distribution and segregation of memory CD4+ and CD8+ T cells by group. Each dot represents one donor. Memory cells were defined by exclusion of naive cells (CCR7+ CD45RA+ CD95−). Center: PCA plots showing the corresponding trajectories of key markers that influenced the group-defined segregation of memory CD4+ and CD8+ T cells. Bottom: dot plots showing the group-defined distribution of markers in PC2. Each dot represents one donor. MC, individuals in the convalescent phase after mild COVID-19. ∗∗p < 0.01, ∗∗∗p < 0.001. Kruskal-Wallis rank-sum test with Dunn’s post hoc test for multiple comparisons. (C) Dot plots summarizing the expression frequencies of activation/cycling markers among memory CD4+ (top) and CD8+ T cells (bottom) by group. Each dot represents one donor. Data are shown as median ± IQR. ∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001. Kruskal-Wallis rank-sum test with Dunn’s post hoc test for multiple comparisons. (D) Top: UMAP plots showing the clustering of memory CD8+ T cells by group in relation to all memory CD8+ T cells (left). Bottom: UMAP plots showing the expression of individual markers (n = 3 donors per group). UMAP plots were based on all markers distinguished in the bottom row. (E) Left: representative flow cytometry plots showing the expression of activation/cycling markers among memory CD8+ T cells by group. Numbers indicate percentages in the drawn gates. Right: dot plots showing the expression frequencies of activation/cycling markers among memory CD8+ T cells by group. Each dot represents one donor. Data are shown as median ± IQR. Key as in (B) and (C). ∗∗p < 0.01, ∗∗∗p < 0.001. Kruskal-Wallis rank-sum test with Dunn’s post hoc test for multiple comparisons.
Figure S1
Figure S1
Quantification and Characterization of CD4+ and CD8+ T Cells in COVID-19, Related to Figure 1 (A) Flow cytometric gating strategy for the identification and quantification of CD4+ and CD8+ T cells. (B) Left: flow cytometric gating strategy for the identification and quantification of memory CD4+ and CD8+ T cells. Right: dot plots summarizing the absolute numbers and relative frequencies of memory CD4+ and CD8+ T cells by group. Each dot represents one donor. Data are shown as median ± IQR. 2020 BD: healthy blood donors from 2020 (n = 18). AM: patients with acute moderate COVID-19 (n = 11). AS: patients with acute severe COVID-19 (n = 17). (C) Dot plots summarizing the expression frequencies of phenotypic markers among memory CD4+ and CD8+ T cells by group. Each dot represents one donor. Bars indicate median values. 2020 BD: healthy blood donors from 2020 (n = 18). MC: individuals in the convalescent phase after mild COVID-19 (n = 31). AM: patients with acute moderate COVID-19 (n = 11). AS: patients with acute severe COVID-19 (n = 17).
Figure S2
Figure S2
Phenograph and UMAP Clustering of Memory CD4+ and CD8+ T Cells with Correlative Analyses of Immune Activation Phenotypes versus Clinical Parameters in Acute COVID-19, Related to Figure 1 (A) Phenograph plots showing the clustering of memory CD8+ T cells and heatmap highlighting clusters 20 and 29. (B) Top left: UMAP plots showing the clustering of memory CD4+ T cells by group in relation to all memory CD4+ T cells (left). Bottom left: UMAP plots showing the expression of individual markers (n = 3 donors per group). Right: dot plots summarizing the expression frequencies of activation/cycling markers among memory CD4+ T cells by group. Each dot represents one donor. Data are shown as median ± IQR. 2020 BD: healthy blood donors from 2020 (n = 18). MC: individuals in the convalescent phase after mild COVID-19 (n = 31). AM: patients with acute moderate COVID-19 (n = 11). AS: patients with acute severe COVID-19 (n = 17). ∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001. Kruskal-Wallis rank-sum test with Dunn’s post hoc test for multiple comparisons. (C) and (D) Heatmaps summarizing the pairwise correlations between phenotypically defined subpopulations of memory CD4+ or CD8+ T cells and various clinical parameters in patients with acute COVID-19. ∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001. Spearman rank correlation.
