Electrical muscle stimulation preserves the muscle mass of critically ill patients: a randomized study

Vasiliki Gerovasili, Konstantinos Stefanidis, Konstantinos Vitzilaios, Eleftherios Karatzanos, Panagiotis Politis, Apostolos Koroneos, Aikaterini Chatzimichail, Christina Routsi, Charis Roussos, Serafim Nanas, Vasiliki Gerovasili, Konstantinos Stefanidis, Konstantinos Vitzilaios, Eleftherios Karatzanos, Panagiotis Politis, Apostolos Koroneos, Aikaterini Chatzimichail, Christina Routsi, Charis Roussos, Serafim Nanas

Abstract

Introduction: Critically ill patients are characterized by increased loss of muscle mass, partially attributed to sepsis and multiple organ failure, as well as immobilization. Recent studies have shown that electrical muscle stimulation (EMS) may be an alternative to active exercise in chronic obstructive pulmonary disease (COPD) and chronic heart failure (CHF) patients with myopathy. The aim of our study was to investigate the EMS effects on muscle mass preservation of critically ill patients with the use of ultrasonography (US).

Methods: Forty-nine critically ill patients (age: 59 +/- 21 years) with an APACHE II admission score >or=13 were randomly assigned after stratification upon admission to receive daily EMS sessions of both lower extremities (EMS-group) or to the control group (control group). Muscle mass was evaluated with US, by measuring the cross sectional diameter (CSD) of the vastus intermedius and the rectus femoris of the quadriceps muscle.

Results: Twenty-six patients were finally evaluated. Right rectus femoris and right vastus intermedius CSD decreased in both groups (EMS group: from 1.42 +/- 0.48 to 1.31 +/- 0.45 cm, P = 0.001 control group: from 1.59 +/- 0.53 to 1.37 +/- 0.5 cm, P = 0.002; EMS group: from 0.91 +/- 0.39 to 0.81 +/- 0.38 cm, P = 0.001 control group: from 1.40 +/- 0.64 to 1.11 +/- 0.56 cm, P = 0.004, respectively). However, the CSD of the right rectus femoris decreased significantly less in the EMS group (-0.11 +/- 0.06 cm, -8 +/- 3.9%) as compared to the control group (-0.21 +/- 0.10 cm, -13.9 +/- 6.4%; P < 0.05) and the CSD of the right vastus intermedius decreased significantly less in the EMS group (-0.10 +/- 0.05 cm, -12.5 +/- 7.4%) as compared to the control group (-0.29 +/- 0.28 cm, -21.5 +/- 15.3%; P < 0.05).

Conclusions: EMS is well tolerated and seems to preserve the muscle mass of critically ill patients. The potential use of EMS as a preventive and rehabilitation tool in ICU patients with polyneuromyopathy needs to be further investigated.

Trial registration: clinicaltrials.gov: NCT00882830.

Figures

Figure 1
Figure 1
Schediagram of patients admitted to the ICU. APACHE = Acute Physiology and Chronic Health Evaluation; EMS = electrical muscle stimulation; ICU = intensive care unit.
Figure 2
Figure 2
(a) Absolute difference (cm) and (b) relative difference (%) in cross sectional diameter (CSD) of right rectus femoris and vastus intermedius in the control (n = 13) and EMS (n = 13) groups (mean ± standard deviation). *significant between-group difference (P < 0.05). EMS = electrical muscle stimulation.
Figure 3
Figure 3
(a) Absolute difference (cm) and (b) relative difference (%) in cross sectional diameter (CSD) of left rectus femoris and vastus intermedius in the control (n = 13) and EMS (n = 13) groups (mean ± standard deviation). *significant between-group difference (P < 0.05). EMS = electrical muscle stimulation.

