The Role of Gastrointestinal Microbiota in Functional Dyspepsia: A Review

Li Zhou, Yi Zeng, Hongxing Zhang, Yan Ma, Li Zhou, Yi Zeng, Hongxing Zhang, Yan Ma

Abstract

Functional dyspepsia is a clinically common functional gastrointestinal disorder with a high prevalence, high impact and high consumption of medical resources. The microbiota in the gastrointestinal tract is a large number of families and is one of the most complex microbial reservoirs in the human body. An increasing number of studies have confirmed the close association between dysbiosis of the gastrointestinal microbiota and the occurrence and progression of functional dyspepsia. Therefore, we reviewed the role of dysbiosis of the gastrointestinal microbiota, H. pylori infection and gastrointestinal microbiota metabolites in functional dyspepsia, focusing on the possible mechanisms by which dysbiosis of the gastrointestinal microbiota contributes to the pathogenesis of functional dyspepsia. Several studies have confirmed that dysbiosis of the gastrointestinal microbiota may cause the occurrence and progression of functional dyspepsia by disrupting the biological barrier of the intestinal mucosa, by disturbing the immune function of the intestinal mucosa, or by causing dysregulation of the microbial-gut-brain axis. Probiotics and antibiotics have also been chosen to treat functional dyspepsia in clinical studies and have shown some improvement in the clinical symptoms. However, more studies are needed to explore and confirm the relationship between dysbiosis of the gastrointestinal microbiota and the occurrence and progression of functional dyspepsia, and more clinical studies are needed to confirm the therapeutic efficacy of microbiota modulation for functional dyspepsia.

Keywords: dysbiosis of the gastrointestinal microbiota; functional dyspepsia; gastrointestinal microbiota; intestinal mucosal barrier; mucosal immunity.

Conflict of interest statement

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2022 Zhou, Zeng, Zhang and Ma.

Figures

FIGURE 1
FIGURE 1
Disease models for the pathogenesis of FD associated with gastrointestinal microbiota (created with BioRender.com).

References

    1. Alexandrov P. N., Hill J. M., Zhao Y., Bond T., Taylor C. M., Percy M. E., et al. (2020). Aluminum-induced Generation of Lipopolysaccharide (LPS) from the Human Gastrointestinal (GI)-tract Microbiome-Resident Bacteroides Fragilis. J. Inorg. Biochem. 203 (undefined), 110886. 10.1016/j.jinorgbio.2019.110886
    1. Asano H., Tomita T., Nakamura K., Yamasaki T., Okugawa T., Kondo T., et al. (2017). Prevalence of Gastric Motility Disorders in Patients with Functional Dyspepsia. J. Neurogastroenterol. Motil. 23 (3), 392–399. 10.5056/jnm16173
    1. Baker S. A., Hennig G. W., Salter A. K., Kurahashi M., Ward S. M., Sanders K. M. (2013). Distribution and Ca2+signalling of Fibroblast-like (PDGFRα+) Cells in the Murine Gastric Fundus. J. Physiol. 591 (24), 6193–6208. 10.1113/jphysiol.2013.264747
    1. Barko P. C., McMichael M. A., Swanson K. S., Williams D. A. (2018). The Gastrointestinal Microbiome: A Review. J. Vet. Intern. Med. 32 (1), 9–25. 10.1111/jvim.14875
    1. Black C. J., Drossman D. A., Talley N. J., Ruddy J., Ford A. C. (2020). Functional Gastrointestinal Disorders: Advances in Understanding and Management. Lancet 396 (10263), 1664–1674. 10.1016/s0140-6736(20)32115-2
    1. Borsom E. M., Lee K., Cope E. K. (2020). Do the Bugs in Your Gut Eat Your Memories? Relationship between Gut Microbiota and Alzheimer's Disease. Brain Sci. 10 (11), undefined. 10.3390/brainsci10110814
    1. Brawner K. M., Kumar R., Serrano C. A., Ptacek T., Lefkowitz E., Morrow C. D., et al. (2017). Helicobacter pylori Infection Is Associated with an Altered Gastric Microbiota in Children. Mucosal Immunol. 10 (5), 1169–1177. 10.1038/mi.2016.131
    1. Brown E. M., Ke X., Hitchcock D., Jeanfavre S., Avila-Pacheco J., Nakata T., et al. (2019). Bacteroides-Derived Sphingolipids Are Critical for Maintaining Intestinal Homeostasis and Symbiosis. Cell Host Microbe 25 (5), 668–680. 10.1016/j.chom.2019.04.002
    1. Brown J. M., Hazen S. L. (2018). Microbial Modulation of Cardiovascular Disease. Nat. Rev. Microbiol. 16 (3), 171–181. 10.1038/nrmicro.2017.149
    1. Chichlowski M., Rudolph C. (2015). Visceral Pain and Gastrointestinal Microbiome. J. Neurogastroenterol. Motil. 21 (2), 172–181. 10.5056/jnm15025
    1. Drago L., Meroni G., Pistone D., Pasquale L., Milazzo G., Monica F., et al. (2021). Evaluation of Main Functional Dyspepsia Symptoms after Probiotic Administration in Patients Receiving Conventional Pharmacological Therapies. J. Int. Med. Res. 49, 300060520982657. 10.1177/0300060520982657
    1. Farré R., Fiorani M., Abdu-Rahiman S., Matteoli G. (2020). Intestinal Permeability, Inflammation and the Role of Nutrients. Nutrients 12 (4), undefined.
