Cholinergic Potentiation and Audiovisual Repetition-Imitation Therapy Improve Speech Production and Communication Deficits in a Person with Crossed Aphasia by Inducing Structural Plasticity in White Matter Tracts

Marcelo L Berthier, Irene De-Torres, José Paredes-Pacheco, Núria Roé-Vellvé, Karl Thurnhofer-Hemsi, María J Torres-Prioris, Francisco Alfaro, Ignacio Moreno-Torres, Diana López-Barroso, Guadalupe Dávila, Marcelo L Berthier, Irene De-Torres, José Paredes-Pacheco, Núria Roé-Vellvé, Karl Thurnhofer-Hemsi, María J Torres-Prioris, Francisco Alfaro, Ignacio Moreno-Torres, Diana López-Barroso, Guadalupe Dávila

Abstract

Donepezil (DP), a cognitive-enhancing drug targeting the cholinergic system, combined with massed sentence repetition training augmented and speeded up recovery of speech production deficits in patients with chronic conduction aphasia and extensive left hemisphere infarctions (Berthier et al., 2014). Nevertheless, a still unsettled question is whether such improvements correlate with restorative structural changes in gray matter and white matter pathways mediating speech production. In the present study, we used pharmacological magnetic resonance imaging to study treatment-induced brain changes in gray matter and white matter tracts in a right-handed male with chronic conduction aphasia and a right subcortical lesion (crossed aphasia). A single-patient, open-label multiple-baseline design incorporating two different treatments and two post-treatment evaluations was used. The patient received an initial dose of DP (5 mg/day) which was maintained during 4 weeks and then titrated up to 10 mg/day and administered alone (without aphasia therapy) during 8 weeks (Endpoint 1). Thereafter, the drug was combined with an audiovisual repetition-imitation therapy (Look-Listen-Repeat, LLR) during 3 months (Endpoint 2). Language evaluations, diffusion weighted imaging (DWI), and voxel-based morphometry (VBM) were performed at baseline and at both endpoints in JAM and once in 21 healthy control males. Treatment with DP alone and combined with LLR therapy induced marked improvement in aphasia and communication deficits as well as in selected measures of connected speech production, and phrase repetition. The obtained gains in speech production remained well-above baseline scores even 4 months after ending combined therapy. Longitudinal DWI showed structural plasticity in the right frontal aslant tract and direct segment of the arcuate fasciculus with both interventions. VBM revealed no structural changes in other white matter tracts nor in cortical areas linked by these tracts. In conclusion, cholinergic potentiation alone and combined with a model-based aphasia therapy improved language deficits by promoting structural plastic changes in right white matter tracts.

Keywords: aphasia therapy; crossed aphasia; donepezil; neuroimaging; structural plasticity.

Figures

FIGURE 1
FIGURE 1
The graphs depict performance on language (WAB-AQ) and everyday communication (Communicative Activity Log), four measures of speech fluency, and repetition of idiomatic clichés and novel phrases at baseline, two endpoints, and two washout periods. The most impressive beneficial changes in language and communication and in measures of speech fluency (number of words, number of words per minute, correct information units [CIU] and % of CIU) were observed with donepezil (DP) alone (week 0 vs. week 16). As expected, the action of DP was enhanced on repetition of clichés and novel phrases during audiovisual repetition-imitation training (week 16 vs. week 28). WAB-AQ indicates Western Aphasia Battery. See further details in text.
FIGURE 2
FIGURE 2
Depiction of an old right subcortical hemorrhage on a Short-TI Inversion Recovery (STIR) MRI sequence. Axial views of MRI-STIR images are shown in native space. The MRI shows an extensive lesion with a semilunar configuration involving the right striatum-capsular region extending into the surrounding white matter. Mild post-stroke right temporal-parietal cortical atrophy is evident. See text for further details. The neurological convention is used. R, right.
FIGURE 3
FIGURE 3
Depiction of the patient’s lesion mask in the time point 1 (BL) and in the time point 3 (DP + T) over the patient’s normalized sagittal T1-weighted image. The lesion mask drawn of the initial MRI (16 months post-stroke onset) was larger in the third MRI (28 weeks after study entry) due to expansion of its subinsular component. The observed lesion expansion probably resulted from retraction of cortical tissues due to focal temporal-parietal post-stroke atrophy (see Figure 2).
