The Clinical Benefits and Accuracy of Continuous Glucose Monitoring Systems in Critically Ill Patients-A Systematic Scoping Review

Sigrid C J van Steen, Saskia Rijkenberg, Jacqueline Limpens, Peter H J van der Voort, Jeroen Hermanides, J Hans DeVries, Sigrid C J van Steen, Saskia Rijkenberg, Jacqueline Limpens, Peter H J van der Voort, Jeroen Hermanides, J Hans DeVries

Abstract

Continuous Glucose Monitoring (CGM) systems could improve glycemic control in critically ill patients. We aimed to identify the evidence on the clinical benefits and accuracy of CGM systems in these patients. For this, we performed a systematic search in Ovid MEDLINE, from inception to 26 July 2016. Outcomes were efficacy, accuracy, safety, workload and costs. Our search retrieved 356 articles, of which 37 were included. Randomized controlled trials on efficacy were scarce (n = 5) and show methodological limitations. CGM with automated insulin infusion improved time in target and mean glucose in one trial and two trials showed a decrease in hypoglycemic episodes and time in hypoglycemia. Thirty-two articles assessed accuracy, which was overall moderate to good, the latter mainly with intravascular devices. Accuracy in critically ill children seemed lower than in adults. Adverse events were rare. One study investigated the effect on workload and cost, and showed a significant reduction in both. In conclusion, studies on the efficacy and accuracy were heterogeneous and difficult to compare. There was no consistent clinical benefit in the small number of studies available. Overall accuracy was moderate to good with some intravascular devices. CGM systems seemed however safe, and might positively affect workload and costs.

Keywords: (blood) glucose; accuracy; biosensing techniques; continuous glucose monitoring (CGM); critical illness; glucose sensors; intensive care (unit).

Conflict of interest statement

No potential conflicts of interest relevant to this article were reported.

Figures

Figure 1
Figure 1
Flow diagram of study selection.

