Antimicrobial photodynamic therapy for inactivation of biofilms formed by oral key pathogens

Fabian Cieplik, Laura Tabenski, Wolfgang Buchalla, Tim Maisch, Fabian Cieplik, Laura Tabenski, Wolfgang Buchalla, Tim Maisch

Abstract

With increasing numbers of antibiotic-resistant pathogens all over the world there is a pressing need for strategies that are capable of inactivating biofilm-state pathogens with less potential of developing resistances in pathogens. Antimicrobial strategies of that kind are especially needed in dentistry in order to avoid the usage of antibiotics for treatment of periodontal, endodontic or mucosal topical infections caused by bacterial or yeast biofilms. One possible option could be the antimicrobial photodynamic therapy (aPDT), whereby the lethal effect of aPDT is based on the principle that visible light activates a photosensitizer (PS), leading to the formation of reactive oxygen species, e.g., singlet oxygen, which induce phototoxicity immediately during illumination. Many compounds have been described as potential PS for aPDT against bacterial and yeast biofilms so far, but conflicting results have been reported. Therefore, the aim of the present review is to outline the actual state of the art regarding the potential of aPDT for inactivation of biofilms formed in vitro with a main focus on those formed by oral key pathogens and structured regarding the distinct types of PS.

Keywords: aPDT; antibiotic resistance; antimicrobial; biofilm; oral; photodynamic.

Figures

Figure 1
Figure 1
Type I and type II processes of aPDT. Visible light of an appropriate wavelength is absorbed by the PS molecule by what the PS changes from its initial ground state S0 to an energetically excited state S1. Thereupon the PS is able to transition within the molecule from its singlet to its triplet state T1 (inter-system crossing). This T1 state is long-living compared to S1 so that charge (type I) or energy (type II) can be transferred to surrounding molecules such as oxygen with emergence of oxygen radicals (type I) or singlet oxygen (type II).
Figure 2
Figure 2
Phenothiazinium derivatives. Chemical structures of phenothiazinium derivatives: (A) Methylene Blue. (B) Toluidine Blue. (C) Safranine O.
Figure 3
Figure 3
Porphyrin and chlorin derivatives. Chemical structures of porphyrin and chlorin derivatives: (A) TMPyP. (B) XF-73. (C) Photodithazine®.
Figure 4
Figure 4
Fluorescein derivatives. Chemical structures of fluorescein derivatives: (A) Eosin Y. (B) Erythrosine. (C) Rose Bengal. (D) Chitosan-conjugated Rose Bengal.
Figure 5
Figure 5
Curcumin, perinaphthenone and fullerene derivatives. Chemical structures of curcumin, perinaphthenone and fullerene derivatives: (A) Curcumin. (B) PNS. (C) SAPYR. (D) Fullerene C60.

References

    1. Aggarwal B. B., Sundaram C., Malani N., Ichikawa H. (2007). Curcumin: the Indian solid gold. Adv. Exp. Med. Biol. 595, 1–75 10.1007/978-0-387-46401-5_1
    1. Al-Ahmad A., Ameen H., Pelz K., Karygianni L., Wittmer A., Anderson A. C., et al. (2014). Antibiotic resistance and capacity for biofilm formation of different bacteria isolated from endodontic infections associated with root-filled teeth. J. Endod. 40, 223–230 10.1016/j.joen.2013.07.023
    1. Alves E., Costa L., Carvalho C. M., Tomé J. P., Faustino M. A., Neves M. G., et al. (2009). Charge effect on the photoinactivation of Gram-negative and Gram-positive bacteria by cationic meso-substituted porphyrins. BMC Microbiol. 9:70 10.1186/1471-2180-9-70