FIGURE 4
FIGURE 4
Tractography reconstruction of the left and right frontal aslant tracts (FAT) on the coronal plane in the three different time points. White matter microstructural changes are observed in the FAT in the baseline (BL), after drug treatment with donepezil (D) alone and after combined Donepezil and therapy (D + T). At the top, the FAT is showed bilaterally over imposed on the T1-weighted patient’s image in native space. At the bottom, the FAT volume is plotted for each hemisphere. Note that the volume pattern of the left FAT is more stable than the volume of the right FAT which increases progressively across the study phases. Neurological convention is used. R, right.
FIGURE 5
FIGURE 5
White matter voxel-based morphometry (VBM) results in the FAT region of interest. Control group > Patient JAM: compared to patient JAM, the control group presented greater white matter volume in the region corresponding to the FAT in the right hemisphere (see Table 2 and “Results”). This difference decreases after the DP phase, and after the DP-LLR therapy phase. No differences were found in the left hemisphere. Neurological convention is used. R, right.
FIGURE 6
FIGURE 6
White matter VBM results in the arcuate fasciculus region of interest. Control group > Patient: compared to patient JAM, control group presented greater white matter volume in the region corresponding to the arcuate fasciculus in the right hemisphere (see Table 3 and “Results”). No differences were found in the left hemisphere. Neurological convention is used. R, right.

References

    1. Alario F. X., Chainay H., Lehericy S., Cohen L. (2006). The role of the supplementary motor area (SMA) in word production. Brain Res. 1076 129–143. 10.1016/j.brainres.2005.11.104
    1. Alexander M. P., Fischette M. R., Fischer R. S. (1989). Crossed aphasias can be mirror image or anomalous. Case reports, review and hypothesis. Brain 112 953–973. 10.1093/brain/112.4.953
    1. Al-Janabi S., Nickels L. A., Sowman P. F., Burianová H., Merrett D. L., Thompson W. F. (2014). Augmenting melodic intonation therapy with non-invasive brain stimulation to treat impaired left-hemisphere function: two case studies. Front Psychol. 4:37 10.3389/fpsyg.2014.00037
    1. Allendorfer J. B., Storrs J. M., Szaflarski J. P. (2012). Changes in white matter integrity follow excitatory rTMS treatment of post-stroke aphasia. Restor. Neurol. Neurosci. 30 103–113.
    1. Baldo J. V., Schwartz S., Wilkins D., Dronkers N. F. (2006). Role of frontal versus temporal cortex in verbal fluency as revealed by voxel-based lesion symptom mapping. J. Int. Neuropsychol. Soc. 12 896–900. 10.1017/S1355617706061078
    1. Basilakos A., Fillmore P. T., Rorden C., Guo D., Bonilha L., Fridriksson J. (2014). Regional white matter damage predicts speech fluency in chronic post-stroke aphasia. Front. Hum. Neurosci. 825:845 10.3389/fnhum.2014.00845
    1. Berthier M. L., Dávila G., Green-Heredia C., Moreno Torres I., De Mier R., De-Torres I., et al. (2014). Massed sentence repetition training can augment and speed up recovery of speech production deficits in patients with chronic conduction aphasia receiving donepezil treatment. Aphasiology 28 188–218. 10.1080/02687038.2013.861057
