The Role of Leaky Gut in Functional Dyspepsia

Lucas Wauters, Matthias Ceulemans, Jolien Schol, Ricard Farré, Jan Tack, Tim Vanuytsel, Lucas Wauters, Matthias Ceulemans, Jolien Schol, Ricard Farré, Jan Tack, Tim Vanuytsel

Abstract

Patients with functional dyspepsia (FD) complain of epigastric symptoms with no identifiable cause. Increased intestinal permeability has been described in these patients, especially in the proximal small bowel or duodenum, and was associated with mucosal immune activation and symptoms. In this review, we discuss duodenal barrier function, including techniques currently applied in FD research. We summarize the available data on duodenal permeability in FD and factors associated to increased permeability, including mucosal eosinophils, mast cells, luminal and systemic factors. While the increased influx of antigens into the duodenal mucosa could result in local immune activation, clinical evidence for a causal role of permeability is lacking in the absence of specific barrier-protective treatments. As both existing and novel treatments, including proton pump inhibitors (PPI) and pre- or probiotics may impact duodenal barrier function, it is important to recognize and study these alterations to improve the knowledge and management of FD.

Keywords: duodenum; functional dyspepsia; gut-brain-axis; immunology; permeability.

Conflict of interest statement

LW reports financial support for research from Danone and MyHealth; has served on the advisory board of Naturex; has served on the Speaker bureau for Dr. Falk Pharma, Takeda and MyHealth. TV reports financial support for research from Danone, MyHealth, Takeda and VectivBio; has served on the Speaker bureau for Abbott, Dr. Falk Pharma, Fresenius Kabi, Menarini, Remedus, Takeda, Truvion, and VectivBio; reports consultancy fees from Baxter, Dr. Falk Pharma, Takeda, VectivBio, and Zealand Pharma. JT has given Scientific advice to Adare, AlfaWassermann, Arena, Bayer, Christian Hansen, Clasado, Danone, Devintec, Falk, FitForMe, Grünenthal, Ironwood, Janssen, Kiowa Kirin, Menarini, Mylan, Neurogastrx, Neutec, Novartis, Nutricia, Reckitt Benckiser, Ricordati, Shionogi, Takeda, Truvion, Tsumura, Zealand, and Zeria pharmaceuticals, has received research support from Biohit, Shire, Sofar, and Takeda, and has served on the Speaker bureau for Abbott, Allergan, AstraZeneca, FitForMe, Janssen, Kyowa Kirin, Mayoly, Menarini, Mylan, Novartis, Schwabe Parmaceuticals, Takeda, Wellspect, and Zeria. All the fundings reported were outside of this study. The remaining authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2022 Wauters, Ceulemans, Schol, Farré, Tack and Vanuytsel.

Figures

FIGURE 1
FIGURE 1
Luminal and cellular elements of the duodenal barrier. (A) The intestinal lumen is separated from the epithelium by a mucus layer formed by mucin glycoproteins, mainly MUC2 from goblet cells, in which bacterial residence is limited by the secretion of antimicrobial peptides (from Paneth or epithelial cells) and sIgA (from plasma cells). (B) Tight junctions, adherens junctions and desmosomes are important cell-to-cell adhesion proteins that regulate the epithelial barrier function, and initiate and stabilize enterocyte adhesion in the gut. AMP, antimicrobial peptides; MUC2, Mucin 2; sIgA, secretory immunoglobulin A; ZO, zonula occludens. This figure was created with elements from Smartservier.
FIGURE 2
FIGURE 2
Functional assessment of permeability (ex vivo). (A) Experimental set-up of Ussing chambers. (B) Equivalent electrical circuit model with the transcellular (Rtrans or sum of apical (Rapi) and basolateral (Rbas) resistances) and the paracellular (Rpara) resistances in a simple epithelium (TEER is the sum of all individual resistances). Fd4, fluorescein isothiocyanate-labeled 4 kDa dextran; TEER, transepithelial electrical resistance.