    1. Ford A. C., Mahadeva S., Carbone M. F., Lacy B. E., Talley N. J. (2020). Functional Dyspepsia. Lancet 396 (10263), 1689–1702. 10.1016/s0140-6736(20)30469-4
    1. Ford A. C., Moayyedi P., Black C. J., Yuan Y., Veettil S. K., Mahadeva S., et al. (2021). Systematic Review and Network Meta-Analysis: Efficacy of Drugs for Functional Dyspepsia. Aliment. Pharmacol. Ther. 53 (1), 8–21.
    1. Frank D. N., St. Amand A. L., Feldman R. A., Boedeker E. C., Harpaz N., Pace N. R. (2007). Molecular-phylogenetic Characterization of Microbial Community Imbalances in Human Inflammatory Bowel Diseases. Proc. Natl. Acad. Sci. U.S.A. 104 (34), 13780–13785. 10.1073/pnas.0706625104
    1. Fu R., Chen M., Chen Y., Mao G., Liu S. (2019). Expression and Clinical Significance of 5-HT and 5-HT3R in the Intestinal Mucosa of Patient with Diarrhea-type Irritable Bowel Syndrome. Exp. Ther. Med. 17 (4), 3077–3082. 10.3892/etm.2019.7297
    1. Fukui A., Takagi T., Naito Y., Inoue R., Kashiwagi S., Mizushima K., et al. (2020). Higher Levels of Streptococcus in Upper Gastrointestinal Mucosa Associated with Symptoms in Patients with Functional Dyspepsia. Digestion 101 (1), 38–45. 10.1159/000504090
    1. Gao K., Mu C.-l., Farzi A., Zhu W.-y. (2020). Tryptophan Metabolism: A Link between the Gut Microbiota and Brain. Adv. Nutr. 11 (3), 709–723. 10.1093/advances/nmz127
    1. Gao K., Pi Y., Mu C. L., Farzi A., Liu Z., Zhu W. Y. (2019). Increasing Carbohydrate Availability in the Hindgut Promotes Hypothalamic Neurotransmitter Synthesis: Aromatic Amino Acids Linking the Microbiota-Brain axis. J. Neurochem. 149 (5), 641–659. 10.1111/jnc.14709
    1. Gasbarrini A., Lauritano E. C., Gabrielli M., Scarpellini E., Lupascu A., Ojetti V., et al. (2007). Small Intestinal Bacterial Overgrowth: Diagnosis and Treatment. Dig. Dis. 25 (3), 237–240. 10.1159/000103892
    1. Gou W., Ling C.-w., He Y., Jiang Z., Fu Y., Xu F., et al. (2021). Interpretable Machine Learning Framework Reveals Robust Gut Microbiome Features Associated with Type 2 Diabetes. Diabetes Care 44 (2), 358–366. 10.2337/dc20-1536
    1. Grasa L., Abecia L., Forcén R., Castro M., de Jalón J. A. G., Latorre E., et al. (2015). Antibiotic-Induced Depletion of Murine Microbiota Induces Mild Inflammation and Changes in Toll-like Receptor Patterns and Intestinal Motility. Microb. Ecol. 70 (3), 835–848. 10.1007/s00248-015-0613-8
    1. Grier A., Qiu X., Bandyopadhyay S., Holden-Wiltse J., Kessler H. A., Gill A. L., et al. (2017). Impact of Prematurity and Nutrition on the Developing Gut Microbiome and Preterm Infant Growth. Microbiome 5 (1), 158. 10.1186/s40168-017-0377-0
    1. Gurusamy S. R., Shah A., Talley N. J., Koloski N., Jones M. P., Walker M. M., et al. (2021). Small Intestinal Bacterial Overgrowth in Functional Dyspepsia: A Systematic Review and Meta-Analysis. Am. J. Gastroenterol. 116 (5), 935–942. 10.14309/ajg.0000000000001197
    1. Havenaar R. (2011). Intestinal Health Functions of Colonic Microbial Metabolites: a Review. Benef. Microbes 2 (2), 103–114. 10.3920/bm2011.0003