    1. Alves E., Faustino M. A., Neves M. G., Cunha A., Tome J., Almeida A. (2014). An insight on bacterial cellular targets of photodynamic inactivation. Future Med. Chem. 6, 141–164 10.4155/fmc.13.211
    1. Araújo N. C., Fontana C. R., Bagnato V. S., Gerbi M. E. M. (2012). Photodynamic effects of curcumin against cariogenic pathogens. Photomed. Laser Surg. 30, 393–399 10.1089/pho.2011.3195
    1. Araújo N. C., Fontana C. R., Bagnato V. S., Gerbi M. E. M. (2014). Photodynamic antimicrobial therapy of curcumin in biofilms and carious dentine. Lasers Med. Sci. 29, 629–635 10.1007/s10103-013-1369-3
    1. Arias C. A., Murray B. E. (2009). Antibiotic-resistant bugs in the 21st century–a clinical super-challenge. N. Engl. J. Med. 360, 439–443 10.1056/NEJMp0804651
    1. Boles B. R., Thoendel M., Singh P. K. (2004). Self-generated diversity produces “insurance effects” in biofilm communities. Proc. Natl. Acad. Sci. U.S.A. 101, 16630–16635 10.1073/pnas.0407460101
    1. Caro H. (1878). Improvement in the Production of Dye-Stuffs from Methyl-Aniline. Patent No. 204, 796 Mannheim: U.S. Patent Office
    1. Carvalho E. D. S., Mello I., Albergaria S. J., Habitante S. M., Lage-Marques J. L., Raldi D. P. (2011). Effect of chemical substances in removing methylene blue after photodynamic therapy in root canal treatment. Photomed. Laser Surg. 29, 559–563 10.1089/pho.2010.2922
    1. Ceri H., Olson M. E., Stremick C., Read R. R., Morck D., Buret A. (1999). The Calgary Biofilm Device: new technology for rapid determination of antibiotic susceptibilities of bacterial biofilms. J. Clin. Microbiol. 37, 1771–1776
    1. Cieplik F., Späth A., Leibl C., Gollmer A., Regensburger J., Tabenski L., et al. (2013a). Blue light kills Aggregatibacter actinomycetemcomitans due to its endogenous photosensitizers. Clin. Oral Investig. [Epub ahead of print]. 10.1007/s00784-013-1151-8
    1. Cieplik F., Späth A., Regensburger J., Gollmer A., Tabenski L., Hiller K.-A., et al. (2013b). Photodynamic biofilm inactivation by SAPYR-An exclusive singlet oxygen photosensitizer. Free Radic. Biol. Med. 65, 477–487 10.1016/j.freeradbiomed.2013.07.031
    1. Collins T. L., Markus E. A., Hassett D. J., Robinson J. B. (2010). The effect of a cationic porphyrin on Pseudomonas aeruginosa biofilms. Curr. Microbiol. 61, 411–416 10.1007/s00284-010-9629-y
    1. Crivello J. V., Bulut U. (2005). Curcumin: a naturally occurring long-wavelength photosensitizer for diaryliodonium salts. J. Polym. Sci. A Polym. Chem. 43, 5217–5231 10.1002/pola.21017
    1. Dahl T. A., McGowan W. M., Shand M. A., Srinivasan V. S. (1989). Photokilling of bacteria by the natural dye curcumin. Arch. Microbiol. 151, 183–185
    1. DeRosa M. C., Crutchley R. J. (2002). Photosensitized singlet oxygen and its applications. Coord. Chem. Rev. 233–234, 351–371 10.1016/S0010-8545(02)00034-6
    1. Di Poto A., Sbarra M. S., Provenza G., Visai L., Speziale P. (2009). The effect of photodynamic treatment combined with antibiotic action or host defence mechanisms on Staphylococcus aureus biofilms. Biomaterials 30, 3158–3166 10.1016/j.biomaterials.2009.02.038
    1. Donlan R. M., Costerton J. W. (2002). Biofilms: survival mechanisms of clinically relevant microorganisms. Clin. Microbiol. Rev. 15, 167–193 10.1128/CMR.15.2.167-193.2002