    1. Berthier M. L., Green C., Higueras C., Fernández I., Hinojosa J., Martín M. C. (2006). A randomized, placebo-controlled study of donepezil in poststroke aphasia. Neurology 14 1687–1689. 10.1212/01.wnl.0000242626.69666.e2
    1. Berthier M. L., Pujol J., Gironell A., Kulisevsky J., Deus J., Hinojosa J., et al. (2003). Beneficial effect of donepezil on sensorimotor function after stroke. Am. J. Phys. Med. Rehabil. 82 725–729. 10.1097/01.PHM.0000083668.48396.84
    1. Berthier M. L., Pulvermüller F. (2011). Neuroscience insights improve neurorehabilitation of poststroke aphasia. Nat. Rev. Neurol. 7 86–97.10.1038/nrneurol.2010.201
    1. Berthier M. L., Pulvermüller F., Dávila G., Casares N. G., Gutiérrez A. (2011). Drug therapy of post-stroke aphasia: a review of current evidence. Neuropsychol. Rev. 21 302–317. 10.1007/s11065-011-9177-7
    1. Bohland J. W., Bullock D., Guenther F. H. (2010). Neural representations and mechanisms for the performance of simple speech sequences. J. Cogn. Neurosci. 22 1504–1529. 10.1162/jocn.2009.21306
    1. Bohland J. W., Guenther F. H. (2006). An fMRI investigation of syllable sequence production. Neuroimage 32 821–841. 10.1016/j.neuroimage.2006.04.173
    1. Bohnen N. I., Müller M. L., Kuwabara H., Constantine G. M., Studenski S. A. (2009). Age-associated leukoaraiosis and cortical cholinergic deafferentation. Neurology 72 1411–1416. 10.1212/WNL.0b013e3181a187c6
    1. Borovsky A., Saygin A. P., Bates E., Dronkers N. (2007). Lesion correlates of conversational speech production deficits. Neuropsychologia 45 2525–2533. 10.1016/j.neuropsychologia.2007.03.023
    1. Breier J., Juranek J., Papanicolaou A. C. (2011). Changes in maps of language function and the integrity of the arcuate fasciculus after therapy for chronic aphasia. Neurocase 17 506–517. 10.1080/13554794.2010.547505
    1. Broce I., Bernal B., Altman N., Tremblay P., Dick A. S. (2015). Fiber tracking of the frontal aslant tract and subcomponents of the arcuate fasciculus in 5-8-year-olds: relation to speech and language function. Brain Lang. 149 66–76. 10.1016/j.bandl.2015.06.006
    1. Catani M., Allin M. P., Husain M., Pugliese L., Mesulam M. M., Murray R. M., et al. (2007). Symmetries in human brain language pathways correlate with verbal recall. Proc. Natl. Acad. Sci. U.S.A. 104 17163–17168. 10.1073/pnas.0702116104
    1. Catani M., Bambini V. (2014). A model for social communication and language evolution and development (SCALED). Curr. Opin. Neurobiol. 28 165–171. 10.1016/j.conb.2014.07.018
    1. Catani M., Jones D. K., ffytche D. H. (2005). Perisylvian language networks of the human brain. Ann. Neurol. 57 8–16. 10.1002/ana.20319
    1. Catani M., Mesulam M. M., Jakobsen E., Malik F., Martersteck A., Wieneke C., et al. (2013). A novel frontal pathway underlies verbal fluency in primary progressive aphasia. Brain 136 2619–2628. 10.1093/brain/awt163
    1. Catani M., Thiebaut de Schotten M. (2012). Atlas of Human Brain Connections. NewYork, NY: Oxford University Press, Inc; 10.1093/med/9780199541164.001.0001
    1. Chen Y., Li Y. S., Wang Z. Y., Xu Q., Shi G. W., Lin Y. (2010). The efficacy of donepezil for post-stroke aphasia: a pilot case control study. Zhonghua Nei Ke Za Zhi 49 115–118.