Figure S3
Figure S3
Immune Activation Patterns in Acute COVID-19, Related to Figure 2 (A) Representative flow cytometry plots showing the expression of activation/cycling markers among memory CD8+ T cells in patients with acute severe COVID-19. Numbers indicate percentages in the drawn gates. (B) Top left: UMAP plots showing the clustering of memory CD8+ T cells by phenotype in relation to all memory CD8+ T cells (left). Bottom left: UMAP plots showing the expression of individual markers (n = 1 donor per group). Right: dot plot summarizing the frequencies of CD38+ HLA-DR− memory CD8+ T cells by group. Each dot represents one donor. Data are shown as median ± IQR. 2020 BD: healthy blood donors from 2020 (n = 18). AM: patients with acute moderate COVID-19 (n = 11). AS: patients with acute severe COVID-19 (n = 17). ∗∗∗p < 0.001. Kruskal-Wallis rank-sum test with Dunn’s post hoc test for multiple comparisons. (C) Representative flow cytometry plots showing the expression of activation/cycling markers among CMV-specific memory CD8+ T cells in a healthy control and a patient with acute severe COVID-19. Numbers indicate percentages in the drawn gates. (D) Representative flow cytometry plots showing the phenotype of Ki-67+ memory CD8+ T cells in a patient with acute severe COVID-19. Numbers indicate percentages in the drawn gates. (E) Left: representative flow cytometry plots showing SARS-CoV-2-specific tetramer+ CD8+ T cells in two donors from group MC. Right: dot plot summarizing the frequencies of SARS-CoV-2-specific tetramer+ CD8+ T cells in donors from groups MC (n = 10) and SC (n = 2).
Figure 2
Figure 2
Phenotypic Characteristics of SARS-CoV-2-Specific T Cells in Acute and Convalescent COVID-19 (A and B) Dot plots summarizing the expression frequencies of activation/cycling markers among tetramer+ CMV-specific (A) or EBV-specific CD8+ T cells (B) by group. Each dot represents one specificity in one donor. Data are shown as median ± IQR. ∗p < 0.05, ∗∗p < 0.01. Kruskal-Wallis rank-sum test with Dunn’s post hoc test for multiple comparisons. (C) Representative flow cytometry plots (left) and bar graphs (right) showing the expression of activation/cycling markers among CD107a+ and/or IFN-γ+ SARS-CoV-2-specific CD4+ and CD8+ T cells (n = 6 donors). Numbers indicate percentages in the drawn gates. Data are shown as median ± IQR. NC, negative control. ∗p < 0.05, ∗∗p < 0.01. Paired t test or Wilcoxon signed-rank test. (D) Representative flow cytometry plots (left) and bar graph (right) showing the upregulation of CD69 and 4-1BB (AIM assay) among CD38+ PD-1+ SARS-CoV-2-specific CD8+ T cells (n = 6 donors). Numbers indicate percentages in the drawn gates. S, spike; M, membrane; N, nucleocapsid. (E) Left: representative flow cytometry plots showing the expression of activation/cycling markers among tetramer+ SARS-CoV-2-specific CD8+ T cells by group (red) and by total frequency (black). Center: UMAP plot showing the clustering of memory CD8+ T cells. Right: UMAP plots showing the clustering of tetramer+ SARS-CoV-2-specific CD8+ T cells by group and the expression of individual markers (n = 2 donors). (F) Dot plots summarizing the expression frequencies of all quantified markers among tetramer+ SARS-CoV-2-specific CD8+ T cells by group. Each dot represents combined specificities in one donor. Data are shown as median ± IQR. (G) Bivariate plots showing the pairwise correlations between symptom-free days and the expression frequencies of CCR7, CD45RA, or granzyme B (GzmB). Each dot represents combined specificities in one donor. Key as in (F). Spearman rank correlation.