    1. Dovigo L. N., Carmello J. C., Carvalho M. T., Mima E. G., Vergani C. E., Bagnato V. S., et al. (2013). Photodynamic inactivation of clinical isolates of Candida using Photodithazine. Biofouling 29, 1057–1067 10.1080/08927014.2013.827668
    1. Eichner A., Gonzales F. P., Felgenträger A., Regensburger J., Holzmann T., Schneider-Brachert W., et al. (2013). Dirty hands: photodynamic killing of human pathogens like EHEC, MRSA and Candida within seconds. Photochem. Photobiol. Sci. 12, 135–147 10.1039/c2pp25164g
    1. Felgenträger A., Maisch T., Dobler D., Späth A. (2013). Hydrogen bond acceptors and additional cationic charges in methylene blue derivatives: photophysics and antimicrobial efficiency. Biomed Res. Int. 2013:482167 10.1155/2013/482167
    1. Fernandez J. M., Bilgin M. D., Grossweiner L. I. (1997). Singlet oxygen generation by photodynamic agents. J. Photochem. Photobiol. B Biol. 37, 131–140 10.1016/S1011-1344(96)07349-6
    1. Fimple J. L., Fontana C. R., Foschi F., Ruggiero K., Song X., Pagonis T. C., et al. (2008). Photodynamic treatment of endodontic polymicrobial infection in vitro. J Endod 34, 728–734 10.1016/j.joen.2008.03.011
    1. Fontana C. R., Abernethy A. D., Som S., Ruggiero K., Doucette S., Marcantonio R. C., et al. (2009). The antibacterial effect of photodynamic therapy in dental plaque-derived biofilms. J. Periodont. Res. 44, 751–759 10.1111/j.1600-0765.2008.01187.x
    1. Freire F., Costa A. C. B. P., Pereira C. A., Beltrame Junior M., Junqueira J. C., Jorge A. O. C. (2013). Comparison of the effect of rose bengal- and eosin Y-mediated photodynamic inactivation on planktonic cells and biofilms of Candida albicans. Lasers Med. Sci. 1–7 10.1007/s10103-013-1435-x
    1. Gonzales F. P., Felgenträger A., Bäumler W., Maisch T. (2013). Fungicidal photodynamic effect of a twofold positively charged porphyrin against Candida albicans planktonic cells and biofilms. Future Microbiol. 8, 785–797 10.2217/fmb.13.44
    1. Gouterman M. (1961). Spectra of porphyrins. J. Mol. Spectrosc. 8, 138–163 10.1016/0022-2852(61)90236-3
    1. Grinholc M. (2014). Comments on “Biofilms of Candida albicans serotypes A and B differ in their sensitivity to photodynamic therapy.” Lasers Med Sci. [Epub ahead of print]. 10.1007/s10103-014-1591-7
    1. Gursoy H., Ozcakir-Tomruk C., Tanalp J., Yilmaz S. (2013). Photodynamic therapy in dentistry: a literature review. Clin. Oral Investig. 17, 1113–1125 10.1007/s00784-012-0845-7
    1. Hayek R. R. A., Araújo N. S., Gioso M. A., Ferreira J., Baptista-Sobrinho C. A., Yamada A. M., et al. (2005). Comparative study between the effects of photodynamic therapy and conventional therapy on microbial reduction in ligature-induced peri-implantitis in dogs. J. Periodontol. 76, 1275–1281 10.1902/jop.2005.76.8.1275
    1. Hecker S., Hiller K.-A., Galler K. M., Erb S., Mader T., Schmalz G. (2013). Establishment of an optimized ex vivo system for artificial root canal infection evaluated by use of sodium hypochlorite and the photodynamic therapy. Int. Endod. J. 46, 449–457 10.1111/iej.12010
    1. Kishen A., Upadya M., Tegos G. P., Hamblin M. R. (2010). Efflux pump inhibitor potentiates antimicrobial photodynamic inactivation of Enterococcus faecalis biofilm. Photochem. Photobiol. 86, 1343–1349 10.1111/j.1751-1097.2010.00792.x
    1. Kolter R., Greenberg E. P. (2006). Microbial sciences: the superficial life of microbes. Nature 441, 300–302 10.1038/441300a
    1. König K., Teschke M., Sigusch B., Glockmann E., Eick S., Pfister W. (2000). Red light kills bacteria via photodynamic action. Cell. Mol. Biol. 46, 1297–1303