    1. Ho L., Zhong C. C. W., Wong C. H. L., Wu J. C. Y., Chan K. K. H., Wu I. X. Y., et al. (2021). Chinese Herbal Medicine for Functional Dyspepsia: a Network Meta-Analysis of Prokinetic-Controlled Randomised Trials. Chin. Med. 16 (1), 140. 10.1186/s13020-021-00556-6
    1. Hrncir T., Stepankova R., Kozakova H., Hudcovic T., Tlaskalova-Hogenova H. (2008). Gut Microbiota and Lipopolysaccharide Content of the Diet Influence Development of Regulatory T Cells: Studies in Germ-free Mice. BMC Immunol. 9 (undefined), 65. 10.1186/1471-2172-9-65
    1. Hsu C. N., Hou C. Y., Lee C. T., Chan J. Y. H., Tain Y. L. (2019). The Interplay between Maternal and Post-Weaning High-Fat Diet and Gut Microbiota in the Developmental Programming of Hypertension. Nutrients 11 (9), undefined. 10.3390/nu11091982
    1. Huang R., Wu F., Zhou Q., Wei W., Yue J., Xiao B., et al. (2022). Lactobacillus and Intestinal Diseases: Mechanisms of Action and Clinical Applications. Microbiol. Res. 260 (undefined), 127019. 10.1016/j.micres.2022.127019
    1. Huang X., Fan X., Ying J., Chen S. (2019). Emerging Trends and Research Foci in Gastrointestinal Microbiome. J. Transl. Med. 17 (1), 67. 10.1186/s12967-019-1810-x
    1. Huang Y. J., Boushey H. A. (2015). The Microbiome in Asthma. J. Allergy Clin. Immunol. 135 (1), 25–30. 10.1016/j.jaci.2014.11.011
    1. Ianiro G., Pizzoferrato M., Franceschi F., Tarullo A., Luisi T., Gasbarrini G. (2013). Effect of an Extra-virgin Olive Oil Enriched with Probiotics or Antioxidants on Functional Dyspepsia: a Pilot Study. Eur. Rev. Med. Pharmacol. Sci. 17 (15), 2085–2090.
    1. Jamar G., Ribeiro D. A., Pisani L. P. (2021). High-fat or High-Sugar Diets as Trigger Inflammation in the Microbiota-Gut-Brain axis. Crit. Rev. Food Sci. Nutr. 61 (5), 836–854. 10.1080/10408398.2020.1747046
    1. Jung M., Jung S., Kim N., Ahn H., Yun H., Kim K. N. (2022). Lactiplantibacillus plantarumA Randomized, Double-Blind, Placebo-Controlled Trial to Assess the Efficacy and Safety of CJLP243 in Patients with Functional Diarrhea and High Fecal Calprotectin Levels. Nutrients 14 (2), undefined. 10.3390/nu14020389
    1. Kang S. J., Park B., Shin C. M. (2019). Helicobacter pylori Eradication Therapy for Functional Dyspepsia: A Meta-Analysis by Region and H. pylori Prevalence. J. Clin. Med. 8 (9). 10.3390/jcm8091324
    1. Kim M. C., Lee S., Park J. K., Park J., Lee D., Park J., et al. (2021). Effects of ID-HWS1000 on the Perception of Bowel Activity and Microbiome in Subjects with Functional Constipation: A Randomized, Double-Blind Placebo-Controlled Study. J. Med. Food 24 (8), 883–893. 10.1089/jmf.2020.4746
    1. Kim Y.-J., Chung W. C., Kim B. W., Kim S. S., Kim J. I., Kim N. J., et al. (2017). IsHelicobacter pyloriAssociated Functional Dyspepsia Correlated with Dysbiosis? J. Neurogastroenterol. Motil. 23 (4), 504–516. 10.5056/jnm17066
    1. Kindt S., Tertychnyy A., de hertogh G., Geboes K., Tack J. (2009). Intestinal Immune Activation in Presumed Post-infectious Functional Dyspepsia. Neurogastroenterol. Motil. 21 (8), 832–e56. 10.1111/j.1365-2982.2009.01299.x