References

    1. De Jonghe B, Bastuji-Garin S, Sharshar T, Outin H, Brochard L. Does ICU-acquired paresis lengthen weaning from mechanical ventilation? Intensive Care Med. 2004;30:1117–1121. doi: 10.1007/s00134-004-2174-z.
    1. Garnacho-Montero J, Madrazo-Osuna J, García-Garmendia JL, Ortiz-Leyba C, Jiménez-Jiménez FJ, Barrero-Almodóvar A, Garnacho-Montero MC, Moyano-Del-Estad MR. Critical illness polyneuropathy: risk factors and clinical consequences. A cohort study in septic patients. Intensive Care Med. 2001;27:1288–1296. doi: 10.1007/s001340101009.
    1. De Jonghe B, Sharshar T, Lefaucheur JP, Authier FJ, Durand-Zaleski I, Boussarsar M, Cerf C, Renaud E, Mesrati F, Carlet J, Raphaël JC, Outin H, Bastuji-Garin S. Paresis acquired in the intensive care unit: a prospective multicenter study. JAMA. 2002;288:2859–2867. doi: 10.1001/jama.288.22.2859.
    1. Ali NA, O'Brien JM Jr, Hoffmann SP, Phillips G, Garland A, Finley JC, Almoosa K, Hejal R, Wolf KM, Lemeshow S, Connors AF Jr, Marsh CB. Acquired weakness, handgrip strength, and mortality in critically ill patients. Am J Respir Crit Care Med. 2008;178:261–268. doi: 10.1164/rccm.200712-1829OC.
    1. Nanas S, Kritikos K, Angelopoulos E, Siafaka A, Tsikriki S, Poriazi M, Kanaloupiti D, Kontogeorgi M, Pratikaki M, Zervakis D, Routsi C, Roussos C. Predisposing factors for critical illness polyneuromyopathy in a multidisciplinary intensive care unit. Acta Neurol Scand. 2008;118:175–181. doi: 10.1111/j.1600-0404.2008.00996.x.
    1. Garnacho-Montero J, Amaya-Villar R, García-Garmendía JL, Madrazo-Osuna J, Ortiz-Leyba C. Effect of critical illness polyneuropathy on the withdrawal from mechanical ventilation and the length of stay in septic patients. Crit Care Med. 2005;33:349–354. doi: 10.1097/01.CCM.0000153521.41848.7E.
    1. Berek K, Margreiter J, Willeit J, Berek A, Schmutzhard E, Mutz NJ. Polyneuropathies in critically ill patients: a prospective evaluation. Intensive Care Med. 1996;22:849–855. doi: 10.1007/BF02044106.
    1. Fletcher SN, Kennedy DD, Ghosh IR, Misra VP, Kiff K, Coakley JH, Hinds CJ. Persistent neuromuscular and neurophysiologic abnormalities in long-term survivors of prolonged critical illness. Crit Care Med. 2003;31:1012–1016. doi: 10.1097/01.CCM.0000053651.38421.D9.
    1. Berghe G Van den, Wouters P, Weekers F, Vermaest C, Bruyninckx F, Schetz M, Vlasselaers D, Ferdinande P, Lauwers P, Bouillon R. Intensive insulin therapy in critically ill patients. N Engl J Med. 2001;345:1359–1367. doi: 10.1056/NEJMoa011300.
    1. NICE-SUGAR Study Investigators. Finfer S, Chittock DR, Su SY, Blair D, Foster D, Dhingra V, Bellomo R, Cook D, Dodek P, Henderson WR, Hébert PC, Heritier S, Heyland DK, McArthur C, McDonald E, Mitchell I, Myburgh JA, Norton R, Potter J, Robinson BG, Ronco JJ. Intensive versus conventional glucose control in critically ill patients. N Engl J Med. 2009;360(13):1283–1297. doi: 10.1056/NEJMoa0810625.
    1. Griesdale DE, de Souza RJ, van Dam RM, Heyland DK, Cook DJ, Malhotra A, Dhaliwal R, Henderson WR, Chittock DR, Finfer S, Talmor D. Intensive insulin therapy and mortality among critically ill patients: a meta-analysis including NICE-SUGAR study data. CMAJ. 2009;180(8):821–827.
    1. Dons B, Bollerup K, Bonde-Petersen F, Hancke S. The effect of weight-lifting exercise related to muscle fiber composition and muscle cross-sectional area in humans. Eur J Appl Physiol Occup Physiol. 1979;40:95–106. doi: 10.1007/BF00421155.
    1. Magnusson G, Gordon A, Kaijser L, Sylven C, Isberg B, Karpakka J, Saltin B. High intensity knee extensor training, in patients with chronic heart failure - Major skeletal improvements. Eur Heart J. 1996;17:1048–1055.