References

    1. Van den Berghe G., Wouters P., Weekers F., Verwaest C., Bruyninckx F., Schetz M., Vlasselaers D., Ferdinande P., Lauwers P., Bouillon R. Intensive insulin therapy in critically ill patients. N. Engl. J. Med. 2001;345:1359–1367. doi: 10.1056/NEJMoa011300.
    1. Preiser J.C., Ichai C., Orban J.C., Groeneveld A.J. Metabolic response to the stress of critical illness. Br. J. Anaesth. 2014;113:945–954. doi: 10.1093/bja/aeu187.
    1. Krinsley J.S. Association between hyperglycemia and increased hospital mortality in a heterogeneous population of critically ill patients. Mayo Clin. Proc. 2003;78:1471–1478. doi: 10.4065/78.12.1471.
    1. Gale S.C., Sicoutris C., Reilly P.M., Schwab C.W., Gracias V.H. Poor glycemic control is associated with increased mortality in critically ill trauma patients. Am. Surg. 2007;73:454–460.
    1. Whitcomb B.W., Pradhan E.K., Pittas A.G., Roghmann M.C., Perencevich E.N. Impact of admission hyperglycemia on hospital mortality in various intensive care unit populations. Crit. Care Med. 2005;33:2772–2777. doi: 10.1097/01.CCM.0000189741.44071.25.
    1. Sung J., Bochicchio G.V., Joshi M., Bochicchio K., Tracy K., Scalea T.M. Admission hyperglycemia is predictive of outcome in critically ill trauma patients. J. Trauma. 2005;59:80–83. doi: 10.1097/01.TA.0000171452.96585.84.
    1. Krinsley J.S. Glycemic control in the critically ill—3 domains and diabetic status means one size does not fit all! Crit. Care. 2013;17:131. doi: 10.1186/cc12584.
    1. Van den Berghe G., Wilmer A., Hermans G., Meersseman W., Wouters P.J., Milants I., Van Wijngaerden E., Bobbaers H., Bouillon R. Intensive insulin therapy in the medical ICU. N. Engl. J. Med. 2006;354:449–4461. doi: 10.1056/NEJMoa052521.
    1. Devos P., Preiser J.C. Current controversies around tight glucose control in critically ill patients. Curr. Opin. Clin. Nutr. Metab. Care. 2007;10:206–209. doi: 10.1097/MCO.0b013e3280147d2d.
    1. Brunkhorst F.M., Engel C., Bloos F., Meier-Hellmann A., Ragaller M., Weiler N., Moerer O., Gruendling M., Oppert M., Grond S., et al. Intensive insulin therapy and pentastarch resuscitation in severe sepsis. N. Engl. J. Med. 2008;358:125–139. doi: 10.1056/NEJMoa070716.
    1. Arabi Y.M., Dabbagh O.C., Tamim H.M., Al-Shimemeri A.A., Memish Z.A., Haddad S.H., Syed S.J., Giridhar H.R., Rishu A.H., Al-Daker M.O., et al. Intensive versus conventional insulin therapy: A randomized controlled trial in medical and surgical critically ill patients. Crit. Care Med. 2008;36:3190–3197. doi: 10.1097/CCM.0b013e31818f21aa.
    1. Finfer S., Chittock D.R., Su S.Y., Blair D., Foster D., Dhingra V., Bellomo R., Cook D., Dodek P., Henderson W.R., et al. Intensive versus conventional glucose control in critically ill patients. N. Engl. J. Med. 2009;360:1283–1297.
    1. Preiser J.C., Devos P., Ruiz-Santana S., Mélot C., Annane D., Groeneveld J., Iapichino G., Leverve X., Nitenberg G., Singer P., et al. A prospective randomised multi-centre controlled trial on tight glucose control by intensive insulin therapy in adult intensive care units: The Glucontrol study. Intensive Care Med. 2009;35:1738–1748. doi: 10.1007/s00134-009-1585-2.
    1. Hermanides J., Bosman R.J., Vriesendorp T.M., Dotsch R., Rosendaal F.R., Zandstra D.F., Hoekstra J.B.L., DeVries J.H. Hypoglycemia is associated with intensive care unit mortality. Crit. Care Med. 2010;38:1430–1434. doi: 10.1097/CCM.0b013e3181de562c.
    1. The NICE-SUGAR Study Investigators Hypoglycemia and risk of death in critically ill patients. N. Engl. J. Med. 2012;367:1108–1118.
    1. Wiener R.S., Wiener D.C., Larson R.J. Benefits and risks of tight glucose control in critically ill adults: A meta-analysis. JAMA. 2008;300:933–944. doi: 10.1001/jama.300.8.933.