    1. Cherney L. R., Erickson R. K., Small S. L. (2010). Epidural cortical stimulation as adjunctive treatment for non-fluent aphasia: preliminary findings. J. Neurol. Neurosurg. Psychiatry 81 1014–1021. 10.1136/jnnp.2009.184036
    1. Collen F. M., Wade D. T., Robb G. F., Bradshaw C. M. (1991). The rivermead mobility index: a further development of the rivermead motor assessment. Int. Disabil. Stud. 13 50–54. 10.3109/03790799109166684
    1. Crisp J., Lambon Ralph M. A. (2006). Unlocking the nature of the phonological-deep dyslexia continuum: the keys to reading aloud are in phonology and semantics. J. Cogn. Neurosci. 18 348–362. 10.1162/jocn.2006.18.3.348
    1. Crosson B., Sadek J. R., Maron L., Gökçay D., Mohr C. M., Auerbach E. J., et al. (2001). Relative shift in activity from medial to lateral frontal cortex during internally versus externally guided word generation. J. Cogn. Neurosci. 13 272–283. 10.1162/089892901564225
    1. De-Torres I., Dávila G., Berthier M. L., Walsh S. F., Moreno-Torres I., Ruiz-Cruces R. (2013). Repeating with the right hemisphere: reduced interactions between phonological and lexical-semantic systems in crossed aphasia? Front. Hum. Neurosci. 18:675 10.3389/fnhum.2013.00675
    1. Difrancesco S., Pulvermüller F., Mohr B. (2012). Intensive language action therapy (ILAT): the methods. Aphasiology 26 1317–1351. 10.1080/02687038.2012.705815
    1. Duncan E. S., Small S. L. (2016). “Imitation-based aphasia therapy,” in Neurobiology of Language, Chap. 84 eds Hickok G., Small S. L. (London: Academic Press; ), 1055–1065. 10.1016/B978-0-12-407794-2.00084-5
    1. Eom B., Sunga J. E. (2016). The effects of sentence repetition-based working memory treatment on sentence comprehension abilities in individuals with aphasia. Am. J. Speech Lang. Pathol. 25 S823–S838. 10.1044/2016_AJSLP-15-0151
    1. Fields R. D., Dutta D. J., Belgrad J., Robnett M. (2017). Cholinergic signaling in myelination. Glia 65 687–698. 10.1002/glia.23101
    1. Ford A., McGregor K. M., Case K., Crosson B., White K. D. (2010). Structural connectivity of Broca’s area and medial frontal cortex. Neuroimage 52 1230–1237. 10.1016/j.neuroimage.2010.05.018
    1. Fridriksson J., Guo D., Fillmore P., Holland A., Rorden C. (2013). Damage to the anterior arcuate fasciculus predicts non-fluent speech production in aphasia. Brain 136 3451–3460. 10.1093/brain/awt267
    1. Fridriksson J., Hubbard H. I., Hudspeth S. G., Holland A. L., Bonilha L., Fromm D., et al. (2012). Speech entrainment enables patients with Broca’s aphasia to produce fluent speech. Brain 135 3815–3829. 10.1093/brain/aws301
    1. Fridriksson J., Smith K. (2016). “Neuroplasticity associated with treated aphasia therapy,” in Neurobiology of Language, Chap. 80 eds Hickok G., Small S. L. (London: Academic Press; ), 1007–1013.
    1. Fucetola R., Connor L. T., Perry J., Leo P., Tucker F. M., Corbetta M. (2006). Aphasia severity, semantics, and depression predict functional communication in acquired aphasia. Aphasiology 20 449–461. 10.1080/02687030500390177
    1. Fugl-Meyer A. R., Jääskö L., Leyman I., Olsson S., Steglind S. (1975). The post-stroke hemiplegic patient. 1. a method for evaluation of physical performance. Scand. J. Rehabil. Med. 7 13–31.
    1. Geschwind N. (1965). Disconnexion syndromes in animals and man, II. Brain 88 585–644. 10.1093/brain/88.3.585
    1. Gordon J. K. (1998). The fluency dimension in aphasia. Aphasiology 12 673–688. 10.1080/02687039808249565
    1. Halai A. D., Woollams A. M., Lambon Ralph M. A. (2017). Using principal component analysis to capture individual differences within a unified neuropsychological model of chronic post-stroke aphasia: revealing the unique neural correlates of speech fluency, phonology and semantics. Cortex 86 275–289. 10.1016/j.cortex.2016.04.016
