Safety and Efficacy of Adding Dapagliflozin to Furosemide in Type 2 Diabetic Patients With Decompensated Heart Failure and Reduced Ejection Fraction

Ayman Ibrahim, Ramadan Ghaleb, Hossam Mansour, Amr Hanafy, Naggeh M Mahmoud, Mohamed Abdelfatah Elsharef, Mohamed Kamal Salama, Saud M Elsaughier, Lobna Abdel-Wahid, Mona Embarek Mohamed, Ahmed K Ibrahim, Ahmed Abdel-Galeel, Ayman Ibrahim, Ramadan Ghaleb, Hossam Mansour, Amr Hanafy, Naggeh M Mahmoud, Mohamed Abdelfatah Elsharef, Mohamed Kamal Salama, Saud M Elsaughier, Lobna Abdel-Wahid, Mona Embarek Mohamed, Ahmed K Ibrahim, Ahmed Abdel-Galeel

Abstract

Background: Heart failure is the most common cause of hospitalization in elderly patients. It is likely that many of the mechanisms that contribute to reductions in systolic and diastolic function, seen in diabetic patients, place them at an increased risk of heart failure. Diuretic therapy, especially loop diuretics, is the usual way of managing congestion, particularly in volume-overloaded patients. Little is known about the beneficial effect of dapagliflozin when added to loop diuretics in managing patients with decompensated heart failure. Aim: To assess the effect of the addition of dapagliflozin to furosemide in managing decompensated patient with heart failure and reduced left ventricular ejection fraction in terms of weight loss and dyspnea improvement. Patients and Methods: The study included 100 type 2 diabetic patients who were admitted with decompensated heart failure. The study population was randomly divided into two arms. Serum electrolytes and kidney functions were followed up during their hospital stay. Results: With dapagliflozin, there was a statistically significant difference between the two groups regarding the change in body weight and body mass index. The diuresis parameters including urine output, total fluid loss, and fluid balance also showed a statistically significant difference in favor of the use of dapagliflozin, with no significant change in serum potassium or kidney functions. There was significant improvement in patient-reported dyspnea scores with the use of dapagliflozin. Conclusions: Dapagliflozin may provide a new drug option in the treatment of heart failure especially among vulnerable group of diabetics. It had no remarkable effects on serum potassium level and kidney functions. Clinical Trial Registration: www.ClinicalTrials.gov, identifier: NCT04385589.

Keywords: dapagliflozin; diabetes mellitus; diuretic; furosemide; heart failure.

Conflict of interest statement

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2020 Ibrahim, Ghaleb, Mansour, Hanafy, Mahmoud, Abdelfatah Elsharef, Kamal Salama, Elsaughier, Abdel-Wahid, Embarek Mohamed, Ibrahim and Abdel-Galeel.

Figures

Figure 1
Figure 1
Enrollment and follow up of the study population.
Figure 2
Figure 2
Mean percent change in the body weight on discharge.
Figure 3
Figure 3
Change in the dyspnea grades on admission vs on discharge.