    1. Lennon A. M., Buchalla W., Brune L., Zimmermann O., Gross U., Attin T. (2006). The ability of selected oral microorganisms to emit red fluorescence. Caries Res. 40, 2–5 10.1159/000088898
    1. Leung E., Weil D. E., Raviglione M., Nakatani H., World Health Organization World Health Day Antimicrobial Resistance Technical Working, Group. (2011). The WHO policy package to combat antimicrobial resistance. Bull. World Health Organ. 89, 390–392 10.2471/BLT.11.088435
    1. Lewis K. (2007). Persister cells, dormancy and infectious disease. Nat. Rev. Microbiol. 5, 48–56 10.1038/nrmicro1557
    1. Lo A. W., Seers C. A., Boyce J. D., Dashper S. G., Slakeski N., Lissel J. P., et al. (2009). Comparative transcriptomic analysis of Porphyromonas gingivalis biofilm and planktonic cells. BMC Microbiol. 9:18 10.1186/1471-2180-9-18
    1. López-Muñoz F., Alamo C., Cuenca E., Shen W. W., Clervoy P., Rubio G. (2005). History of the discovery and clinical introduction of chlorpromazine. Ann. Clin. Psychiatry 17, 113–135 10.3109/10401230591002002
    1. Mah T.-F. C., O'Toole G. A. (2001). Mechanisms of biofilm resistance to antimicrobial agents. Trends Microbiol. 9, 34–39 10.1016/S0966-842X(00)01913-2
    1. Maisch T., Baier J., Franz B., Maier M., Landthaler M., Szeimies R.-M., et al. (2007). The role of singlet oxygen and oxygen concentration in photodynamic inactivation of bacteria. Proc. Natl. Acad. Sci. U.S.A. 104, 7223–7228 10.1073/pnas.0611328104
    1. Maisch T., Hackbarth S., Regensburger J., Felgenträger A., Bäumler W., Landthaler M., et al. (2011). Photodynamic inactivation of multi-resistant bacteria (PIB) - a new approach to treat superficial infections in the 21st century. J. Dtsch. Dermatol. Ges. 9, 360–366 10.1111/j.1610-0387.2010.07577.x
    1. Maisch T., Spannberger F., Regensburger J., Felgenträger A., Bäumler W. (2012). Fast and effective: intense pulse light photodynamic inactivation of bacteria. J. Ind. Microbiol. Biotechnol. 39, 1013–1021 10.1007/s10295-012-1103-3
    1. Maisch T., Szeimies R.-M., Jori G., Abels C. (2004). Antibacterial photodynamic therapy in dermatology. Photochem. Photobiol. Sci. 3, 907–917 10.1039/b407622b
    1. Meire M. A., Coenye T., Nelis H. J., De Moor R. J. G. (2012). Evaluation of Nd:YAG and Er:YAG irradiation, antibacterial photodynamic therapy and sodium hypochlorite treatment on Enterococcus faecalis biofilms. Int. Endod. J. 45, 482–491 10.1111/j.1365-2591.2011.02000.x
    1. Metcalf D., Robinson C., Devine D., Wood S. (2006). Enhancement of erythrosine-mediated photodynamic therapy of Streptococcus mutans biofilms by light fractionation. J. Antimicrob. Chemother. 58, 190–192 10.1093/jac/dkl205
    1. Mizuno K., Zhiyentayev T., Huang L., Khalil S., Nasim F., Tegos G. P., et al. (2011). Antimicrobial photodynamic therapy with functionalized fullerenes: quantitative structure-activity relationships. J. Nanomed. Nanotechnol. 2, 1–9 10.4172/2157-7439.1000109
    1. Nonell S., Gonzalez M., Trull F. R. (1993). 1H-Phenalen-1-one-2-sulfonic acid: an extremely efficient singlet molecular oxygen sensitizer for aqueous media. Afinidad 50, 445–450 10.1039/b810413a
    1. Oliveros E., Bossmann S. H., Nonell S., Martí C. (1999). Photochemistry of the singlet oxygen [O2 (1Δg)] sensitizer perinaphthenone (phenalenone) in N, N′-dimethylacetamide and 1,4-dioxane. New J. Chem. 23, 85–93 10.1039/A804054K