    1. Hamilton M. (1960). A rating scale for depression. J. Neurol. Neurosurg. Psychiatry 23 56–62. 10.1136/jnnp.23.1.56
    1. Hartwigsen G., Saur D., Price C. J., Baumgaertner A., Ulmer S., Siebner H. R. (2013). Increased facilitatory connectivity from the pre-SMA to the left dorsal premotor cortex during pseudoword repetition. J. Cogn. Neurosci. 25 580–594. 10.1162/jocn_a_00342
    1. Heath S., McMahon K. L., Nickels L., Angwin A., MacDonald A. D., van Hees S., et al. (2012). Neural mechanisms underlying the facilitation of naming in aphasia using a semantic task: an fMRI study. BMC Neurosci. 13:9810.1186/1471-2202-13-98
    1. Heath S., McMahon K. L., Nickels L., Angwin A., MacDonald A. D., van Hees S., et al. (2013). Facilitation of naming in aphasia with auditory repetition: an investigation of neurocognitive mechanisms. Neuropsychologia 51 1534–1548. 10.1016/j.neuropsychologia.2013.05.008
    1. Hertrich I., Dietrich S., Ackermann H. (2016). The role of the supplementary motor area for speech and language processing. Neurosci. Biobehav. Rev. 68 602–610. 10.1016/j.neubiorev.2016.06.030
    1. Hilari K., Byng S., Lamping D. L., Smith S. C. (2003). Stroke and aphasia quality of life scale-39 (SAQOL-39): evaluation of acceptability, reliability, and validity. Stroke 34 1944–1950. 10.1161/01.STR.0000081987.46660.ED
    1. Hiraoka K., Okamura N., Funaki Y., Watanuki S., Tashiro M., Kato M., et al. (2009). Quantitative analysis of donepezil binding to acetylcholinesterase using positron emission tomography and [5-(11)C-methoxy]donepezil. Neuroimage 46 616–623. 10.1016/j.neuroimage.2009.03.006
    1. Hong J. M., Shin D. H., Lim T. S., Lee J. S., Huh K. (2012). Galantamine administration in chronic post-stroke aphasia. J. Neurol. Neurosurg. Psychiatry 83 675–680. 10.1136/jnnp-2012-302268
    1. Hope T. M., Seghier M. L., Prejawa S., Leff A. P., Price C. J. (2016). Distinguishing the effect of lesion load from tract disconnection in the arcuate and uncinate fasciculi. Neuroimage 125 1169–1173. 10.1016/j.neuroimage.2015.09.025
    1. Imamura O., Arai M., Dateki M., Ogata T., Uchida R., Tomoda H., et al. (2015). Nicotinic acetylcholine receptors mediate donepezil-induced oligodendrocyte differentiation. J. Neurochem. 135 1086–1098. 10.1111/jnc.13294
    1. Junceda L. (1981). 150 Famosos Dichos del Idioma Castellano. Madrid: Susaeta Ediciones.
    1. Jung T. D., Kim J. Y., Lee Y. S., Kim D. H., Lee J. J., Seo J. H., et al. (2010). Effect of repetitive transcranial magnetic stimulation in a patient with chronic crossed aphasia: fMRI study. J. Rehabil. Med. 42 973–978. 10.2340/16501977-0637
    1. Kay J., Lesser R., Coltheart M. (1992). PALPA. Psycholinguistic Assessments of Language Processing in Aphasia. Hove: Lawrence Erlbaum Associates, Ltd.
    1. Kertesz A. (1982). The Western Aphasia Battery. New York, NY: Grune and Stratton.
    1. Klein J. C., Behrens T. E., Robson M. D., Mackay C. E., Higham D. J., Johansen-Berg H. (2007). Connectivity-based parcellation of human cortex using diffusion MRI: establishing reproducibility, validity and observer independence in BA 44/45 and SMA/pre-SMA. Neuroimage 34 204–211. 10.1016/j.neuroimage.2006.08.022
    1. Kohn S. E., Smith K. L., Arsenault J. K. (1990). The remediation of conduction aphasia via sentence repetition. Br. J. Dis. Commun. 25 45–60. 10.3109/13682829009011962
    1. Kolb B., Gibb R. (2014). Searching for the principles of brain plasticity and behavior. Cortex 58 251–260. 10.1016/j.cortex.2013.11.012
    1. Kolb B., Gibb R. (2015). Plasticity in the prefrontal cortex of adult rats. Front. Cell Neurosci. 3:15 10.3389/fncel.2015.00015
    1. Kronfeld-Duenias V., Amir O., Ezrati-Vinacour R., Civier O., Ben-Shachar M. (2014). The frontal aslant tract underlies speech fluency in persistent developmental stuttering. Brain Struct. Funct. 10.1007/s00429-014-0912-8 [Epub ahead of print].