    1. Griesdale D.E., de Souza R.J., van Dam R.M., Heyland D.K., Cook D.J., Malhotra A., Dhaliwal R., Henderson W.R., Chittock D.R., Finfer S., et al. Intensive insulin therapy and mortality among critically ill patients: A meta-analysis including NICE-SUGAR study data. Can. Med. Assoc. J. 2009;180:821–827. doi: 10.1503/cmaj.090206.
    1. Marik P.E., Preiser J.C. Toward understanding tight glycemic control in the ICU: A systematic review and metaanalysis. Chest. 2010;137:544–551. doi: 10.1378/chest.09-1737.
    1. Jacobi J., Bircher N., Krinsley J., Agus M., Braithwaite S.S., Deutschman C., Freire A.X., Geehan D., Kohl B., Nasraway S.A., et al. Guidelines for the use of an insulin infusion for the management of hyperglycemia in critically ill patients. Crit. Care Med. 2012;40:3251–3276. doi: 10.1097/CCM.0b013e3182653269.
    1. American Diabetes Association Standards of Medical Care in Diabetes. Diabetes Care. 2015;38(Suppl. 1):S5–S7.
    1. Haluzik M., Mraz M., Kopecky P., Lips M., Svacina S. Glucose control in the ICU: Is there a time for more ambitious targets again? J. Diabetes Sci. Technol. 2014;8:652–657. doi: 10.1177/1932296814533847.
    1. Bunting P.S., Singh A., McDonald K., Fergusson D., McIntyre L.A., Hebert P.C. Reliability of point-of-care testing for glucose measurement in critically ill adults. Crit. Care Med. 2005;33:2778–2785.
    1. Hoedemaekers C.W., Klein Gunnewiek J.M., Prinsen M.A., Willems J.L., Van der Hoeven J.G. Accuracy of bedside glucose measurement from three glucometers in critically ill patients. Crit. Care Med. 2008;36:3062–3066. doi: 10.1097/CCM.0b013e318186ffe6.
    1. Boyd J.C., Bruns D.E. Effects of measurement frequency on analytical quality required for glucose measurements in intensive care units: Assessments by simulation models. Clin. Chem. 2014;60:644–650. doi: 10.1373/clinchem.2013.216366.
    1. Juneja R., Roudebush C.P., Nasraway S.A., Golas A.A., Jacobi J., Carroll J., Nelson D., Abad V.J., Flanders S.J. Computerized intensive insulin dosing can mitigate hypoglycemia and achieve tight glycemic control when glucose measurement is performed frequently and on time. Crit. Care. 2009;13:R163. doi: 10.1186/cc8129.
    1. Aragon D. Evaluation of nursing work effort and perceptions about blood glucose testing in tight glycemic control. Am. J. Crit. Care. 2006;15:370–377.
    1. Gartemann J., Caffrey E., Hadker N., Crean S., Creed G.M., Rausch C. Nurse workload in implementing a tight glycaemic control protocol in a UK hospital: A pilot time-in-motion study. Nurs. Crit. Care. 2012;17:279–284. doi: 10.1111/j.1478-5153.2012.00506.x.
    1. Preiser J.C., Chase J.G., Hovorka R., Joseph J.I., Krinsley J.S., De Block C., Desaive T., Foubert L., Kalfon P., Pielmeier U., et al. Glucose Control in the ICU: A Continuing Story. J. Diabetes Sci. Technol. 2016;10:1372–1381. doi: 10.1177/1932296816648713.
    1. Klonoff D.C., Bergenstal R., Blonde L., Boren S.A., Church T.S., Gaffaney J., Jovanovič L., Kendall D.M., Kollman C., Kovatchev B.P., et al. Consensus report of the coalition for clinical research-self-monitoring of blood glucose. J. Diabetes Sci. Technol. 2008;2:1030–1053. doi: 10.1177/193229680800200612.
    1. Kropff J., Bruttomesso D., Doll W., Farret A., Galasso S., Luijf Y.M., Mader J.K., Place J., Boscari F., Pieber T.R., et al. Accuracy of two continuous glucose monitoring systems: A head-to-head comparison under clinical research centre and daily life conditions. Diabetes Obes. Metab. 2015;17:343–349. doi: 10.1111/dom.12378.
    1. Finfer S., Wernerman J., Preiser J.C., Cass T., Desaive T., Hovorka R., Joseph J.I., Kosiborod M., Krinsley J., Mackenzie I., et al. Clinical review: Consensus recommendations on measurement of blood glucose and reporting glycemic control in critically ill adults. Crit. Care. 2013;17:229. doi: 10.1186/cc12537.
    1. Introduction on Blood Glucose Controller | Medical Equipment | NIKKISO. 2016. [(accessed on 12 January 2017)]. Available online: .