Figure 3
Figure 3
Functional Characteristics of SARS-CoV-2-Specific T Cells in Convalescent COVID-19 (A) Left: dot plots summarizing the frequencies of IFN-γ-producing cells responding to overlapping peptides spanning the immunogenic domains of the SARS-CoV-2 S, M, and N proteins by group (ELISpot assays). Each dot represents one donor. The dotted line indicates the cutoff for positive responses. Right: bar graph showing the frequencies of IFN-γ-producing cells responding to the internal (N) and surface antigens (M and/or S) of SARS-CoV-2 by group (ELISpot assays). 2019 BD, healthy blood donors from 2019; Exp, exposed family members; SC, individuals in the convalescent phase after severe COVID-19; SFU, spot-forming unit. ∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001. Kruskal-Wallis rank-sum test with Dunn’s post hoc test for multiple comparisons. (B) and (C) Left: representative flow cytometry plots showing the functional profiles of SARS-CoV-2-specific CD4+ (B) and CD8+ T cells (C) from a convalescent individual (group MC). Numbers indicate percentages in the drawn gates. Right: bar graphs and pie charts summarizing the distribution of individual functions among SARS-CoV-2-specific CD4+ (B) and CD8+ T cells (C) from convalescent individuals in groups MC (n = 12) or SC (n = 14). Data are shown as median ± IQR. Key as in (A). ∗p < 0.05. Unpaired t test or Mann-Whitney U test. (D) Left: bar graphs summarizing the functional polarization of SARS-CoV-2-specific CD4+ T cells from convalescent individuals in groups MC (n = 5) and SC (n = 6). Subsets were defined as CXCR5+ (cTfh), CCR4− CCR6− CXCR3+ CXCR5− (Th1), CCR4+ CCR6− CXCR3− CXCR5− (Th2), CCR4− CCR6+ CXCR3− CXCR5− (Th17), CCR4− CCR6+ CXCR3+ CXCR5− (Th1/17), and CCR4− CCR6− CXCR3− CXCR5− (non-Th1/2/17). Data are shown as median ± IQR. ∗p < 0.05. Unpaired t test or Mann-Whitney U test. Right: line graph comparing cTfh versus Th1 polarization by specificity in convalescent individuals from groups MC and SC. Each dot represents one donor. Key as in (A). ∗p < 0.05, ∗∗p < 0.01. Paired t test.
Figure S4
Figure S4
Quantification of Functional T Cell Reactivity in COVID-19, Related to Figure 3 (A) Representative images showing the detection of IFN-γ-producing cells responding to overlapping peptides spanning the immunogenic domains of the SARS-CoV-2 spike (S), membrane (M), and nucleocapsid proteins (N) by group (ELISpot assays). NC: negative control. EBV: Epstein-Barr virus. CMV: cytomegalovirus. SEB: staphylococcal enterotoxin B. (B) Dot plots summarizing the frequencies of IFN-γ-producing cells responding to optimal peptide epitopes derived from EBV BZLF1 and EBNA-1 (left) or CMV pp65 (right) by group (ELISpot assays). Each dot represents the mean of combined specificities in one donor. Bars indicate median values. No significant differences were detected among groups for any specificity. 2019 BD: healthy blood donors from 2019 (n = 25). 2020 BD: healthy blood donors from 2020 (n = 24). Exp: exposed family members (n = 30). MC: individuals in the convalescent phase after mild COVID-19 (n = 31). SC: individuals in the convalescent phase after severe COVID-19 (n = 22). SFU: spot-forming unit.