    1. Koch S. (2017). Extrinsic Control of Wnt Signaling in the Intestine. Differentiation 97 (undefined), 1–8. 10.1016/j.diff.2017.08.003
    1. Koletzko L., Macke L., Schulz C., Malfertheiner P. (2019). Helicobacter pylori Eradication in Dyspepsia: New Evidence for Symptomatic Benefit. Best. Pract. Res. Clin. Gastroenterol. undefined(undefined). 101637. 10.1016/j.bpg.2019.101637
    1. Kwon C.-Y., Ko S.-J., Lee B., Cha J. M., Yoon J. Y., Park J.-W. (2021). Acupuncture as an Add-On Treatment for Functional Dyspepsia: A Systematic Review and Meta-Analysis. Front. Med. 8 (undefined), 682783. 10.3389/fmed.2021.682783
    1. Lapidot Y., Reshef L., Cohen D., Muhsen K. (2021). Helicobacter pylori and the Intestinal Microbiome Among Healthy School-Age Children. Helicobacter 26 (6), e12854. 10.1111/hel.12854
    1. Lauritano E. C., Valenza V., Sparano L., Scarpellini E., Gabrielli M., Cazzato A., et al. (2010). Small Intestinal Bacterial Overgrowth and Intestinal Permeability. Scand. J. Gastroenterology 45 (9), 1131–1132. 10.3109/00365521.2010.485325
    1. Lee K. J. (2021). The Usefulness of Symptom-Based Subtypes of Functional Dyspepsia for Predicting Underlying Pathophysiologic Mechanisms and Choosing Appropriate Therapeutic Agents. J. Neurogastroenterol. Motil. 27 (3), 326–336. 10.5056/jnm21042
    1. Liu X.-j., Xie W.-r., Wu L.-h., Ye Z.-n., Zhang X.-y., Zhang R., et al. (2021). Changes in Oral Flora of Patients with Functional Dyspepsia. Sci. Rep. 11 (1), 8089. 10.1038/s41598-021-87600-5
    1. Lloyd-Price J., Arze C., Arze C., Ananthakrishnan A. N., Schirmer M., Avila-Pacheco J., et al. (2019). Multi-omics of the Gut Microbial Ecosystem in Inflammatory Bowel Diseases. Nature 569 (7758), 655–662. 10.1038/s41586-019-1237-9
    1. Loor A., Dumitrascu D. L., Dumitrascu D.-L., Surdea-Blaga T., Leucuta D.-C., David L. (2021). Helicobacter pylori Infection and Positive Rome IV Criteria for Functional Dyspepsia in Romanian Medical Students. JMedLife 14 (4), 492–497. 10.25122/jml-2021-0163
    1. Losurdo G., Salvatore D'Abramo F., Indellicati G., Lillo C., Ierardi E., Di Leo A. (2020). The Influence of Small Intestinal Bacterial Overgrowth in Digestive and Extra-intestinal Disorders. Int. J. Mol. Sci. 21 (10). 10.3390/ijms21103531
    1. Madisch A., Andresen V., Enck P., Labenz J., Frieling T., Schemann M. (2018). The Diagnosis and Treatment of Functional Dyspepsia. Dtsch. Arztebl. Int. 115 (13), 222–232. 10.3238/arztebl.2018.0222
    1. Maeda T., Zai H., Fukui Y., Kato Y., Kumade E., Watanabe T., et al. (2022). Impact of Helicobacter pylori Infection on Fluid Duodenal Microbial Community Structure and Microbial Metabolic Pathways. BMC Microbiol. 22 (1), 27. 10.1186/s12866-022-02437-w
    1. Markowiak-Kopeć P., Śliżewska K. (2020). The Effect of Probiotics on the Production of Short-Chain Fatty Acids by Human Intestinal Microbiome. Nutrients 12 (4), undefined.