    1. Clarke W.L., Cox D., Gonder-Frederick L.A., Carter W., Pohl S.L. Evaluating clinical accuracy of systems for self-monitoring of blood glucose. Diabetes Care. 1987;10:622–628. doi: 10.2337/diacare.10.5.622.
    1. Bland J.M., Altman D.G. Statistical methods for assessing agreement between two methods of clinical measurement. Lancet. 1986;1:307–310. doi: 10.1016/S0140-6736(86)90837-8.
    1. International Organization for Standardization ISO 15197: 2003. In vitro Diagnostic Test Systems—Requirements for Blood-Glucose Monitoring Systems for Self-Testing in Managing Diabetes Mellitus. [(accessed on 12 January 2017)]. Available online: .
    1. International Organization for Standardization ISO 15197: 2013. In vitro Diagnostic Test Systems—Requirements for Blood-Glucose Monitoring Systems for Self-Testing in Managing Diabetes Mellitus. [(accessed on 12 January 2017)]. Available online: .
    1. De Block C.E., Gios J., Verheyen N., Manuel-y-Keenoy B., Rogiers P., Jorens P.G., Scuffi C., Van Gaal L.F. Randomized Evaluation of Glycemic Control in the Medical Intensive Care Unit Using Real-Time Continuous Glucose Monitoring (REGIMEN Trial) Diabetes Technol. Ther. 2015;17:889–898. doi: 10.1089/dia.2015.0151.
    1. Boom D.T., Sechterberger M.K., Rijkenberg S., Kreder S., Bosman R.J., Wester J.P., van Stijn I., DeVries J.H., van der Voort P.H. Insulin treatment guided by subcutaneous continuous glucose monitoring compared to frequent point-of-care measurement in critically ill patients: A randomized controlled trial. Crit. Care. 2014;18:453. doi: 10.1186/s13054-014-0453-9.
    1. Leelarathna L., English S.W., Thabit H., Caldwell K., Allen J.M., Kumareswaran K., Wilinska M.E., Nodale M., Mangat J., Evans M.L., et al. Feasibility of fully automated closed-loop glucose control using continuous subcutaneous glucose measurements in critical illness: A randomized controlled trial. Crit. Care. 2013;17:R159. doi: 10.1186/cc12838.
    1. Kopecký P., Mráz M., Bláha J., Lindner J., Svačina Š., Hovorka R., Haluzík M. The use of continuous glucose monitoring combined with computer-based eMPC algorithm for tight glucose control in cardiosurgical ICU. BioMed Res. Int. 2013;2013:186439. doi: 10.1155/2013/186439.
    1. Holzinger U., Warszawska J., Kitzberger R., Wewalka M., Miehsler W., Herkner H., Madl C. Real-time continuous glucose monitoring in critically ill patients: A prospective randomized trial. Diabetes Care. 2010;33:467–472. doi: 10.2337/dc09-1352.
    1. Piper H.G., Alexander J.L., Shukla A., Pigula F., Costello J.M., Laussen P.C., Jaksic T., Agus M.S. Real-time continuous glucose monitoring in pediatric patients during and after cardiac surgery. Pediatrics. 2006;118:1176–1184. doi: 10.1542/peds.2006-0347.
    1. Bridges B.C., Preissig C.M., Maher K.O., Rigby M.R. Continuous glucose monitors prove highly accurate in critically ill children. Crit. Care. 2010;14:R176. doi: 10.1186/cc9280.
    1. Branco R.G., Chavan A., Tasker R.C. Pilot evaluation of continuous subcutaneous glucose monitoring in children with multiple organ dysfunction syndrome. Pediatr. Crit. Care Med. 2010;11:415–419. doi: 10.1097/PCC.0b013e3181c59144.
    1. Prabhudesai S., Kanjani A., Bhagat I., Ravikumar K.G., Ramachandran B. Accuracy of a real-time continuous glucose monitoring system in children with septic shock: A pilot study. Indian J. Crit. Care Med. 2015;19:642–647. doi: 10.4103/0972-5229.169331.
    1. Nohra E., Buckman S., Bochicchio K., Chamieh J., Reese S., Merrill C., Schuerer D., Bochicchio G.V. Results of a near continuous glucose monitoring Technology in Surgical Intensive Care and Trauma. Contemp. Clin. Trials. 2016;50:1–4. doi: 10.1016/j.cct.2016.07.007.
    1. Rabiee A., Andreasik V., Abu-Hamdah R., Galiatsatos P., Khouri Z., Gibson B.R., Andersen D.K., Elahi D. Numerical and clinical accuracy of a continuous glucose monitoring system during intravenous insulin therapy in the surgical and burn intensive care units. J. Diabetes Sci. Technol. 2009;3:951–959. doi: 10.1177/193229680900300443.