FIGURE 3
FIGURE 3
Duodenal permeability in functional dyspepsia. Increased permeability is observed in functional dyspepsia using in vivo and ex vivo techniques and associated with a dysregulation of cell-to-cell adhesion proteins, of which the main findings are summarized. CLDN, claudin; CLE, confocal laser endomicroscopy; Fd4, fluorescein isothiocyanate-labeled 4 kDa dextran; IHC, immunohistochemistry; OCLN, occludin; TEER, transepithelial electrical resistance; TEM, transmission electron microscopy; ZO, zonula-occludens.

References

    1. Accarie A., Vanuytsel T. (2020). Animal models for functional gastrointestinal disorders. Front. Psychiatry 11:509681.
    1. Aguilera-Lizarraga J., Florens M. V., Viola M. F., Jain P., Decraecker L., Appeltans I., et al. (2021). Local immune response to food antigens drives meal-induced abdominal pain. Nature 590 151–156. 10.1038/s41586-020-03118-2
    1. Aziz I., Palsson O. S., Törnblom H., Sperber A. D., Whitehead W. E., Simrén M. (2018). Epidemiology, clinical characteristics, and associations for symptom-based Rome IV functional dyspepsia in adults in the USA, Canada, and the UK: a cross-sectional population-based study. Lancet. Gastroenterol. Hepatol. 3 252–262. 10.1016/S2468-1253(18)30003-7
    1. Bednarska O., Walter S. A., Casado-Bedmar M., Ström M., Salvo-Romero E., Vicario M., et al. (2017). Vasoactive intestinal polypeptide and mast cells regulate increased passage of colonic bacteria in patients with irritable bowel syndrome. Gastroenterology 153 948–960. 10.1053/j.gastro.2017.06.051
    1. Beeckmans D., Farré R., Riethorst D., Keita A. V., Augustijns P., Soderholm J. D., et al. (2020). Relationship between bile salts, bacterial translocation, and duodenal mucosal integrity in functional dyspepsia. Neurogastroenterol Motil. 32:e13788. 10.1111/nmo.13788
    1. Blomquist L., Bark T., Hedenborg G., Svenberg T., Norman A. (1993). Comparison between the lactulose/mannitol and 51Cr-ethylenediaminetetraacetic acid/14C-mannitol methods for intestinal permeability. Frequency distribution pattern and variability of markers and marker ratios in healthy subjects. Scand. J. Gastroenterol. 28 274–280. 10.3109/00365529309096085
    1. Camilleri M. (2019). Leaky gut: mechanisms, measurement and clinical implications in humans. Gut 68 1516–1526. 10.1136/gutjnl-2019-318427
    1. Camilleri M., Vella A. (2021). What to do about the leaky gut. Gut 2021:428. 10.1136/gutjnl-2021-325428
    1. Ceulemans M., Wauters L., Accarie A., Vanuytsel T. (2020). Stress-induced changes in healthy mice do not reflect functional dyspepsia pathophysiology. Neurogastroenterol. Motil. 32:e13940. 10.1111/nmo.13940
    1. Cirillo C., Bessissow T., Desmet A.-S., Vanheel H., Tack J., Vanden Berghe P. (2015). Evidence for neuronal and structural changes in submucous ganglia of patients with functional dyspepsia. Am. J. Gastroenterol. 110 1205–1215. 10.1038/ajg.2015.158
    1. Desai A., Linden D. R., Peters S. A., Chakraborty S., Halland M., O’Brein D., et al. (2019). Impaired duodenal epithelial barrier and secretory functions in non-ulcer dyspepsia. Gastroenterology 156 S213–S214.