    1. Kurland J., Pulvermüller F., Silva N., Burke K., Andrianopoulos M. (2012). Constrained versus unconstrained intensive language therapy in two individuals with chronic, moderate-to-severe aphasia and apraxia of speech: behavioral and fMRI outcomes. Am. J. Speech Lang. Pathol. 21 S65–S87. 10.1044/1058-0360(2012/11-0113)
    1. Laplane D., Talairach J., Meininger V., Bancaud J., Orgogozo J. M. (1977). Clinical consequences of corticectomies involving the supplementary motor area in man. J. Neurol. Sci. 34 301–314. 10.1016/0022-510X(77)90148-4
    1. Lata-Caneda M. C., Piñeiro-Temprano M., García-Fraga I., García-Armesto I., Barrueco-Egido J. R., Meijide-Failde R. (2009). Spanish adaptation of the stroke and aphasia quality of life scale-39 (SAQOL-39). Eur. J. Phys. Rehabil. Med. 45 379–384.
    1. Lee J., Fowler R., Rodney D., Cherney L., Small S. L. (2010). IMITATE: an intensive computer-based treatment for aphasia based on action observation and imitation. Aphasiology 24 449–465. 10.1080/02687030802714157
    1. Llano D. A., Small S. L. (2016). “Pharmacotherapy for aphasia,” in Neurobiology of Language, Chap. 85 eds Hickok G., Small S. L. (London: Academic Press; ), 1067–1083. 10.1016/B978-0-12-407794-2.00085-7
    1. López-Barroso D., Catani M., Ripollés P., Dell’Acqua F., Rodríguez-Fornells A., de Diego-Balaguer R. (2013). Word learning is mediated by the left arcuate fasciculus. Proc. Natl. Acad. Sci. U.S.A. 110 13168–13173. 10.1073/pnas.1301696110
    1. Lu H., Wu H., Cheng H., Wei D., Wang X., Fan Y., et al. (2014). Improvement of white matter and functional connectivity abnormalities by repetitive transcranial magnetic stimulation in crossed aphasia in dextral. Int. J. Clin. Exp. Med. 7 3659–3668.
    1. Mahoney F. I., Barthel D. (1965). Functional evaluation: the Barthel Index. Md State Med. J. 14 61–65.
    1. Marchina S., Zhu L. L., Norton A., Zipse L., Wan C. Y., Schlaug G. (2011). Impairment of speech production predicted by lesion load of the left arcuate fasciculus. Stroke 42 2251–2256. 10.1161/STROKEAHA.110.606103
    1. Martino J., de Lucas E. M., Ibáñez-Plágaro F. J., Valle-Folgueral J. M., Vázquez-Barquero A. (2012). Foix-Chavany-Marie syndrome caused by a disconnection between the right pars opercularis of the inferior frontal gyrus and the supplementary motor area. J. Neurosurg. 117 844–850. 10.3171/2012.7.JNS12404
    1. Mashal N., Solodkin A., Dick A. S., Chen E. E., Small S. L. (2012). A network model of observation and imitation of speech. Front. Psychol. 3:84 10.3389/fpsyg.2012.00084
    1. May A. (2011). Experience-dependent structural plasticity in the adult human brain. Trends Cogn. Sci. 15 475–482. 10.1016/j.tics.2011.08.002
    1. Mazaux J. M., Lagadec T., de Sèze M. P., Zongo D., Asselineau J., Douce E., et al. (2013). Communication activity in stroke patients with aphasia. J. Rehabil. Med. 45 341–346. 10.2340/16501977-1122
    1. McCarthy R., Warrington E. K. (1984). A two-route model of speech production, Evidence from aphasia. Brain 107 463–485. 10.1093/brain/107.2.463
    1. Mesulam M., Siddique T., Cohen B. (2003). Cholinergic denervation in a pure multi-infarct state: observations on CADASIL. Neurology 60 1183–1185. 10.1212/01.WNL.0000055927.22611.EB
    1. Mesulam M. M., Hersh L. B., Mash D. C., Geula C. (1992). Differential cholinergic innervation within functional subdivisions of the human cerebral cortex: a choline acetyltransferase study. J. Comp. Neurol. 318 316–328.10.1002/cne.903180308
    1. Mohr B., MacGregor L. J., Difrancesco S., Harrington K., Pulvermüller F., Shtyrov Y. (2016). Hemispheric contributions to language reorganization: an MEG study of neuroplasticity in chronic post stroke aphasia. Neuropsychologia 93(Pt B), 413–424. 10.1016/j.neuropsychologia.2016.04.006