Figure S5
Figure S5
Functional Polarization of SARS-CoV-2-Specific Memory CD4+ T Cells, Antibody Correlations, and Comparative Analyses of SARS-CoV-2-Specific CD4+ and CD8+ T Cell Responses versus Serostatus in COVID-19, Related to Figures 3 and 4 (A) Representative flow cytometry plots showing the identification of memory CD4+ T cells responding to overlapping peptides spanning the immunogenic domains of the SARS-CoV-2 nucleocapsid protein by subset (AIM assay). Subsets were defined as CXCR5+ (cTfh), CCR4− CCR6− CXCR3+ CXCR5− (Th1), CCR4+ CCR6− CXCR3− CXCR5− (Th2), CCR4− CCR6+ CXCR3− CXCR5− (Th17), CCR4− CCR6+ CXCR3+ CXCR5− (Th1/17), and CCR4− CCR6− CXCR3− CXCR5− (non-Th1/2/17). (B) Bar graphs summarizing the functional polarization of memory CXCR5+ (cTfh) CD4+ T cells responding to overlapping peptides spanning the immunogenic domains of the SARS-CoV-2 spike (S), membrane (M), and nucleocapsid proteins (N). Data are shown as median ± IQR. Key as in C. (C) Correlation between anti-spike (S) and anti-nucleocapsid (N) IgG levels. Each dot represents one donor. 2020 BD: healthy blood donors from 2020 (n = 31). Exp: exposed family members (n = 28). MC: individuals in the convalescent phase after mild COVID-19 (n = 31). SC: individuals in the convalescent phase after severe COVID-19 (n = 23). Spearman rank correlation. (D) Representative flow cytometry plots showing functional SARS-CoV-2-specific memory CD4+ T cell responses in a seronegative convalescent donor (group MC). Numbers indicate percentages in the drawn gates. NC: negative control. S: spike. M: membrane. N: nucleocapsid. (E) Dot plots summarizing SARS-CoV-2-specific CD4+ and CD8+ T cell responses versus serostatus in exposed family members (left) and individuals in the convalescent phase after mild COVID-19 (right). Each dot represents one donor. Data are shown as median ± IQR. S: spike. M: membrane. N: nucleocapsid. ∗p < 0.05. Mann-Whitney U test. (F) Dot plots summarizing SARS-CoV-2-specific CD4+ and CD8+ T cell responses in exposed seronegative family members and unexposed healthy blood donors (group 2019 BD). Each dot represents one donor. Data are shown as median ± IQR. ∗p < 0.05. Mann-Whitney U test.
Figure 4
Figure 4
Antibody Responses and Proliferation Capabilities of SARS-CoV-2-Specific T Cells in Convalescent COVID-19 (A) Representative flow cytometry plots showing the proliferation (CTV−) and functionality (IFN-γ+) of SARS-CoV-2-specific T cells from a convalescent individual (group MC) after stimulation with overlapping peptides spanning the immunogenic domains of the SARS-CoV-2 S, M, and N proteins. Numbers indicate percentages in the drawn gates. (B) and (C) Dot plots summarizing the frequencies of CTV− IFN-γ+ SARS-CoV-2-specific CD4+ (B) and CD8+ T cells (C) by group and specificity. Each dot represents one donor. The dotted line indicates the cutoff for positive responses. ∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001. Kruskal-Wallis rank-sum test with Dunn’s post hoc test for multiple comparisons. (D) Dot plots comparing the frequencies of CTV− IFN-γ+ SARS-CoV-2-specific CD4+ versus CD8+ T cells by group and specificity. Each dot represents one donor. Data are shown as median ± IQR. Key as in (B) and (C). ∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001. Paired t test or Wilcoxon signed-rank test. (E) Left: representative flow cytometry plots showing the production of IFN-γ and TNF among CTV− virus-specific CD4+ (top) and CD8+ T cells (bottom) from a convalescent individual (group MC). Numbers indicate percentages in the drawn gates. Right: heatmaps summarizing the functional profiles of CTV− IFN-γ+ virus-specific CD4+ (top) and CD8+ T cells (bottom). Data are shown as mean frequencies (key). (F) Dot plots summarizing the frequencies of CTV− IFN-γ+ SARS-CoV-2-specific CD4+ and CD8+ T cells by group, serostatus, and specificity. Each dot represents one donor. The dotted line indicates the cutoff for positive responses. Key as in (B) and (C). ∗∗∗p < 0.001. Mann-Whitney U test. (G) Left: bar graph summarizing percent seropositivity by group. Right: bar graph summarizing the percentage of individuals in each group with detectable T cell responses directed against the internal (N) and surface antigens (M and/or S) of SARS-CoV-2.

References

    1. Alshukairi A.N., Khalid I., Ahmed W.A., Dada A.M., Bayumi D.T., Malic L.S., Althawadi S., Ignacio K., Alsalmi H.S., Al-Abdely H.M. Antibody Response and Disease Severity in Healthcare Worker MERS Survivors. Emerg. Infect. Dis. 2016;22:1113–1115.