    1. Donaldson G. P., Lee S. M., Mazmanian S. K. (2016). Gut biogeography of the bacterial microbiota. Nat. Rev. Microbiol. 14 20–32. 10.1038/nrmicro3552
    1. Du L., Shen J., Kim J. J., He H., Chen B., Dai N. (2018). Impact of gluten consumption in patients with functional dyspepsia: a case–control study. J. Gastroenterol. Hepatol. 33 128–133. 10.1111/jgh.13813
    1. Enck P., Azpiroz F., Boeckxstaens G., Elsenbruch S., Feinle-Bisset C., Holtmann G., et al. (2017). Functional dyspepsia. Nat. Rev. Dis. Prim. 3:17081.
    1. Farquhar M. G., Palade G. E. (1963). Junctional complexes in various epithelia. J. Cell Biol. 17 375–412. 10.1083/jcb.17.2.375
    1. Farré R., Vicario M. (2017). Abnormal barrier function in gastrointestinal disorders. Handb. Exp. Pharmacol. 239 193–217. 10.1007/164_2016_107
    1. Ford A. C., Mahadeva S., Carbone M. F., Lacy B. E., Talley N. J. (2020). Functional dyspepsia. Lancet 396 1689–1702.
    1. Ford A. C., Marwaha A., Lim A., Moayyedi P. (2010). What is the prevalence of clinically significant endoscopic findings in subjects with dyspepsia? systematic review and meta-analysis. Clin. Gastroenterol. Hepatol. 8 830–837. 10.1016/j.cgh.2010.05.031
    1. Forsgård R. A., Korpela R., Stenman L. K., Österlund P., Holma R. (2014). Deoxycholic acid induced changes in electrophysiological parameters and macromolecular permeability in murine small intestine with and without functional enteric nervous system plexuses. Neurogastroenterol. Motil. 26 1179–1187. 10.1111/nmo.12383
    1. Fritscher-Ravens A., Pflaum T., Mösinger M., Ruchay Z., Röcken C., Milla P. J., et al. (2019). Many patients with irritable bowel syndrome have atypical food allergies not associated with immunoglobulin E. Gastroenterology 157 109–118. 10.1053/j.gastro.2019.03.046
    1. Furuta G. T., Nieuwenhuis E. E. S., Karhausen J., Gleich G., Blumberg R. S., Lee J. J., et al. (2005). Eosinophils alter colonic epithelial barrier function: role for major basic protein. Am. J. Physiol. Gastroint. Liver Physiol. 289 G890–G897. 10.1152/ajpgi.00015.2005
    1. Guilarte M., Vicario M., Martínez C., de Torres I., Lobo B., Pigrau M., et al. (2020). Peripheral corticotropin-releasing factor triggers jejunal mast cell activation and abdominal pain in patients with diarrhea-predominant irritable bowel syndrome. Am. J. Gastroenterol. 115 2047–2059. 10.14309/ajg.0000000000000789
    1. Hooper L. V., MacPherson A. J. (2010). Immune adaptations that maintain homeostasis with the intestinal microbiota. Nat. Rev. Immunol. 10 159–169. 10.1038/nri2710
    1. Horvath A., Leber B., Feldbacher N., Steinwender M., Komarova I., Rainer F., et al. (2020). The effects of a multispecies synbiotic on microbiome-related side effects of long-term proton pump inhibitor use: a pilot study. Sci. Rep. 10:2723. 10.1038/s41598-020-59550-x
    1. Hou Q., Huang Y., Wang Y., Liao L., Zhu Z., Zhang W., et al. (2020). Lactobacillus casei LC01 regulates intestinal epithelial permeability through miR-144 Targeting of OCLN and ZO1. J. Microbiol. Biotechnol. 30 1480–1487. 10.4014/jmb.2002.02059
    1. Hou Q., Huang Y., Zhu S., Li P., Chen X., Hou Z., et al. (2017). MiR-144 increases intestinal permeability in IBS-D rats by targeting OCLN and ZO1. Cell Physiol. Biochem. 44 2256–2268. 10.1159/000486059