    1. Gruther W, Benesch T, Zorn C, Paternostro- SlugaT, Quittan M, Fialka-Moser V, Spiss C, Kainberger F, Crevenna R. Muscle wasting in intensive care patients: ultrasound observation of the m. quadriceps femoris muscle layer. J Rehabil Med. 2008;40:185–189. doi: 10.2340/16501977-0139.
    1. Svanberg E, Frost RA, Lang CH, Isgaard J, Jefferson LS, Kimball SR, Vary TC. IGF-I/IGFBP-3 binary complex modulates sepsis-induced inhibition of protein synthesis in skeletal muscle. Am J Physiol Endocrinol Metab. 2000;279:E1145–1158.
    1. Berg HE, Eiken O, Miklavcic L, Mekjavic IB. Hip, thigh and calf muscle atrophy and bone loss after 5-week bedrest inactivity. Eur J Appl Physiol. 2007;99:283–289. doi: 10.1007/s00421-006-0346-y.
    1. Monk D, Plank L, Franch-Arcas G, Finn P, Streat S, Hill G. Sequential changes in the metabolic response in critically injured patients during the first 25 days after blunt trauma. Ann Surg. 1996;223:395–405. doi: 10.1097/00000658-199604000-00008.
    1. Eikermann M, Koch G, Gerwig M, Ochterbeck C, Beiderlinden M, Koeppen S, Neuhäuser M, Peters J. Muscle force and fatigue in patients with sepsis and multiorgan failure. Intensive Care Med. 2006;32:251–259. doi: 10.1007/s00134-005-0029-x.
    1. Zanotti E, Felicetti G, Maini M, Fracchia C. Peripheral muscle strength training in bed-bound patients with COPD receiving mechanical ventilation: effect of electrical stimulation. Chest. 2003;124:292–296. doi: 10.1378/chest.124.1.292.
    1. Vivodtzev I, Pépin JL, Vottero G, Mayer V, Porsin B, Lévy P, Wuyam B. Improvement in quadriceps strength and dyspnea in daily tasks after 1 month of electrical stimulation in severely deconditioned and malnourished COPD. Chest. 2006;129:1540–1548. doi: 10.1378/chest.129.6.1540.
    1. Nuhr MJ, Pette D, Berger R, Quittan M, Crevenna R, Huelsman M, Wiesinger GF, Moser P, Fialka-Moser V, Pacher R. Beneficial effects of chronic low-frequency stimulation of thigh muscles in patients with advanced chronic heart failure. Eur Heart J. 2004;25:136–143. doi: 10.1016/j.ehj.2003.09.027.
    1. Deley G, Kervio G, Verges B, Hannequin A, Petitdant MF, Salmi-Belmihoub S, Grassi B, Casillas JM. Comparison of low-frequency electrical myostimulation and conventional aerobic exercise training in patients with chronic heart failure. Eur J Cardiovasc Prev Rehabil. 2005;12:226–233. doi: 10.1097/00149831-200506000-00007.
    1. Vincent JL, Moreno R, Takala J, Willatts S, De Mendonça A, Bruining H, Reinhart CK, Suter PM, Thijs LG. The SOFA (Sepsis-related Organ Failure Assessment) score to describe organ dysfunction/failure. On behalf of the Working Group on Sepsis-Related Problems of the European Society of Intensive Care Medicine. Intensive Care Med. 1996;22:707–710. doi: 10.1007/BF01709751.
    1. Knaus WA, Draper EA, Wagner DP, Zimmerman JE. APACHE II: a severity of disease classification system. Crit Care Med. 1985;13:818–829. doi: 10.1097/00003246-198510000-00009.
    1. Moreno RP, Metnitz PGH, Almeida E, Jordan B, Bauer P, Campos RA, Lapichino G, Edbrooke D, Capuzzo M, Le Gall JL. SAPS 3 From the evaluation of the patient to the evaluation of the intensive care unit. Part 2: Development of a prognostic model for hospital mortality at ICU admission. Intensive Care Med. 2005;31:1345–1355. doi: 10.1007/s00134-005-2763-5.
    1. Sipila S, Suominen H. Muscle Ultrasonography and Computed Tomography in elderly trained and untrained women. Muscle & Nerve. 1993;16:294–300. doi: 10.1002/mus.880160309.
    1. Sipilä S, Suominen H. Quantitative ultrasonography of muscle: detection of adaptations to training in elderly women. Arch Phys Med Rehabil. 1996;77:1173–1178. doi: 10.1016/S0003-9993(96)90143-4.