    1. Beigel J.H., Tomashek K.M., Dodd L.E., Mehta A.K., Zingman B.S., Kalil A.C., Hohmann E., Chu H.Y., Luetkemeyer A., Kline S. Remdesivir for the Treatment of Covid-19— Preliminary Report. N Engl J Med. 2020 doi: 10.1056/NEJMoa2007764. Published online May 22, 2020.
    1. Betts M.R., Nason M.C., West S.M., De Rosa S.C., Migueles S.A., Abraham J., Lederman M.M., Benito J.M., Goepfert P.A., Connors M. HIV nonprogressors preferentially maintain highly functional HIV-specific CD8+ T cells. Blood. 2006;107:4781–4789.
    1. Blom K., Braun M., Ivarsson M.A., Gonzalez V.D., Falconer K., Moll M., Ljunggren H.G., Michaëlsson J., Sandberg J.K. Temporal dynamics of the primary human T cell response to yellow fever virus 17D as it matures from an effector- to a memory-type response. J. Immunol. 2013;190:2150–2158.
    1. Braun J., Loyal L., Frentsch M., Wendisch D., Georg P., Kurth F., Hippenstiel S., Dingeldey M., Kruse B., Fauchere F. SARS-CoV-2-reactive T cells in healthy donors and patients with COVID-19. Nature. 2020 doi: 10.1038/s41586-020-2598-9. Published online July 29, 2020.
    1. Buggert M., Norström M.M., Salemi M., Hecht F.M., Karlsson A.C. Functional avidity and IL-2/perforin production is linked to the emergence of mutations within HLA-B∗5701-restricted epitopes and HIV-1 disease progression. J. Immunol. 2014;192:4685–4696.
    1. Buggert M., Nguyen S., Salgado-Montes de Oca G., Bengsch B., Darko S., Ransier A., Roberts E.R., Del Alcazar D., Brody I.B., Vella L.A. Identification and characterization of HIV-specific resident memory CD8+ T cells in human lymphoid tissue. Sci. Immunol. 2018;3 eaar4526.
    1. Callow K.A., Parry H.F., Sergeant M., Tyrrell D.A. The time course of the immune response to experimental coronavirus infection of man. Epidemiol. Infect. 1990;105:435–446.
    1. Chandrashekar A., Liu J., Martinot A.J., McMahan K., Mercado N.B., Peter L., Tostanoski L.H., Yu J., Maliga Z., Nekorchuk M. SARS-CoV-2 infection protects against rechallenge in rhesus macaques. Science. 2020;369:812–817.
    1. Channappanavar R., Fett C., Zhao J., Meyerholz D.K., Perlman S. Virus-specific memory CD8 T cells provide substantial protection from lethal severe acute respiratory syndrome coronavirus infection. J. Virol. 2014;88:11034–11044.
    1. Demkowicz W.E., Jr., Littaua R.A., Wang J., Ennis F.A. Human cytotoxic T-cell memory: long-lived responses to vaccinia virus. J. Virol. 1996;70:2627–2631.
    1. Fuertes Marraco S.A., Soneson C., Cagnon L., Gannon P.O., Allard M., Abed Maillard S., Montandon N., Rufer N., Waldvogel S., Delorenzi M., Speiser D.E. Long-lasting stem cell-like memory CD8+ T cells with a naïve-like profile upon yellow fever vaccination. Sci. Transl. Med. 2015;7:282ra48.
    1. Grifoni A., Weiskopf D., Ramirez S.I., Mateus J., Dan J.M., Moderbacher C.R., Rawlings S.A., Sutherland A., Premkumar L., Jadi R.S. Targets of T Cell Responses to SARS-CoV-2 Coronavirus in Humans with COVID-19 Disease and Unexposed Individuals. Cell. 2020;181:1489–1501.e15.
    1. Guan W.J., Ni Z.Y., Hu Y., Liang W.H., Ou C.Q., He J.X., Liu L., Shan H., Lei C.L., Hui D.S.C., China Medical Treatment Expert Group for Covid-19 Clinical Characteristics of Coronavirus Disease 2019 in China. N. Engl. J. Med. 2020;382:1708–1720.