    1. Ishigami H., Matsumura T., Kasamatsu S., Hamanaka S., Taida T., Okimoto K., et al. (2017). Endoscopy-guided evaluation of duodenal mucosal permeability in functional dyspepsia. Clin. Transl. Gastroenterol. 8:e83. 10.1038/ctg.2017.12
    1. Jacob C., Yang P.-C., Darmoul D., Amadesi S., Saito T., Cottrell G. S., et al. (2005). Mast cell tryptase controls paracellular permeability of the intestine. role of protease-activated receptor 2 and beta-arrestins. J. Biol. Chem. 280 31936–31948. 10.1074/jbc.M506338200
    1. Jiménez-Saiz R., Anipindi V. C., Galipeau H., Ellenbogen Y., Chaudhary R., Koenig J. F., et al. (2020). Microbial regulation of enteric eosinophils and its impact on tissue remodeling and Th2 Immunity. Front. Immunol. 11:155. 10.3389/fimmu.2020.00155
    1. Johansson M. E. V., Sjövall H., Hansson G. C. (2013). The gastrointestinal mucus system in health and disease. Nat. Rev. Gastroenterol. Hepatol. 10 352–361. 10.1038/nrgastro.2013.35
    1. Katinios G., Casado-Bedmar M., Walter S. A., Vicario M., González-Castro A. M., Bednarska O., et al. (2020). Increased colonic epithelial permeability and mucosal eosinophilia in ulcerative colitis in remission compared with irritable bowel syndrome and health. Inflamm. Bowel. Dis. 26 974–984. 10.1093/ibd/izz328
    1. Katzka D. A., Geno D. M., Blair H. E., Lamsam J. L., Alexander J. A., Camilleri M. (2015). Small intestinal permeability in patients with eosinophilic oesophagitis during active phase. Gut 64 538–543. 10.1136/gutjnl-2013-305882
    1. Keita A. V., Gullberg E., Ericson A.-C., Salim S. Y., Wallon C., Kald A., et al. (2006). Characterization of antigen and bacterial transport in the follicle-associated epithelium of human ileum. Lab. Investig. 86 504–516. 10.1038/labinvest.3700397
    1. Komori K., Ihara E., Minoda Y., Ogino H., Sasaki T., Fujiwara M., et al. (2019). The altered mucosal barrier function in the duodenum plays a role in the pathogenesis of functional dyspepsia. Dig. Dis. Sci. 64 3228–3239. 10.1007/s10620-019-5470-8
    1. Liebregts T., Adam B., Bredack C., Gururatsakul M., Pilkington K. R., Brierley S. M., et al. (2011). Small bowel homing T Cells are associated with symptoms and delayed gastric emptying in functional dyspepsia. Am. J. Gastroenterol. 106 1089–1098. 10.1038/ajg.2010.512
    1. Martínez C., Lobo B., Pigrau M., Ramos L., González-Castro A. M., Alonso C., et al. (2013). Diarrhoea-predominant irritable bowel syndrome: an organic disorder with structural abnormalities in the jejunal epithelial barrier. Gut 62 1160–1168. 10.1136/gutjnl-2012-302093
    1. Martínez C., Vicario M., Ramos L., Lobo B., Mosquera J. L., Alonso C., et al. (2012). The jejunum of diarrhea-predominant irritable bowel syndrome shows molecular alterations in the tight junction signaling pathway that are associated with mucosal pathobiology and clinical manifestations. Am. J. Gastroenterol. 107 736–746. 10.1038/ajg.2011.472
    1. Marzorati M., Van den Abbeele P., Bubeck S. S., Bayne T., Krishnan K., Young A., et al. (2020). Bacillus subtilis HU58 and bacillus coagulans SC208 probiotics reduced the effects of antibiotic-induced gut microbiome dysbiosis in an M-SHIME® model. Microorganisms 8 1–15. 10.3390/microorganisms8071028
    1. Matos N. A., Silva J. F., Matsui T. C., Damasceno K. A., Duarte I. D. G., Lemos V. S., et al. (2013). Mast cell tryptase induces eosinophil recruitment in the pleural cavity of mice via proteinase-activated receptor 2. Inflammation 36 1260–1267. 10.1007/s10753-013-9664-5