    1. Nicholas L. E., Brookshire R. H. (1993). A system for quantifying the informativiness and efficiency of the connected speech of adults with aphasia. J. Speech Hear Res. 36 338–350. 10.1044/jshr.3602.338
    1. Pani E., Zheng X., Wang J., Norton A., Schlaug G. (2016). Right hemisphere structures predict poststroke speech fluency. Neurology 86 1574–1581.10.1212/WNL.0000000000002613
    1. Pulvermüller F., Berthier M. L. (2008). Aphasia therapy on a neuroscience basis. Aphasiology 22 563–599. 10.1080/02687030701612213
    1. Pulvermüller F., Neininger B., Elbert T., Mohr B., Rockstroh B., Koebbel P., et al. (2001). Constraint-induced therapy of chronic aphasia after stroke. Stroke 32 1621–1626. 10.1161/01.STR.32.7.1621
    1. Raghanti M. A., Stimpson C. D., Marcinkiewicz J. L., Erwin J. M., Hof P. R., Sherwood C. C. (2008). Cholinergic innervation of the frontal cortex: differences among humans, chimpanzees, and macaque monkeys. J. Comp. Neurol. 506 409–424. 10.1002/cne.21546
    1. Raymer A. M., Bandy D., Adair J. C., Schwartz R. L., Williamson D. J., Gonzalez Rothi L. J., et al. (2001). Effects of bromocriptine in a patient with crossed nonfluent aphasia: a case report. Arch. Phys. Med. Rehabil. 82 139–144.10.1053/apmr.2001.18056
    1. Restle J., Murakami T., Ziemann U. (2012). Facilitation of speech repetition accuracy by theta burst stimulation of the left posterior inferior frontal gyrus. Neuropsychologia 50 2026–2031. 10.1016/j.neuropsychologia.2012.05.001
    1. Roelofs A. (2014). A dorsal-pathway account of aphasic language production: the WEAVER++/ARC model. Cortex 59 33–48. 10.1016/j.cortex.2014.07.001
    1. Salis C., Kelly H., Code C. (2015). Assessment and treatment of short-term and working memory impairments in stroke aphasia: a practical tutorial. Int. J. Lang. Commun. Disord. 50 721–736. 10.1111/1460-6984.12172
    1. Sassa Y., Sugiura M., Jeong H., Horie K., Sato S., Kawashima R. (2007). Cortical mechanism of communicative speech production. Neuroimage 37 985–992. 10.1016/j.neuroimage.2007.05.059
    1. Saur D., Kreher B. W., Schnell S., Kümmerer D., Kellmeyer P., Vry M. S., et al. (2008). Ventral and dorsal pathways for language. Proc. Natl. Acad. Sci. U.S.A. 105 18035–18040. 10.1073/pnas.0805234105
    1. Schlaug G., Marchina S., Norton A. (2009). Evidence for plasticity in white-matter tracts of patients with chronic Broca’s aphasia undergoing intense intonation-based speech therapy. Ann. N. Y. Acad. Sci. 1169 385–394.10.1111/j.1749-6632.2009.04587.x
    1. Sebastián-Gallés N., Martí-Antonín M. A., Carreiras-Valiña M. F., Cuetos-Vega F. (2000). LEXESP: Léxico Informatizado del Español. Barcelona: Edicions Universitat de Barcelona.
    1. Sierpowska J., Gabarrós A., Fernandez-Coello A., Camins À, Castañer S., Juncadella al. (2015). Morphological derivation overflow as a result of disruption of the left frontal aslant white matter tract. Brain Lang. 142 54–64. 10.1016/j.bandl.2015.01.005
    1. Simonyan K., Ackermann H., Chang E. F., Greenlee J. D. (2016). New developments in understanding the complexity of human speech production. J. Neurosci. 36 11440–11448. 10.1523/JNEUROSCI.2424-16.2016
    1. Sparks R., Helm N., Albert M. (1974). Aphasia rehabilitation resulting from melodic intonation therapy. Cortex 10 303–316. 10.1016/S0010-9452(74)80024-9
    1. Stahl B., Van Lancker Sidtis D. (2015). Tapping into neural resources of communication: formulaic language in aphasia therapy. Front. Psychol. 6:1526 10.3389/fpsyg.2015.01526
    1. Tournier J. D., Calamante F., Connelly A. (2007). Robust determination of the fibre orientation distribution in diffusion MRI: non-negativity constrained super-resolved spherical deconvolution. Neuroimage 35 1459–1472.10.1016/j.neuroimage.2007.02.016
    1. Tournier J. D., Calamante F., Connelly A. (2010). Improved probabilistic streamlines tractography by 2nd oder integration over fibre orientation distributions. Proc. Int. Soc. Magn. Reson. Med. 18:1670.