    1. PA-07-288: Immunology of Biofilms (R01). . Available online at: (Accessed January 14, 2014).
    1. Pereira C. A., Costa A. C. B. P., Carreira C. M., Junqueira J. C., Jorge A. O. C. (2013). Photodynamic inactivation of Streptococcus mutans and Streptococcus sanguinis biofilms in vitro. Lasers Med. Sci. 28, 859–864 10.1007/s10103-012-1175-3
    1. Prates R. A., Kato I. T., Ribeiro M. S., Tegos G. P., Hamblin M. R. (2011). Influence of multidrug efflux systems on methylene blue-mediated photodynamic inactivation of Candida albicans. J. Antimicrob. Chemother. 66, 1525–1532 10.1093/jac/dkr160
    1. Quishida C. C. C., Carmello J. C., Mima E. G., de O., Bagnato V. S., Machado A. L., et al. (2013). Susceptibility of multispecies biofilm to photodynamic therapy using Photodithazine. Lasers Med. Sci. [Epub ahead of print]. 10.1007/s10103-013-1397-z
    1. Rams T. E., Degener J. E., Winkelhoff A. J. (2014). Antibiotic resistance in human chronic periodontitis microbiota. J. Periodontol. 85, 160–169 10.1902/jop.2013.130142
    1. Ribeiro A. P. D., Andrade M. C., Bagnato V. S., Vergani C. E., Primo F. L., Tedesco A. C., et al. (2013a). Antimicrobial photodynamic therapy against pathogenic bacterial suspensions and biofilms using chloro-aluminum phthalocyanine encapsulated in nanoemulsions. Lasers Med. Sci. [Epub ahead of print]. 10.1007/s10103-013-1354-x
    1. Ribeiro A. P. D., Andrade M. C., da Silva J., de F., Jorge J. H., Primo F. L., et al. (2013b). Photodynamic inactivation of planktonic cultures and biofilms of Candida albicans mediated by aluminum-chloride-phthalocyanine entrapped in nanoemulsions. Photochem. Photobiol. 89, 111–119 10.1111/j.1751-1097.2012.01198.x
    1. Rossolini G. M., Mantengoli E. (2008). Antimicrobial resistance in Europe and its potential impact on empirical therapy. Clin. Microbiol. Infect. 14(Suppl. 6), 2–8 10.1111/j.1469-0691.2008.02126.x
    1. Rossoni R. D., Barbosa J. O., de Oliveira F. E., de Oliveira L. D., Jorge A. O. C., Junqueira J. C. (2014). Biofilms of Candida albicans serotypes A and B differ in their sensitivity to photodynamic therapy. Lasers Med. Sci. 10.1007/s10103-014-1570-z [Epub ahead of print].
    1. Schweitzer C., Schmidt R. (2003). Physical mechanisms of generation and deactivation of singlet oxygen. Chem. Rev. 103, 1685–1757 10.1021/cr010371d
    1. Shani S., Friedman M., Steinberg D. (2000). The anticariogenic effect of amine fluorides on Streptococcus sobrinus and glucosyltransferase in biofilms. Caries Res. 34, 260–267 10.1159/000016600
    1. Sharma S. K., Dai T., Kharkwal G. B., Huang Y.-Y., Huang L., De Arce V. J. B., et al. (2011). Drug discovery of antimicrobial photosensitizers using animal models. Curr. Pharm. Des. 17, 1303–1319 10.2174/138161211795703735
    1. Shemesh M., Tam A., Steinberg D. (2007). Differential gene expression profiling of Streptococcus mutans cultured under biofilm and planktonic conditions. Microbiology 153, 1307–1317 10.1099/mic.0.2006/002030-0
    1. Shrestha A., Hamblin M. R., Kishen A. (2012). Characterization of a conjugate between Rose Bengal and chitosan for targeted antibiofilm and tissue stabilization effects as a potential treatment of infected dentin. Antimicrob. Agents Chemother. 56, 4876–4884 10.1128/AAC.00810-12
    1. Shrestha A., Kishen A. (2012). Polycationic chitosan-conjugated photosensitizer for antibacterial photodynamic therapy. Photochem. Photobiol. 88, 577–583 10.1111/j.1751-1097.2011.01026.x
    1. Sorkhdini P., Moslemi N., Jamshidi S., Jamali R., Amirzargar A. A., Fekrazad R. (2013). Effect of hydrosoluble chlorine-mediated antimicrobial photodynamic therapy on clinical parameters and cytokine profile in ligature-induced periodontitis in dogs. J. Periodontol. 84, 793–800 10.1902/jop.2012.120330
    1. Soukos N. S., Goodson J. M. (2011). Photodynamic therapy in the control of oral biofilms. Periodontol. 2000 55, 143–166 10.1111/j.1600-0757.2010.00346.x