References

    1. Lala A, McNulty SE, Mentz RJ, Dunlay SM, Vader JM, AbouEzzeddine OF, et al. . Relief and recurrence of congestion during and after hospitalization for acute heart failure: insights from diuretic optimization strategy evaluation in acute decompensated heart failure (DOSE-AHF) and Cardiorenal Rescue Study in Acute Decompensated Heart Failure (CARESS-HF). Circ Heart Failure. (2015) 8:741–8. 10.1161/CIRCHEARTFAILURE.114.001957
    1. Goldsmith SR, Brandimarte F, Gheorghiade M. Congestion as a therapeutic target in acute heart failure syndromes. Prog Cardiovasc Dis. (2010) 52:383–92. 10.1016/j.pcad.2009.11.005
    1. Mullens W, Damman K, Harjola VP, Mebazaa A, Brunner-La Rocca HP, Martens P, et al. The use of diuretics in heart failure with congestion - a position statement from the Heart Failure Association of the European Society of Cardiology. Eur J Heart Fail. (2019) 21:137–55. 10.1002/ejhf.1369
    1. Felker GM, Lee KL, Bull DA, Redfield MM, Stevenson LW, Goldsmith SR, et al. . Diuretic strategies in patients with acute decompensated heart failure. N Engl J Med. (2011) 364:797–805. 10.1056/NEJMoa1005419
    1. Pitt B, Remme W, Zannad F, Neaton J, Martinez F, Roniker B, et al. . Eplerenone, a selective aldosterone blocker, in patients with left ventricular dysfunction after myocardial infarction. N Engl J Med. (2003) 348:1309–21. 10.1056/NEJMoa030207
    1. Masuyama T, Tsujino T, Origasa H, Yamamoto K, Akasaka T, Hirano Y, et al. . Superiority of long-acting to short-acting loop diuretics in the treatment of congestive heart failure. Circ J. (2012) 76:833–42. 10.1253/circj.CJ-11-1500
    1. Regan TJ, Lyons MM, Ahmed SS, Levinson GE, Oldewurtel HA, Ahmad MR, et al. . Evidence for cardiomyopathy in familial diabetes mellitus. J Clin Invest. (1977) 60:884–99. 10.1172/JCI108843
    1. Tribouilloy C, Rusinaru D, Mahjoub H, Tartière JM, Kesri-Tartière L, Godard S, et al. . Prognostic impact of diabetes mellitus in patients with heart failure and preserved ejection fraction: a prospective five-year study. Heart. (2008) 94:1450–5. 10.1136/hrt.2007.128769
    1. Aguilar D, Bozkurt B, Ramasubbu K, Deswal A. Relationship of hemoglobin A1C and mortality in heart failure patients with diabetes. J Am Coll Cardiol. (2009) 54:422–8. 10.1016/j.jacc.2009.04.049
    1. Echouffo-Tcheugui JB, Masoudi FA, Bao H, Spatz ES, Fonarow GC. Diabetes mellitus and outcomes of cardiac resynchronization with implantable cardioverter-defibrillator therapy in older patients with heart failure. Circ Arrhythm Electrophysiol. (2016) 9:e004132. 10.1161/CIRCEP.116.004132
    1. Galderisi M. Diastolic dysfunction and diabetic cardiomyopathy: evaluation by Doppler echocardiography. J Am Coll Cardiol. (2006) 48:1548–451. 10.1016/j.jacc.2006.07.033
    1. Karavanaki K, Kazianis G, Konstantopoulos I, Tsouvalas E, Karayianni C. Early signs of left ventricular dysfunction in adolescents with type 1 diabetes mellitus: the importance of impaired circadian modulation of blood pressure and heart rate. J Endocrinol Invest. (2008) 31:289–96. 10.1007/BF03346360
    1. Tzoulaki I, Molokhia M, Curcin V, Little MP, Millett CJ, Ng A, et al. . Risk of cardiovascular disease and all-cause mortality among patients with type 2 diabetes prescribed oral antidiabetes drugs: retrospective cohort study using UK general practice research database. BMJ. (2009) 339:b4731. 10.1136/bmj.b4731