    1. MeiradeFaria F., Bednarska O., Strom M., Soderholm J. D., Walter S. A., Keita A. V. (2021). Colonic paracellular permeability and circulating zonulin-related proteins. Scand. J. Gastroenterol. 56 424–431. 10.1080/00365521.2021.1879247
    1. Mortensen B., Murphy C., O’Grady J., Lucey M., Elsafi G., Barry L., et al. (2019). Bifidobacterium breve Bif195 protects against small-intestinal damage caused by acetylsalicylic acid in healthy volunteers. Gastroenterology 157 637–646. 10.1053/j.gastro.2019.05.008
    1. Mujagic Z., De Vos P., Boekschoten M. V., Govers C., Pieters H. J. H. M., De Wit N. J. W., et al. (2017). The effects of Lactobacillus plantarum on small intestinal barrier function and mucosal gene transcription; A randomized double-blind placebo controlled trial. Sci. Rep. 7:40128. 10.1038/srep40128
    1. Mujagic Z., Ludidi S., Keszthelyi D., Hesselink M. A. M., Kruimel J. W., Lenaerts K., et al. (2014). Small intestinal permeability is increased in diarrhoea predominant IBS, while alterations in gastroduodenal permeability in all IBS subtypes are largely attributable to confounders. Alim. Pharmacol. Ther. 40 288–297. 10.1111/apt.12829
    1. Münch A., Söderholm J. D., Ost A., Carlsson A. H., Magnusson K.-E., Ström M. (2011). Low levels of bile acids increase bacterial uptake in colonic biopsies from patients with collagenous colitis in remission. Alim. Pharmacol. Ther. 33 954–960. 10.1111/j.1365-2036.2011.04611.x
    1. Münch A., Ström M., Söderholm J. D. (2007). Dihydroxy bile acids increase mucosal permeability and bacterial uptake in human colon biopsies. Scand. J. Gastroenterol. 42 1167–1174. 10.1080/00365520701320463
    1. Nakae H., Tsuda A., Matsuoka T., Mine T., Koga Y. (2016). Gastric microbiota in the functional dyspepsia patients treated with probiotic yogurt. BMJ Open Gastroenterol. 3:e000109. 10.1136/bmjgast-2016-000109
    1. Nakagawa K., Hara K., Fikree A., Siddiqi S., Woodland P., Masamune A., et al. (2020). Patients with dyspepsia have impaired mucosal integrity both in the duodenum and jejunum: in vivo assessment of small bowel mucosal integrity using baseline impedance. J. Gastroenterol. 55 273–280. 10.1007/s00535-019-01614-5
    1. Neilan N. A., Garg U. C., Schurman J. V., Friesen C. A. (2014). Intestinal permeability in children/adolescents with functional dyspepsia. BMC Res. Notes 7:275. 10.1186/1756-0500-7-275
    1. Nojkov B., Zhou S.-Y., Dolan R. D., Davis E. M., Appelman H. D., Guo X., et al. (2020). Evidence of duodenal epithelial barrier impairment and increased pyroptosis in patients with functional dyspepsia on confocal laser endomicroscopy and “Ex Vivo” mucosa analysis. Am. J. Gastroenterol. 115 1891–1901. 10.14309/ajg.0000000000000827
    1. Odenwald M. A., Turner J. R. (2017). The intestinal epithelial barrier: a therapeutic target? Nat. Rev. Gastroenterol. Hepatol. 14 9–21. 10.1038/nrgastro.2016.169
    1. Puthanmadhom Narayanan S., Linden D. R., Peters S. A., Desai A., Kuwelker S., O’Brien D., et al. (2021a). Duodenal mucosal secretory disturbances in functional dyspepsia. Neurogastroenterol. Motil. 33:e13955. 10.1111/nmo.13955
    1. Puthanmadhom Narayanan S., O’Brien D. R., Sharma M., Smyrk T. C., Graham R. P., Grover M., et al. (2021b). Duodenal mucosal barrier in functional dyspepsia. Clin. Gastroenterol. Hepatol. 2021:29.