    1. Mearin F., Pérez-Oliveras M., Perelló A., Vinyet J., Ibañez A., Coderch J., et al. (2005). Dyspepsia and Irritable Bowel Syndrome after a Salmonella Gastroenteritis Outbreak: One-Year Follow-Up Cohort Study. Gastroenterology 129 (1), 98–104. 10.1053/j.gastro.2005.04.012
    1. Moeen-Ul-Haq, Babar A. N., Hassan M. K., Ullah F., Ullah A. (2022). Role of Lactobacillus Plantarum 299v Versus Placebo in Symptomatic Improvement of Irritable Bowel Syndrome Patients. J. Pak. Med. Assoc. 72 (3), 404–408. 10.47391/JPMA.0758
    1. Nakae H., Tsuda A., Matsuoka T., Mine T., Koga Y. (2016). Gastric Microbiota in the Functional Dyspepsia Patients Treated with Probiotic Yogurt. BMJ Open Gastroenterol. 3 (1), e000109. 10.1136/bmjgast-2016-000109
    1. Nakagawa K., Hara K., Fikree A., Siddiqi S., Woodland P., Masamune A., et al. (2020). Patients with Dyspepsia Have Impaired Mucosal Integrity Both in the Duodenum and Jejunum: In Vivo Assessment of Small Bowel Mucosal Integrity Using Baseline Impedance. J. Gastroenterol. 55 (3), 273–280. 10.1007/s00535-019-01614-5
    1. Nguyen T. D., Hållenius F. F., Lin X., Nyman M., Prykhodko O. (2020). Monobutyrin and Monovalerin Affect Brain Short-Chain Fatty Acid Profiles and Tight-Junction Protein Expression in ApoE-Knockout Rats Fed High-Fat Diets. Nutrients 12 (4), undefined. 10.3390/nu12041202
    1. Nocerino R., Di Costanzo M., Bedogni G., Cosenza L., Maddalena Y., Di Scala C., et al. (2019). Dietary Treatment with Extensively Hydrolyzed Casein Formula Containing the Probiotic Lactobacillus Rhamnosus GG Prevents the Occurrence of Functional Gastrointestinal Disorders in Children with Cow's Milk Allergy. J. Pediatr. 213 (undefined), 137–142. 10.1016/j.jpeds.2019.06.004
    1. Nojkov B., Zhou S.-Y., Dolan R. D., Davis E. M., Appelman H. D., Guo X., et al. (2020). Evidence of Duodenal Epithelial Barrier Impairment and Increased Pyroptosis in Patients with Functional Dyspepsia on Confocal Laser Endomicroscopy and "Ex Vivo" Mucosa Analysis. Am. J. Gastroenterol. 115 (11), 1891–1901. 10.14309/ajg.0000000000000827
    1. Ohtsu T., Takagi A., Uemura N., Inoue K., Sekino H., Kawashima A., et al. (2017). The Ameliorating Effect of Lactobacillus Gasseri OLL2716 on Functional Dyspepsia in Helicobacter Pylori-Uninfected Individuals: A Randomized Controlled Study. Digestion 96 (2), 92–102. 10.1159/000479000
    1. Oshima T., Miwa H. (2016). Gastrointestinal Mucosal Barrier Function and Diseases. J. Gastroenterol. 51 (8), 768–778. 10.1007/s00535-016-1207-z
    1. Padole P., Ranjan P., Sachdeva M., Kumar M. (2021). Role of Helicobacter pylori Eradication in Patients with Functional Dyspepsia. Indian. J. Gastroenterol. 40 (5), 492–501. 10.1007/s12664-021-01195-3
    1. Paone P., Cani P. D. (2020). Mucus Barrier, Mucins and Gut Microbiota: the Expected Slimy Partners? Gut 69 (12), 2232–2243. 10.1136/gutjnl-2020-322260
    1. Potter M. D. E., Talley N. J. (2020). Editorial: New Insights into the Global Prevalence of Uninvestigated and Functional Dyspepsia. Aliment. Pharmacol. Ther. 52 (8), 1407–1408. 10.1111/apt.16059
    1. Qiu J.-J., Liu Z., Zhao P., Wang X.-J., Li Y.-C., Sui H., et al. (2017). Gut Microbial Diversity Analysis Using Illumina Sequencing for Functional Dyspepsia with Liver Depression-Spleen Deficiency Syndrome and the Interventional Xiaoyaosan in a Rat Model. Wjg 23 (5), 810–816. 10.3748/wjg.v23.i5.810