    1. Nauck MA, McGuire DK, Pieper KS, Lokhnygina Y, Strandberg TE, Riefflin A, et al. Sitagliptin does not reduce the risk of cardiovascular death or hospitalization for heart failure following myocardial infarction in patients with diabetes: observations from TECOS. Cardiovasc Diabetol. (2019) 18:116 10.1186/s12933-019-0921-2
    1. Scirica BM, Bhatt DL, Braunwald E, Steg PG, Davidson J, Hirshberg B, et al. SAVOR-TIMI 53 Steering Committee and Investigators. Saxagliptin and cardiovascular outcomes in patients with type 2 diabetes mellitus. N Engl J Med. (2013) 369:1317–26. 10.1056/NEJMoa1307684
    1. Zinman B, Wanner C, Lachin JM, Fitchett D, Bluhmki E, Hantel S, et al. . Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes. N Engl J Med. (2015) 373:2117–28. 10.1056/NEJMoa1504720
    1. Neal B, Perkovic V, Mahaffey KW, de Zeeuw D, Fulcher G, Erondu N, et al. Canagliflozin and cardiovascular and renal events in type 2 diabetes. N Engl J Med. (2017) 377:644–57. 10.1056/NEJMoa1611925
    1. Wiviott SD, Raz I, Bonaca MP, Mosenzon O, Kato ET, Cahn A, et al. Dapagliflozin and cardiovascular outcomes in type 2 diabetes. N Engl J Med. (2019) 380:347–57.
    1. Inzucchi SE, Zinman B, Fitchett D, Wanner C, Ferrannini E, Schumacher M, et al. . How does empagliflozin reduce cardiovascular mortality? Insights from a mediation analysis of the EMPA-REG OUTCOME trial. Diabetes Care. (2018) 41:356–63. 10.2337/dc17-1096
    1. McMurray JJV, DeMets DL, Inzucchi SE, Køber L, Kosiborod MN, Langkilde AM, et al. . The Dapagliflozin And Prevention of Adverse-outcomes in Heart Failure (DAPA-HF) trial: baseline characteristics. Eur J Heart Fail. (2019) 21:1402–11. 10.1002/ejhf.1548
    1. Carbone S, Canada JM, Billingsley HE, Kadariya D, Dixon DL, Trankle CR, et al. . Effects of empagliflozin on cardiorespiratory fitness and significant interaction of loop diuretics. Diabetes Obes Metab. (2018) 20:2014–8. 10.1111/dom.13309
    1. Moghissi ES, Korytkowski, DiNardo M, Einhorn D, Hellman R, Hirsch IB, et al. . American Association of Clinical Endocrinologists and American Diabetes Association consensus statement on inpatient glycemic control. Diabetes Care. (2009) 32:1119–31. 10.2337/dc09-9029
    1. Valente MA, Voors AA, Damman K, Van Veldhuisen DJ, Massie BM, O'Connor CM, et al. . Diuretic response in acute heart failure: clinical characteristics and prognostic significance. Eur Heart J. (2014) 35:1284–93. 10.1093/eurheartj/ehu065
    1. Damman K, Testani JM. The kidney in heart failure: an update. Eur Heart J. (2015) 36:1437–44. 10.1093/eurheartj/ehv010
    1. Forman DE, Butler J, Wang Y, Abraham WT, O'Connor CM, Gottlieb SS, et al. . Incidence, predictors at admission, and impact of worsening renal function among patients hospitalized with heart failure. J Am Coll Cardiol. (2004) 43:61–7. 10.1016/j.jacc.2003.07.031
    1. Parshall MB, Schwartzstein RM, Adams L, Banzett RB, Manning HL, Bourbeau J, et al. . An official American Thoracic Society statement: update on the mechanisms, assessment, and management of dyspnea. Am J Respir Crit Care Med. (2012) 185:435–52. 10.1164/rccm.201111-2042ST
    1. Likert R. A technique for the measurement of attitudes. Vol. 22 (Thesis dissertation). The Science Press; Columbia University, New York, NY, United States: (1932). p. 55.
    1. Pang PS, Cleland JGF, Teerlink JR, Collins SP, Lindsell CJ, Sopko G, et al. . A proposal to standardize dyspnoea measurement in clinical trials of acute heart failure syndromes: the need for a uniform approach. Eur Heart J. (2008) 29:816–24. 10.1093/eurheartj/ehn048