    1. Schierenbeck F., Franco-Cereceda A., Liska J. Accuracy of 2 Different Continuous Glucose Monitoring Systems in Patients Undergoing Cardiac Surgery: Intravascular Microdialysis Versus Subcutaneous Tissue Monitoring. J. Diabetes Sci. Technol. 2017;11:108–116. doi: 10.1177/1932296816651632.
    1. Song I.K., Lee J.H., Kang J.E., Park Y.H., Kim H.S., Kim J.T. Continuous glucose monitoring system in the operating room and intensive care unit: Any difference according to measurement sites? J. Clin. Monit. Comput. 2015;29:1–8. doi: 10.1007/s10877-015-9804-6.
    1. Leelarathna L., English S.W., Thabit H., Caldwell K., Allen J.M., Kumareswaran K., Wilinska M.E., Nodale M., Haidar A., Evans M.L., et al. Accuracy of subcutaneous continuous glucose monitoring in critically ill adults: Improved sensor performance with enhanced calibrations. Diabetes Technol. Ther. 2014;16:97–101. doi: 10.1089/dia.2013.0221.
    1. Saur N.M., England M.R., Menzie W., Melanson A.M., Trieu M.Q., Berlin J., Hurley J., Krystyniak K., Kongable G.L., Nasraway S.A., et al. Accuracy of a novel noninvasive transdermal continuous glucose monitor in critically ill patients. J. Diabetes Sci. Technol. 2014;8:945–950. doi: 10.1177/1932296814536138.
    1. Foubert L.A., Lecomte P.V., Nobels F.R., Gulino A.M., De Decker K.H. Accuracy of a feasibility version of an intravenous continuous glucose monitor in volunteers with diabetes and hospitalized patients. Diabetes Technol. Ther. 2014;16:858–866. doi: 10.1089/dia.2014.0082.
    1. Strasma P.J., Finfer S., Flower O., Hipszer B., Kosiborod M., Macken L., Sechterberger M., van der Voort P.H., DeVries J.H., Joseph J.I. Use of an Intravascular Fluorescent Continuous Glucose Sensor in ICU Patients. J. Diabetes Sci. Technol. 2015;9:762–770. doi: 10.1177/1932296815585872.
    1. Schierenbeck F., Franco-Cereceda A., Liska J. Evaluation of a continuous blood glucose monitoring system using central venous microdialysis. J. Diabetes Sci. Technol. 2012;6:1365–1371. doi: 10.1177/193229681200600615.
    1. Wollersheim T., Engelhardt L.J., Pachulla J., Moergeli R., Koch S., Spies C., Hiesmayr M., Weber-Carstens S. Accuracy, reliability, feasibility and nurse acceptance of a subcutaneous continuous glucose management system in critically ill patients: A prospective clinical trial. Ann. Intensive Care. 2016;6:70. doi: 10.1186/s13613-016-0167-z.
    1. Van Hooijdonk R.T., Leopold J.H., Winters T., Binnekade J.M., Juffermans N.P., Horn J., Fischer J.C., van Dongen-Lases E.C., Schultz M.J. Point accuracy and reliability of an interstitial continuous glucose-monitoring device in critically ill patients: A prospective study. Crit. Care. 2015;19:34. doi: 10.1186/s13054-015-0757-4.
    1. Yue X.Y., Zheng Y., Cai Y.H., Yin N.N., Zhou J.X. Real-time continuous glucose monitoring shows high accuracy within 6 hours after sensor calibration: A prospective study. PLoS ONE. 2013;8:e60070. doi: 10.1371/journal.pone.0060070.
    1. Corstjens A.M., Ligtenberg J.J., van der Horst I.C., Spanjersberg R., Lind J.S., Tulleken J.E., Meertens J.H., Zijlstra J.G. Accuracy and feasibility of point-of-care and continuous blood glucose analysis in critically ill ICU patients. Crit. Care. 2006;10:R135. doi: 10.1186/cc5048.
    1. Leopold J.H., van Hooijdonk R.T.M., Boshuizen M., Winters T., Bos L.D., Abu-Hanna A., Hoek A.M.T., Fischer J.C., van Dongen-Lases E.C., Schultz M.J. Point and trend accuracy of a continuous intravenous microdialysis-based glucose-monitoring device in critically ill patients: A prospective study. Ann. Intensiv. Care. 2016;6:68. doi: 10.1186/s13613-016-0171-3.