    1. Rao A. S., Camilleri M., Eckert D. J., Busciglio I., Burton D. D., Ryks M., et al. (2011). Urine sugars for in vivo gut permeability: validation and comparisons in irritable bowel syndrome-diarrhea and controls. Am. J. Physiol. Gastroin. Liver Physiol. 301 G919–G928. 10.1152/ajpgi.00168.2011
    1. Roberts C. L., Keita A. V., Duncan S. H., O’Kennedy N., Soderholm J. D., Rhodes J. M., et al. (2010). Translocation of Crohn’s disease Escherichia coli across M-cells: contrasting effects of soluble plant fibres and emulsifiers. Gut 59 1331–1339. 10.1136/gut.2009.195370
    1. Rønnestad I., Akiba Y., Kaji I., Kaunitz J. D. (2014). Duodenal luminal nutrient sensing. Curr. Opin. Pharmacol. 19 67–75. 10.1016/j.coph.2014.07.010
    1. Saffouri G. B., Shields-Cutler R. R., Chen J., Yang Y., Lekatz H. R., Hale V. L., et al. (2019). Small intestinal microbial dysbiosis underlies symptoms associated with functional gastrointestinal disorders. Nat. Commun. 10:2012. 10.1038/s41467-019-09964-7
    1. Salvo-Romero E., Martínez C., Lobo B., Rodiño-Janeiro B. K., Pigrau M., Sánchez-Chardi A. D., et al. (2020). Overexpression of corticotropin-releasing factor in intestinal mucosal eosinophils is associated with clinical severity in diarrhea-predominant irritable bowel syndrome. Sci. Rep. 10:20706. 10.1038/s41598-020-77176-x
    1. Shen L., Weber C. R., Raleigh D. R., Yu D., Turner J. R. (2011). Tight junction pore and leak pathways: a dynamic duo. Annu. Rev. Physiol. 73 283–309. 10.1146/annurev-physiol-012110-142150
    1. Sperber A. D., Bangdiwala S. I., Drossman D. A., Ghoshal U. C., Simren M., Tack J., et al. (2021). Worldwide prevalence and burden of functional gastrointestinal disorders, results of rome foundation global study. Gastroenterology 160 99–114. 10.1053/j.gastro.2020.04.014
    1. Stanghellini V., Chan F. K. L., Hasler W. L., Malagelada J. R., Suzuki H., Tack J., et al. (2016). Gastroduodenal disorders. Gastroenterology 150 1380– 1392.
    1. Takashima S., Tanaka F., Kawaguchi Y., Usui Y., Fujimoto K., Nadatani Y., et al. (2020). Proton pump inhibitors enhance intestinal permeability via dysbiosis of gut microbiota under stressed conditions in mice. Neurogastroenterol. Motil. 32:e13841. 10.1111/nmo.13841
    1. Taki M., Oshima T., Li M., Sei H., Tozawa K., Tomita T., et al. (2019). Duodenal low-grade inflammation and expression of tight junction proteins in functional dyspepsia. Neurogastroenterol. Motil. 31:e13576. 10.1111/nmo.13576
    1. Talley N. J., Holtmann G. J., Jones M., Koloski N. A., Walker M. M., Burns G., et al. (2020). Zonulin in serum as a biomarker fails to identify the IBS, functional dyspepsia and non-coeliac wheat sensitivity. Gut 69 1–3. 10.1136/gutjnl-2019-318664
    1. Tanaka F., Tominaga K., Fujikawa Y., Nagami Y., Kamata N., Yamagami H., et al. (2016). Concentration of glial cell line-derived neurotrophic factor positively correlates with symptoms in functional dyspepsia. Dig. Dis. Sci. 61 3478–3485. 10.1007/s10620-016-4329-5
    1. van Baar A. C. G., Nieuwdorp M., Holleman F., Soeters M. R., Groen A. K., Bergman J. J. G. H. M. (2018). The duodenum harbors a broad untapped therapeutic potential. Gastroenterology 154 773–777. 10.1053/j.gastro.2018.02.010