    1. Soukos N. S., Som S., Abernethy A. D., Ruggiero K., Dunham J., Lee C., et al. (2005). Phototargeting oral black-pigmented bacteria. Antimicrob. Agents Chemother. 49, 1391–1396 10.1128/AAC.49.4.1391-1396.2005
    1. Späth A., Leibl C., Cieplik F., Lehner K., Regensburger J., Hiller K.-A., et al. (2014). Improving photodynamic inactivation of bacteria in dentistry: highly effective and fast killing of oral key pathogens with novel tooth-colored type-II photosensitizers. J. Med. Chem. 57, 5157–5168 10.1021/jm4019492
    1. Stewart P. S., Costerton J. W. (2001). Antibiotic resistance of bacteria in biofilms. Lancet 358, 135–138 10.1016/S0140-6736(01)05321-1
    1. Svensäter G., Welin J., Wilkins J. C., Beighton D., Hamilton I. R. (2001). Protein expression by planktonic and biofilm cells of Streptococcus mutans. FEMS Microbiol. Lett. 205, 139–146 10.1111/j.1574-6968.2001.tb10937.x
    1. Tegos G. P., Hamblin M. R. (2006). Phenothiazinium antimicrobial photosensitizers are substrates of bacterial multidrug resistance pumps. Antimicrob. Agents Chemother. 50, 196–203 10.1128/AAC.50.1.196-203.2006
    1. Tegos G. P., Masago K., Aziz F., Higginbotham A., Stermitz F. R., Hamblin M. R. (2008). Inhibitors of bacterial multidrug efflux pumps potentiate antimicrobial photoinactivation. Antimicrob. Agents Chemother. 52, 3202–3209 10.1128/AAC.00006-08
    1. Teixeira A. H., Pereira E. S., Rodrigues L. K. A., Saxena D., Duarte S., Zanin I. C. J. (2012). Effect of photodynamic antimicrobial chemotherapy on in vitro and in situ biofilms. Caries Res. 46, 549–554 10.1159/000341190
    1. Voos A. C., Kranz S., Tonndorf Martini S., Voelpel A., Sigusch H., Staudte H., et al. (2014). Photodynamic antimicrobial effect of safranine O on an ex vivo periodontal biofilm. Lasers Surg. Med. 46, 235–243 10.1002/lsm.22217
    1. Wainwright M. (1998). Photodynamic antimicrobial chemotherapy (PACT). J. Antimicrob. Chemother. 42, 13–28 10.1093/jac/42.1.13
    1. Welin J., Wilkins J. C., Beighton D., Svensäter G. (2004). Protein expression by Streptococcus mutans during initial stage of biofilm formation. Appl. Environ. Microbiol. 70, 3736–3741 10.1128/AEM.70.6.3736-3741.2004
    1. Wilkinson F., Helman W. P., Ross A. B. (1993). Quantum yields for the photosensitized formation of the lowest electronically excited singlet state of molecular oxygen in solution. J. Phys. Chem. Ref. Data 22, 113–262 10.1063/1.555934
    1. Wood S., Metcalf D., Devine D., Robinson C. (2006). Erythrosine is a potential photosensitizer for the photodynamic therapy of oral plaque biofilms. J. Antimicrob. Chemother. 57, 680–684 10.1093/jac/dkl021
    1. Yamamoto T., Tamura Y., Yokota T. (1988). Antiseptic and antibiotic resistance plasmid in Staphylococcus aureus that possesses ability to confer chlorhexidine and acrinol resistance. Antimicrob. Agents Chemother. 32, 932–935
    1. Yazdankhah S. P., Scheie A. A., Høiby E. A., Lunestad B.-T., Heir E., Fotland T. Ø., et al. (2006). Triclosan and antimicrobial resistance in bacteria: an overview. Microb. Drug Resist. 12, 83–90 10.1089/mdr.2006.12.83
    1. Zand V., Milani A. S., Amini M., Barhaghi M. H. S., Lotfi M., Rikhtegaran S., et al. (2014). Antimicrobial efficacy of photodynamic therapy and sodium hypochlorite on monoculture biofilms of Enterococcus faecalis at different stages of development. Photomed. Laser Surg. 32, 245–251 10.1089/pho.2013.3557
    1. Zanin I. C. J., Gonçalves R. B., Junior A. B., Hope C. K., Pratten J. (2005). Susceptibility of Streptococcus mutans biofilms to photodynamic therapy: an in vitro study. J. Antimicrob. Chemother. 56, 324–330 10.1093/jac/dki232
    1. Zanin I. C. J., Lobo M. M., Rodrigues L. K. A., Pimenta L. A. F., Höfling J. F., Gonçalves R. B. (2006). Photosensitization of in vitro biofilms by toluidine blue O combined with a light-emitting diode. Eur. J. Oral Sci. 114, 64–69 10.1111/j.1600-0722.2006.00263.x

Source: PubMed

3
Suscribir