    1. Crane B.C., Barwell N.P., Gopal P., Gopichand M., Higgs T., James T.D., Jones C.M., Mackenzie A., Mulavisala K.P., Paterson W. The Development of a Continuous Intravascular Glucose Monitoring Sensor. J. Diabetes Sci. Technol. 2015;9:751–761. doi: 10.1177/1932296815587937.
    1. Sechterberger M.K., van der Voort P.H., Strasma P.J., DeVries J.H. Accuracy of Intra-arterial and Subcutaneous Continuous Glucose Monitoring in Postoperative Cardiac Surgery Patients in the ICU. J. Diabetes Sci. Technol. 2015;9:663–667. doi: 10.1177/1932296814564993.
    1. De Block C., Manuel-y-Keenoy B., Van Gaal L., Rogiers P. Intensive insulin therapy in the intensive care unit: Assessment by continuous glucose monitoring. Diabetes Care. 2006;29:1750–1756. doi: 10.2337/dc05-2353.
    1. Holzinger U., Warszawska J., Kitzberger R., Herkner H., Metnitz P.G., Madl C. Impact of shock requiring norepinephrine on the accuracy and reliability of subcutaneous continuous glucose monitoring. Intensiv. Care Med. 2009;35:1383–1389. doi: 10.1007/s00134-009-1471-y.
    1. Lorencio C., Leal Y., Bonet A., Bondia J., Palerm C.C., Tache A., Sirvent J.M., Vehi J. Real-time continuous glucose monitoring in an intensive care unit: Better accuracy in patients with septic shock. Diabetes Technol. Ther. 2012;14:568–575. doi: 10.1089/dia.2012.0008.
    1. Kosiborod M., Gottlieb R.K., Sekella J.A., Peterman D., Grodzinsky A., Kennedy P., Borkon M.A. Performance of the Medtronic Sentrino continuous glucose management (CGM) system in the cardiac intensive care unit. BMJ Open Diabetes Res. Care. 2014;2:e000037. doi: 10.1136/bmjdrc-2014-000037.
    1. Siegelaar S.E., Barwari T., Hermanides J., van der Voort P.H., Hoekstra J.B., DeVries J.H. Microcirculation and its relation to continuous subcutaneous glucose sensor accuracy in cardiac surgery patients in the intensive care unit. J. Thorac. Cardiovasc. Surg. 2013;146:1283–1289. doi: 10.1016/j.jtcvs.2013.06.017.
    1. Maahs D.M., DeSalvo D., Pyle L., Ly T., Messer L., Clinton P., Westfall E., Wadwa R.P., Buckingham B. Effect of acetaminophen on CGM glucose in an outpatient setting. Diabetes Care. 2015;38:e158–e159. doi: 10.2337/dc15-1096.
    1. Macken L., Flower O.J., Bird S., Hammond N., Yarad E., Bass F., Fisher C., Strasma P., Finfer S. Continuous intra-arterial blood glucose monitoring using quenched fluorescence sensing in intensive care patients after cardiac surgery: Phase II of a product development study. Crit. Care Resusc. 2015;17:190–196.
    1. Orford N.R., Bailey M., Kaukonen K., Elderkin T., Stow P.J., Cattigan C., Kotowicz M., Bellomo R. Glycaemic control and long-term outcomes following transition from modified intensive insulin therapy to conventional glycaemic control. Anaesth. Intensive Care. 2014;42:239–247.
    1. Maahs D.M., Buckingham B.A., Castle J.R., Cinar A., Damiano E.R., Dassau E., DeVries J.H., Doyle F.J., Griffen S.C., Haidar A., et al. Outcome Measures for Artificial Pancreas Clinical Trials: A Consensus Report. Diabetes Care. 2016;39:1175–1179. doi: 10.2337/dc15-2716.
    1. Wentholt I.M., Hoekstra J.B., Devries J.H. A critical appraisal of the continuous glucose-error grid analysis. Diabetes Care. 2006;29:1805–1811. doi: 10.2337/dc06-0079.
    1. Schierenbeck F., Öwall A., Franco-Cereceda A., Liska J. Evaluation of a continuous blood glucose monitoring system using a central venous catheter with an integrated microdialysis function. Diabetes Technol. Ther. 2013;15:26–31. doi: 10.1089/dia.2012.0169.
    1. Wernerman J., Desaive T., Finfer S., Foubert L., Furnary A., Holzinger U., Hovorka R., Joseph J., Kosiborod M., Krinsley J., et al. Continuous glucose control in the ICU: Report of a 2013 round table meeting. Crit. Care. 2014;18:226. doi: 10.1186/cc13921.
    1. Clarke W., Kovatchev B. Statistical tools to analyze continuous glucose monitor data. Diabetes Technol. Ther. 2009;11(Suppl. 1):S45–S54. doi: 10.1089/dia.2008.0138.

Source: PubMed

3
Suscribir