    1. Vanheel H., Vicario M., Beeckmans D., Cocca S., Wauters L., Accarie A., et al. (2020). Duodenal acidification induces gastric relaxation and alters epithelial barrier function by a mast cell independent mechanism. Sci. Rep. 10:17448. 10.1038/s41598-020-74491-1
    1. Vanheel H., Vicario M., Boesmans W., Vanuytsel T., Salvo-Romero E., Tack J., et al. (2018). Activation of eosinophils and mast cells in functional dyspepsia: an ultrastructural evaluation. Sci. Rep. 8:5383. 10.1038/s41598-018-23620-y
    1. Vanheel H., Vicario M., Vanuytsel T., Van Oudenhove L., Martinez C., Keita A. V., et al. (2014). Impaired duodenal mucosal integrity and low-grade inflammation in functional dyspepsia. Gut 63 262–271. 10.1136/gutjnl-2012-303857
    1. Vanuytsel T., Tack J., Farre R. (2021). The role of intestinal permeability in gastrointestinal disorders and current methods of evaluation. Front. Nutr. 8:717925. 10.3389/fnut.2021.717925
    1. Vanuytsel T., van Wanrooy S., Vanheel H., Vanormelingen C., Verschueren S., Houben E., et al. (2014b). Psychological stress and corticotropin-releasing hormone increase intestinal permeability in humans by a mast cell-dependent mechanism. Gut 63 1293–1299. 10.1136/gutjnl-2013-305690
    1. Vanuytsel T., Vanormelingen C., Vanheel H., Masaoka T., Salim Rasoel S., Tóth J., et al. (2014a). From intestinal permeability to dysmotility: the biobreeding rat as a model for functional gastrointestinal disorders. PLoS One 9:e111132. 10.1371/journal.pone.0111132
    1. Wallon C., Persborn M., Jönsson M., Wang A., Phan V., Lampinen M., et al. (2011). Eosinophils express muscarinic receptors and corticotropin-releasing factor to disrupt the mucosal barrier in ulcerative colitis. Gastroenterology 140 1597–1607. 10.1053/j.gastro.2011.01.042
    1. Wallon C., Yang P.-C., Keita A. V., Ericson A.-C., McKay D. M., Sherman P. M., et al. (2008). Corticotropin-releasing hormone (CRH) regulates macromolecular permeability via mast cells in normal human colonic biopsies in vitro. Gut 57 50–58. 10.1136/gut.2006.117549
    1. Warners M. J., van Rhijn B. D., Verheij J., Smout A. J. P. M., Bredenoord A. J. (2017). Disease activity in eosinophilic esophagitis is associated with impaired esophageal barrier integrity. Am. J. Physiol. Liver Physiol. 313 G230–G238. 10.1152/ajpgi.00058.2017
    1. Wauters L., Burns G., Ceulemans M., Walker M. M., Vanuytsel T., Keely S., et al. (2020a). Duodenal inflammation: an emerging target for functional dyspepsia? Expert. Opin. Ther. Targ. 24 511–523. 10.1080/14728222.2020.1752181
    1. Wauters L., Ceulemans M., Vanuytsel T. (2021a). Duodenal barrier and inflammation in dyspepsia: god is in the details. Clin. Gastroenterol. Hepatol. 2021:9. 10.1016/j.cgh.2021.11.005
    1. Wauters L., Ceulemans M., Frings D., Lambaerts M., Accarie A., Toth J., et al. (2021b). Proton pump inhibitors reduce duodenal eosinophilia, mast cells and permeability in patients with functional dyspepsia. Gastroenterology 160 1521–1531. 10.1053/j.gastro.2020.12.016