    1. Montes R. Changes in the cross-sectional diameter of muscle ultrasonography between relaxation and maximum voluntary isometric contraction in normal young subjects. Physiotherapy. 2001;87:172–178. doi: 10.1016/S0031-9406(05)60603-7.
    1. Gerovasili V, Karatzanos L, Stefanidis K, Vitzilaios K, Anastasiou E, Mitsiou G, Antelli A, Zervakis D, Nanas S. Electrical muscle stimulation: A tool to prevent critical illness polyneuromyopathy? Prospective randomized study. Intensive Care Medicine. 2008;34:s200.
    1. Campbell IT, Watt T, Withers D, England R, Sukumar S, Keegan MA, Faragher B, Martin DF. Muscle thickness, measured with ultrasound, may be an indicator of lean tissue wasting in multiple organ failure in the presence of edema. Am J Clin Nutr. 1995;62:533–539.
    1. Lin J, Fessell D, Jacobson J, Weadock W, Hayes C. An illustrated tutorial of musculoskeletal sonography: Part I, introduction and general principles. AJR. 2000;175:637–645.
    1. Plank LD, Connolly AB, Hill GL. Sequential changes in the metabolic response in severely septic patients during the first 23 days after the onset of peritonitis. Ann Surg. 1998;228:146–158. doi: 10.1097/00000658-199808000-00002.
    1. Reid CL, Murgatroyd PR, Wright A, Menon DK. Quantification of lean and fat tissue repletion following critical illness: a case report. Crit Care. 2008;12:R79. doi: 10.1186/cc6929.
    1. Neder JA, Sword D, Ward SA, Mackay E, Cochrane LM, Clark CJ. Home based neuromuscular electrical stimulation as a new rehabilitative strategy for severely disabled patients with chronic obstructive pulmonary disease (COPD). Thorax. 2002;57:333–337. doi: 10.1136/thorax.57.4.333.
    1. Bourjeily-Habr G, Rochester CL, Palermo F, Snyder P, Mohsenin V. Randomised controlled trial of transcutaneous electrical muscle stimulation of the lower extremities in patients with chronic obstructive pulmonary disease. Thorax. 2002;57:1045–1049. doi: 10.1136/thorax.57.12.1045.
    1. Bouletreau P, Patricot MC, Saudin F, Guiraud M, Mathian B. Effects of intermittent electrical stimulations on muscle catabolism in intensive care patients. JPEN J Parenter Enteral Nutr. 1987;11(6):552–555. doi: 10.1177/0148607187011006552.
    1. Taylor PN, Ewins DJ, Fox B, Grundy D, Swain ID. Limb blood flow, cardiac output and quadriceps muscle bulk following spinal cord injury and the effect of training for the Odstock functional electrical stimulation standing system. Paraplegia. 1993;31:303–310.
    1. Gerovasili V, Tripodaki E, Karatzanos E, Pitsolis T, Markaki V, Zervakis D, Routsi C, Roussos C, Nanas S. Acute systemic effect of electrical muscle stimulation in critically ill patients. Chest. in press .
    1. Walton J, Roberts N, Whitehouse GH. Measurement of the quadriceps femoris muscle using magnetic resonance and ultrasound imaging. Br J Sports Med. 1997;31:59–64. doi: 10.1136/bjsm.31.1.59.
    1. Schweickert WD, Pohlman MC, Pohlman AS, Nigos C, Pawlik AJ, Esbrook CL, Spears L, Miller M, Franczyk M, Deprizio D, Schmidt GA, Bowman A, Barr R, McCallister KE, Hall JB, Kress JP. Early physical and occupational therapy in mechanically ventilated, critically ill patients: a randomised controlled trial. Lancet. 2009;373(9678):1874–1882. doi: 10.1016/S0140-6736(09)60658-9.
    1. Morris PE, Goad A, Thompson C, Taylor K, Harry B, Passmore L, Ross A, Anderson L, Baker S, Sanchez M, Penley L, Howard A, Dixon L, Leach S, Small R, Hite RD, Haponik E. Early intensive care unit mobility therapy in the treatment of acute respiratory failure. Crit Care Med. 2008;36:2238–2243. doi: 10.1097/CCM.0b013e318180b90e.

Source: PubMed

3
Suscribir