    1. Ríos-Covián D., Ruas-Madiedo P., Margolles A., Gueimonde M., de Los Reyes-Gavilán C. G., Salazar N. (2016). Intestinal Short Chain Fatty Acids and Their Link with Diet and Human Health. Front. Microbiol. 7 (undefined), 185. 10.3389/fmicb.2016.00185
    1. Rizzatti G., Lopetuso L. R., Gibiino G., Binda C., Gasbarrini A. (2017). Proteobacteria: A Common Factor in Human Diseases. Biomed. Res. Int., 2017. 9351507. 10.1155/2017/9351507
    1. Salas-Jara M. J., Sanhueza E. A., Retamal-Díaz A., González C., Urrutia H., García A. (2016). Probiotic Lactobacillus Fermentum UCO-979C Biofilm Formation on AGS and Caco-2 Cells and Helicobacter pylori Inhibition. Biofouling 32 (10), 1245–1257. 10.1080/08927014.2016.1249367
    1. Sanders K. M., Salter A. K., Hennig G. W., Koh S. D., Perrino B. A., Ward S. M., et al. (2014). Responses to Enteric Motor Neurons in the Gastric Fundus of Mice with Reduced Intramuscular Interstitial Cells of Cajal. J. Neurogastroenterol. Motil. 20 (2), 171–184. 10.5056/jnm.2014.20.2.171
    1. Saus E., Iraola-Guzmán S., Willis J. R., Brunet-Vega A., Gabaldón T. (2019). Microbiome and Colorectal Cancer: Roles in Carcinogenesis and Clinical Potential. Mol. Aspects Med. 69 (undefined), 93–106. 10.1016/j.mam.2019.05.001
    1. Schulz C., Schütte K., Koch N., Vilchez-Vargas R., Wos-Oxley M. L., Oxley A. P. A., et al. (2018). The Active Bacterial Assemblages of the Upper GI Tract in Individuals with and without Helicobacter Infection. Gut 67 (2), 216–225. 10.1136/gutjnl-2016-312904
    1. Serpa J., Caiado F., Carvalho T., Torre C., Gonçalves L. G., Casalou C., et al. (2010). Butyrate-rich Colonic Microenvironment Is a Relevant Selection Factor for Metabolically Adapted Tumor Cells. J. Biol. Chem. 285 (50), 39211–39223. 10.1074/jbc.m110.156026
    1. Shin A., Preidis G. A., Shulman R., Kashyap P. C. (2019). The Gut Microbiome in Adult and Pediatric Functional Gastrointestinal Disorders. Clin. Gastroenterology Hepatology 17 (2), 256–274. 10.1016/j.cgh.2018.08.054
    1. Shin N.-R., Whon T. W., Bae J.-W. (2015). Proteobacteria: Microbial Signature of Dysbiosis in Gut Microbiota. Trends Biotechnol. 33 (9), 496–503. 10.1016/j.tibtech.2015.06.011
    1. Silva Y. P., Bernardi A., Frozza R. L. (2020). The Role of Short-Chain Fatty Acids from Gut Microbiota in Gut-Brain Communication. Front. Endocrinol. 11 (undefined), 25. 10.3389/fendo.2020.00025
    1. Soman R. J., Swamy M. V. (2019). A Prospective, Randomized, Double-Blind, Placebo-Controlled, Parallel-Group Study to Evaluate the Efficacy and Safety of SNZ TriBac, a Three-Strain Bacillus Probiotic Blend for Undiagnosed Gastrointestinal Discomfort. Int. J. Colorectal. Dis. 34 (11), 1971–1978. 10.1007/s00384-019-03416-w
    1. Strandwitz P., Kim K. H., Terekhova D., Liu J. K., Sharma A., Levering J., et al. (2019). GABA-modulating Bacteria of the Human Gut Microbiota. Nat. Microbiol. 4 (3), 396–403. 10.1038/s41564-018-0307-3
    1. Sun S.-C. (2017). The Non-canonical NF-Κb Pathway in Immunity and Inflammation. Nat. Rev. Immunol. 17 (9), 545–558. 10.1038/nri.2017.52
    1. Taki M., Oshima T., Li M., Sei H., Tozawa K., Tomita T., et al. (2019). Duodenal Low-Grade Inflammation and Expression of Tight Junction Proteins in Functional Dyspepsia. Neurogastroenterol. Motil. 31 (10), e13576. 10.1111/nmo.13576