    1. Wauters L., Ceulemans M., Lambaerts M., Accarie A., Toth J., Mols R., et al. (2021f). Association between duodenal bile salts and gastric emptying in patients with functional dyspepsia. Gut 70 2208–2210. 10.1136/gutjnl-2020-323598
    1. Wauters L., Dickman R., Drug V., Mulak A., Serra J., Enck P., et al. (2021c). United european gastroenterology (UEG) and European Society for Neurogastroenterology and Motility (ESNM) consensus on functional dyspepsia. United Eur. Gastroenterol. J. 9 307–331. 10.1002/ueg2.12061
    1. Wauters L., Slaets H., De Paepe K., Ceulemans M., Wetzels S., Geboers K., et al. (2021d). Efficacy and safety of spore-forming probiotics in the treatment of functional dyspepsia: a pilot randomised, double-blind, placebo-controlled trial. Lancet Gastroenterol. Hepatol. 6 784–792. 10.1016/S2468-1253(21)00226-0
    1. Wauters L., Talley N. J., Walker M. M., Tack J., Vanuytsel T. (2020b). Novel concepts in the pathophysiology and treatment of functional dyspepsia. Gut 69 591–600. 10.1136/gutjnl-2019-318536
    1. Wauters L., Tito R. Y., Ceulemans M., Lambaerts M., Accarie A., Rymenans L., et al. (2021e). Duodenal dysbiosis and relation to the efficacy of proton pump inhibitors in functional dyspepsia. Int. J. Mol. Sci. 22:13609. 10.3390/ijms222413609
    1. Weber C. R., Raleigh D. R., Su L., Shen L., Sullivan E. A., Wang Y., et al. (2010). Epithelial myosin light chain kinase activation induces mucosal interleukin-13 expression to alter tight junction ion selectivity. J. Biol. Chem. 285 12037–12046. 10.1074/jbc.M109.064808
    1. Witt S. T., Bednarska O., Keita A. V., Icenhour A., Jones M. P., Elsenbruch S., et al. (2019). Interactions between gut permeability and brain structure and function in health and irritable bowel syndrome. NeuroIm. Clin. 21:101602. 10.1016/j.nicl.2018.11.012
    1. Wouters M. M., Vicario M., Santos J. (2016). The role of mast cells in functional GI disorders. Gut 65 155–168. 10.1136/gutjnl-2015-309151
    1. Wu L. L., Peng W. H., Kuo W. T., Huang C. Y., Ni Y. H., Lu K. S., et al. (2014). Commensal bacterial endocytosis in epithelial cells is dependent on myosin light chain kinase-activated brush border fanning by interferon-γ. Am. J. Pathol. 184 2260–2274. 10.1016/j.ajpath.2014.05.003
    1. Yang P.-C., Jury J., Söderholm J. D., Sherman P. M., McKay D. M., Perdue M. H. (2006). Chronic psychological stress in rats induces intestinal sensitization to luminal antigens. Am. J. Pathol. 168:104. 10.2353/ajpath.2006.050575
    1. Zheng P.-Y., Feng B.-S., Oluwole C., Struiksma S., Chen X., Li P., et al. (2009). Psychological stress induces eosinophils to produce corticotrophin releasing hormone in the intestine. Gut 58 1473–1479. 10.1136/gut.2009.181701
    1. Zhou Q., Verne M. L., Fields J. Z., Lefante J. J., Basra S., Salameh H., et al. (2019). Randomised placebo-controlled trial of dietary glutamine supplements for postinfectious irritable bowel syndrome. Gut 68 996–1002. 10.1136/gutjnl-2017-315136
    1. Zuo L., Kuo W. T., Turner J. R. (2020). Tight junctions as targets and effectors of mucosal immune homeostasis. CMGH 10 327–340. 10.1016/j.jcmgh.2020.04.001

Source: PubMed

3
Suscribir