    1. Habib H. Has Sweden’s controversial covid-19 strategy been successful? BMJ. 2020;369:m2376.
    1. He R., Lu Z., Zhang L., Fan T., Xiong R., Shen X., Feng H., Meng H., Lin W., Jiang W., Geng Q. The clinical course and its correlated immune status in COVID-19 pneumonia. J. Clin. Virol. 2020;127:104361.
    1. He X., Lau E.H.Y., Wu P., Deng X., Wang J., Hao X., Lau Y.C., Wong J.Y., Guan Y., Tan X. Temporal dynamics in viral shedding and transmissibility of COVID-19. Nat. Med. 2020;26:672–675.
    1. Hotez P.J., Corry D.B., Strych U., Bottazzi M.E. COVID-19 vaccines: neutralizing antibodies and the alum advantage. Nat. Rev. Immunol. 2020;20:399–400.
    1. Huang C., Wang Y., Li X., Ren L., Zhao J., Hu Y., Zhang L., Fan G., Xu J., Gu X. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020;395:497–506.
    1. Ibarrondo F.J., Fulcher J.A., Goodman-Meza D., Elliott J., Hofmann C., Hausner M.A., Ferbas K.G., Tobin N.H., Aldrovandi G.M., Yang O.O. Rapid Decay of Anti-SARS-CoV-2 Antibodies in Persons with Mild Covid-19. N. Engl. J. Med. 2020 doi: 10.1056/NEJMc2025179. Published online July 21, 2020.
    1. Juno J.A., Tan H.X., Lee W.S., Reynaldi A., Kelly H.G., Wragg K., Esterbauer R., Kent H.E., Batten C.J., Mordant F.L. Humoral and circulating follicular helper T cell responses in recovered patients with COVID-19. Nat. Med. 2020 doi: 10.1038/s41591-020-0995-0. Published online July 13, 2020.
    1. Kirkcaldy R.D., King B.A., Brooks J.T. COVID-19 and Postinfection Immunity: Limited Evidence, Many Remaining Questions. JAMA. 2020 doi: 10.1001/jama.2020.7869. Published online May 11, 2020.
    1. Le Bert N., Tan A.T., Kunasegaran K., Tham C.Y.L., Hafezi M., Chia A., Chng M.H.Y., Lin M., Tan N., Linster M. SARS-CoV-2-specific T cell immunity in cases of COVID-19 and SARS, and uninfected controls. Nature. 2020 doi: 10.1038/s41586-020-2550-z. Published online July 15, 2020.
    1. Li C.K., Wu H., Yan H., Ma S., Wang L., Zhang M., Tang X., Temperton N.J., Weiss R.A., Brenchley J.M. T cell responses to whole SARS coronavirus in humans. J. Immunol. 2008;181:5490–5500.
    1. Liu J., Li S., Liu J., Liang B., Wang X., Wang H., Li W., Tong Q., Yi J., Zhao L. Longitudinal characteristics of lymphocyte responses and cytokine profiles in the peripheral blood of SARS-CoV-2 infected patients. EBioMedicine. 2020;55:102763.
    1. Long Q.X., Tang X.J., Shi Q.L., Li Q., Deng H.J., Yuan J., Hu J.L., Xu W., Zhang Y., Lv F.J. Clinical and immunological assessment of asymptomatic SARS-CoV-2 infections. Nat. Med. 2020;26:1200–1204.
    1. Mallapaty S. Will antibody tests for the coronavirus really change everything? Nature. 2020;580:571–572.
    1. Mateus J., Grifoni A., Tarke A., Sidney J., Ramirez S.I., Dan J.M., Burger Z.C., Rawlings S.A., Smith D.M., Phillips E. Selective and cross-reactive SARS-CoV-2 T cell epitopes in unexposed humans. Science. 2020 doi: 10.1126/science.abd3871. Published online August 4, 2020.
    1. Miller J.D., van der Most R.G., Akondy R.S., Glidewell J.T., Albott S., Masopust D., Murali-Krishna K., Mahar P.L., Edupuganti S., Lalor S. Human effector and memory CD8+ T cell responses to smallpox and yellow fever vaccines. Immunity. 2008;28:710–722.