    1. Tanaka I., Ono S., Shimoda Y., Inoue M., Kinowaki S., Tsuda M., et al. (2021). Eradication of Helicobacter pylori May Improve Dyspepsia in the Elderly for the Long Term. BMC Gastroenterol. 21 (1), 445. 10.1186/s12876-021-02027-6
    1. Tziatzios G., Gkolfakis P., Papanikolaou I. S., Mathur R., Pimentel M., Giamarellos-Bourboulis E. J., et al. (2020). Gut Microbiota Dysbiosis in Functional Dyspepsia. Microorganisms 8 5. 10.3390/microorganisms8050691
    1. Vaga S., Lee S., Ji B., Andreasson A., Talley N. J., Agréus L., et al. (2020). Compositional and Functional Differences of the Mucosal Microbiota along the Intestine of Healthy Individuals. Sci. Rep. 10 (1), 14977. 10.1038/s41598-020-71939-2
    1. Wang Y., Kasper L. H. (2014). The Role of Microbiome in Central Nervous System Disorders. Brain, Behav. Immun. 38 (undefined), 1–12. 10.1016/j.bbi.2013.12.015
    1. Wauters L., Slaets H., De Paepe K., Ceulemans M., Wetzels S., Geboers K., et al. (2021). Efficacy and Safety of Spore-Forming Probiotics in the Treatment of Functional Dyspepsia: a Pilot Randomised, Double-Blind, Placebo-Controlled Trial. Lancet Gastroenterology Hepatology 6 (10), 784–792. 10.1016/s2468-1253(21)00226-0
    1. Wei Z., Yang Q., Yang Q., Yang J., Tantai X., Xing X., et al. (2020). Rome III, Rome IV, and Potential Asia Symptom Criteria for Functional Dyspepsia Do Not Reliably Distinguish Functional from Organic Disease. Clin. Transl. Gastroenterology 11 (12), e00278. 10.14309/ctg.0000000000000278
    1. White B., Sterrett J., Grigoryan Z., Lally L., Heinze J., Alikhan H., et al. (2021). Characterization of Gut Microbiome and Metabolome in Helicobacter pylori Patients in an Underprivileged Community in the United States. Wjg 27 (33), 5575–5594. 10.3748/wjg.v27.i33.5575
    1. Wu H., Xie S., Miao J., Li Y., Wang Z., Wang M., et al. (2020). Lactobacillus Reuteri Maintains Intestinal Epithelial Regeneration and Repairs Damaged Intestinal Mucosa. Gut Microbes 11 (4), 997–1014. 10.1080/19490976.2020.1734423
    1. You X.-y., Zhang H.-y., Han X., Wang F., Zhuang P.-w., Zhang Y.-j. (2021). Intestinal Mucosal Barrier Is Regulated by Intestinal Tract Neuro-Immune Interplay. Front. Pharmacol. 12 (undefined), 659716. 10.3389/fphar.2021.659716
    1. Zand Irani M., Jones M. P., Halland M., Herrick L., Choung R. S., Saito Loftus Y. A., et al. (2021). Prevalence, Symptoms and Risk Factor Profile of Rumination Syndrome and Functional Dyspepsia: a Population-Based Study. Aliment. Pharmacol. Ther. 54 (undefined), 1416–1431. 10.1111/apt.16630
    1. Zhang X., Zhang H., Huang Q., Sun J., Yao R., Wang J. (2020). Effect of Massa Medicata Fermentata on the Gut Microbiota of Dyspepsia Mice Based on 16S rRNA Technique. Evid. Based Complement. Altern. Med. 2020, 7643528. 10.1155/2020/7643528
    1. Zhao L., Huang Y., Lu L., Yang W., Huang T., Lin Z., et al. (2018). Saturated Long-Chain Fatty Acid-Producing Bacteria Contribute to Enhanced Colonic Motility in Rats. Microbiome 6 (1), 107. 10.1186/s40168-018-0492-6
    1. Zhong L., Shanahan E. R., Raj A., Koloski N. A., Fletcher L., Morrison M., et al. (2017). Dyspepsia and the Microbiome: Time to Focus on the Small Intestine. Gut 66 (6), 1168–1169. 10.1136/gutjnl-2016-312574

Source: PubMed

3
Suscribir