    1. Tournier J. D., Calamante F., Connelly A. (2012). MRtrix: diffusion tractography in crossing fiber regions. Int. J. Imaging Syst. Technol. 22 53–66. 10.1002/ima.22005
    1. Tournier J. D., Yeh C. H., Calamante F., Cho K. H., Connelly A., Lin C. P. (2008). Resolving crossing fibres using constrained spherical deconvolution: validation using diffusion-weighted imaging phantom data. Neuroimage 42 617–625. 10.1016/j.neuroimage.2008.05.002
    1. Valle F., Cuetos F. (1995). EPLA. Evaluación del Procesamiento Lingüístico en la Afasia. Hove: Lawrence Erlbaum Associates, Ltd.
    1. van Hees S., McMahon K., Angwin A., de Zubicaray G., Read S., Copland D. A. (2014). Changes in white matter connectivity following therapy for anomia post stroke. Neurorehabil. Neural Repair 28 325–334. 10.1177/1545968313508654
    1. Vassal F., Boutet C., Lemaire J. J., Nuti C. (2014). New insights into the functional significance of the frontal aslant tract: an anatomo-functional study using intraoperative electrical stimulations combined with diffusion tensor imaging-based fiber tracking. Br. J. Neurosurg. 28 685–687. 10.3109/02688697.2014.889810
    1. Vergani F., Lacerda L., Martino J., Attems J., Morris C., Mitchell P., et al. (2014). White matter connections of the supplementary motor area in humans. J. Neurol. Neurosurg. Psychiatry 85 1377–1385. 10.1136/jnnp-2013-307492
    1. Vines B. W., Norton A. C., Schlaug G. (2011). Non-invasive brain stimulation enhances the effects of melodic intonation therapy. Front. Psychol. 26:23010.3389/fpsyg.2011.00230
    1. Wan C. Y., Zheng X., Marchina S., Norton A., Schlaug G. (2014). Intensive therapy induces contralateral white matter changes in chronic stroke patients with Broca’s aphasia. Brain Lang. 136 1–7. 10.1016/j.bandl.2014.03.011
    1. Wang J., Marchina S., Norton A. C., Wan C. Y., Schlaug G. (2013). Predicting speech fluency and naming abilities in aphasic patients. Front. Hum. Neurosci. 10:831 10.3389/fnhum.2013.00831
    1. Willems R. M., Varley R. (2010). Neural insights into the relation between language and communication. Front. Hum. Neurosci. 25:203 10.3389/fnhum.2010.00203
    1. Woodhead Z. V., Crinion J., Teki S., Penny W., Price C. J., Leff A. P. (2017). Auditory training changes temporal lobe connectivity in ‘Wernicke’s aphasia’: a randomised trial. J. Neurol. Neurosurg Psychiatry 10.1136/jnnp-2016-314621 [Epub ahead of print].
    1. Yoon S. Y., Kim J. K., An Y. S., Kim Y. W. (2015). Effect of donepezil on wernicke aphasia after bilateral middle cerebral artery infarction: subtraction analysis of brain F-18 fluorodeoxyglucose positron emission tomographic images. Clin. Neuropharmacol. 38 147–150. 10.1097/WNF.0000000000000089
    1. Zatorre R. J., Fields R. D., Johansen-Berg H. (2012). Plasticity in gray and white: neuroimaging changes in brain structure during learning. Nat. Neurosci. 15 528–536. 10.1038/nn.3045
    1. Zipse L., Norton A., Marchina S., Schlaug G. (2012). When right is all that is left: plasticity of right-hemisphere tracts in a young aphasic patient. Ann. N. Y. Acad. Sci. 1252 237–245. 10.1111/j.1749-6632.2012.06454.x

Source: PubMed

3
Suscribir