    1. Ni L., Ye F., Cheng M.L., Feng Y., Deng Y.Q., Zhao H., Wei P., Ge J., Gou M., Li X. Detection of SARS-CoV-2-Specific Humoral and Cellular Immunity in COVID-19 Convalescent Individuals. Immunity. 2020;52:971–977.e3.
    1. Owen R.E., Sinclair E., Emu B., Heitman J.W., Hirschkorn D.F., Epling C.L., Tan Q.X., Custer B., Harris J.M., Jacobson M.A. Loss of T cell responses following long-term cryopreservation. J. Immunol. Methods. 2007;326:93–115.
    1. Plebani M., Padoan A., Negrini D., Carpinteri B., Sciacovelli L. Diagnostic performances and thresholds: The key to harmonization in serological SARS-CoV-2 assays? Clin. Chim. Acta. 2020;509:1–7.
    1. Precopio M.L., Betts M.R., Parrino J., Price D.A., Gostick E., Ambrozak D.R., Asher T.E., Douek D.C., Harari A., Pantaleo G. Immunization with vaccinia virus induces polyfunctional and phenotypically distinctive CD8+ T cell responses. J. Exp. Med. 2007;204:1405–1416.
    1. Price D.A., Brenchley J.M., Ruff L.E., Betts M.R., Hill B.J., Roederer M., Koup R.A., Migueles S.A., Gostick E., Wooldridge L. Avidity for antigen shapes clonal dominance in CD8+ T cell populations specific for persistent DNA viruses. J Exp Med. 2005;202:1349–1361.
    1. Reynisson B., Alvarez B., Paul S., Peters B., Nielsen M. NetMHCpan-4.1 and NetMHCIIpan-4.0: improved predictions of MHC antigen presentation by concurrent motif deconvolution and integration of MS MHC eluted ligand data. Nucleic Acids Res. 2020;48:W449–W454.
    1. Robbiani D.F., Gaebler C., Muecksch F., Lorenzi J.C.C., Wang Z., Cho A., Agudelo M., Barnes C.O., Gazumyan A., Finkin S. Convergent Antibody Responses to SARS-CoV-2 Infection in Convalescent Individuals. bioRxiv. 2020 doi: 10.1101/2020.05.13.092619.
    1. Seydoux E., Homad L.J., MacCamy A.J., Parks K.R., Hurlburt N.K., Jennewein M.F., Akins N.R., Stuart A.B., Wan Y.H., Feng J. Characterization of neutralizing antibodies from a SARS-CoV-2 infected individual. bioRxiv. 2020 doi: 10.1101/2020.05.12.091298.
    1. Shin H.S., Kim Y., Kim G., Lee J.Y., Jeong I., Joh J.S., Kim H., Chang E., Sim S.Y., Park J.S., Lim D.G. Immune Responses to Middle East Respiratory Syndrome Coronavirus During the Acute and Convalescent Phases of Human Infection. Clin. Infect. Dis. 2019;68:984–992.
    1. Singer M., Deustchman C.S., Seymour C.W., Shankar-Hari M., Annane D., Bauer M., Bellomo R., Bernard G.R., Chiche J.D., Coopersmith C.M. The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3) JAMA. 2016;315:801–810.
    1. Sridhar S., Begom S., Bermingham A., Hoschler K., Adamson W., Carman W., Bean T., Barclay W., Deeks J.J., Lalvani A. Cellular immune correlates of protection against symptomatic pandemic influenza. Nat. Med. 2013;19:1305–1312.
    1. Tang F., Quan Y., Xin Z.T., Wrammert J., Ma M.J., Lv H., Wang T.B., Yang H., Richardus J.H., Liu W., Cao W.C. Lack of peripheral memory B cell responses in recovered patients with severe acute respiratory syndrome: a six-year follow-up study. J. Immunol. 2011;186:7264–7268.
    1. Thevarajan I., Nguyen T.H.O., Koutsakos M., Druce J., Caly L., van de Sandt C.E., Jia X., Nicholson S., Catton M., Cowie B. Breadth of concomitant immune responses prior to patient recovery: a case report of non-severe COVID-19. Nat. Med. 2020;26:453–455.
    1. Wang C., Li W., Drabek D., Okba N.M.A., van Haperen R., Osterhaus A.D.M.E., van Kuppeveld F.J.M., Haagmans B.L., Grosveld F., Bosch B.J. A human monoclonal antibody blocking SARS-CoV-2 infection. Nat. Commun. 2020;11:2251.
    1. Wei W.E., Li Z., Chiew C.J., Yong S.E., Toh M.P., Lee V.J. Presymptomatic Transmission of SARS-CoV-2 — Singapore, January 23-March 16, 2020. MMWR Morb. Mortal. Wkly. Rep. 2020;69:411–415.
    1. Wilk A.J., Rustagi A., Zhao N.Q., Roque J., Martinez-Colon G.J., McKechnie J.L., Ivison G.T., Ranganath T., Vergara R., Hollis T. A single-cell atlas of the peripheral immune response in patients with severe COVID-19. Nat. Med. 2020;26:1070–1076.
    1. Wilkinson T.M., Li C.K., Chui C.S., Huang A.K., Perkins M., Liebner J.C., Lambkin-Williams R., Gilbert A., Oxford J., Nicholas B. Preexisting influenza-specific CD4+ T cells correlate with disease protection against influenza challenge in humans. Nat. Med. 2012;18:274–280.
    1. Wolfel R., Corman V.M., Guggemos W., Seilmaier M., Zange S., Muller M.A., Niemeyer D., Jones T.C., Vollmar P., Rothe C. Virological assessment of hospitalized patients with COVID-2019. Nature. 2020;581:465–469.
    1. Woloshin S., Patel N., Kesselheim A.S. False Negative Tests for SARS-CoV-2 Infection — Challenges and Implications. N. Engl. J. Med. 2020;383:e38.
    1. Wu Z., McGoogan J.M. Characteristics of and Important Lessons From the Coronavirus Disease 2019 (COVID-19) Outbreak in China: Summary of a Report of 72314 Cases From the Chinese Center for Disease Control and Prevention. JAMA. 2020 doi: 10.1001/jama.2020.2648. Published online February 24, 2020.
    1. Yang L.T., Peng H., Zhu Z.L., Li G., Huang Z.T., Zhao Z.X., Koup R.A., Bailer R.T., Wu C.Y. Long-lived effector/central memory T-cell responses to severe acute respiratory syndrome coronavirus (SARS-CoV) S antigen in recovered SARS patients. Clin. Immunol. 2006;120:171–178.
    1. Yang R., Gui X., Xiong Y. Comparison of Clinical Characteristics of Patients with Asymptomatic vs Symptomatic Coronavirus Disease 2019 in Wuhan, China. JAMA Netw. Open. 2020;3:e2010182.
    1. Zhao J., Zhao J., Mangalam A.K., Channappanavar R., Fett C., Meyerholz D.K., Agnihothram S., Baric R.S., David C.S., Perlman S. Airway Memory CD4+ T Cells Mediate Protective Immunity against Emerging Respiratory Coronaviruses. Immunity. 2016;44:1379–1391.
    1. Zhao J., Alshukairi A.N., Baharoon S.A., Ahmed W.A., Bokhari A.A., Nehdi A.M., Layqah L.A., Alghamdi M.G., Al Gethamy M.M., Dada A.M. Recovery from the Middle East respiratory syndrome is associated with antibody and T-cell responses. Sci. Immunol. 2017;2 eaan5393.
    1. Zheng H.Y., Zhang M., Yang C.X., Zhang N., Wang X.C., Yang X.P., Dong X.Q., Zheng Y.T. Elevated exhaustion levels and reduced functional diversity of T cells in peripheral blood may predict severe progression in COVID-19 patients. Cell. Mol. Immunol. 2020;17:541–543.
    1. Zheng M., Gao Y., Wang G., Song G., Liu S., Sun D., Xu Y., Tian Z. Functional exhaustion of antiviral lymphocytes in COVID-19 patients. Cell. Mol. Immunol. 2020;17:533–535.

Source: PubMed

3
Suscribir