    1. Smithline HA, Caglar S, Blank FSJ. Assessing validity by comparing transition and static measures of dyspnea in patients with acute decompensated heart failure. Congest Heart Fail. (2010) 16:202–7. 10.1111/j.1751-7133.2010.00152.x
    1. Teerlink JR. Dyspnea as an end point in clinical trials of therapies for acute decompensated heart failure. Am Heart J. (2003) 145(2 Suppl.):S26–33. 10.1067/mhj.2003.151
    1. Brater DC. Clinical pharmacology of loop diuretics. Drugs. (1991) 41:14–22. 10.2165/00003495-199100413-00004
    1. Fitchett DH, Udell JA, Inzucchi SE. Heart failure outcomes in clinical trials of glucose-lowering agents in patients with diabetes. Eur J Heart Fail. (2017) 19:43–53. 10.1002/ejhf.633
    1. Martens P, Nijst P, Mullens W. Current approach to decongestive therapy in acute heart failure. Curr Heart Fail Rep. (2015) 12:367–78. 10.1007/s11897-015-0273-5
    1. Verbrugge FH, Dupont M, Steels P, Grieten L, Malbrain M, Tang WH, et al. . Abdominal contributions to cardiorenal dysfunction in congestive heart failure. J Am Coll Cardiol. (2013) 62:485–95. 10.1016/j.jacc.2013.04.070
    1. Miller WL. Fluid volume overload and congestion in heart failure: time to reconsider pathophysiology and how volume is assessed. Circ Heart Fail. (2016) 9:e002922. 10.1161/CIRCHEARTFAILURE.115.002922
    1. Fudim M, Jones WS, Boortz-Marx RL, Ganesh A, Green CL, Hernandez AF, et al. . Splanchnic nerve block for acute heart failure. Circulation. (2018) 138:951–53. 10.1161/CIRCULATIONAHA.118.035260
    1. Gheorghiade M, Filippatos G, De Luca L, Burnett J. Congestion in acute heart failure syndromes: an essential target of evaluation and treatment. Am J Med. (2006) 119:S3–10. 10.1016/j.amjmed.2006.09.011
    1. Hoorn EJ, Wilcox CS, Ellison DH. Diuretics. In: Brenner BM, Rector FC, editors. Brenner Rector's the Kidney. 10th ed Philadelphia, PA: Elsevier; (2016). p. 1702–33.
    1. Loon NR, Wilcox CS, Unwin RJ. Mechanism of impaired natriuretic response to furosemide during prolonged therapy. Kidney Int. (1989) 36:682–9. 10.1038/ki.1989.246
    1. Wilcox CS, Mitch WE, Kelly RA, Skorecki K, Meyer TW, Friedman PA, et al. . Response of the kidney to furosemide, I: effects of salt intake and renal compensation. J Lab Clin Med. (1983) 102:450–8.
    1. Androne AS, Hryniewicz K, Hudaihed A, Mancini D, Lamanca J, Katz SD. Relation of unrecognized hypervolemia in chronic heart failure to clinical status, hemodynamics, and patient outcomes. Am J Cardiol. (2004) 93:1254–9. 10.1016/j.amjcard.2004.01.070
    1. Francis GS, Benedict C, Johnstone DE, Kirlin PC, Nicklas J, Liang CS, et al. . Comparison of neuroendocrine activation in patients with left ventricular dysfunction with and without congestive heart failure. A substudy of the Studies of Left Ventricular Dysfunction (SOLVD). Circulation. (1990) 82:1724–9. 10.1161/01.CIR.82.5.1724
    1. Ozierański K, Balsam P, Kapłon-Cieślicka A, Tymińska A, Kowalik R, Grabowski M, et al. . Comparative analysis of longterm outcomes of torasemide and furosemide in heart failure patients in heart failure registries of the European Society of Cardiology. Cardiovasc Drugs Ther. (2019) 33:77–86. 10.1007/s10557-018-6843-5
    1. Gottlieb SS, Brater DC, Thomas I, Havranek E, Bourge R, Goldman S, et al. . BG9719 (CVT-124), an A1 adenosine receptor antagonist, protects against the decline in renal function observed with diuretic therapy. Circulation. (2002) 105:1348–53. 10.1161/hc1102.105264
    1. Oh SW, Han SY. Loop diuretics in clinical practice. Electrolytes Blood Press. (2015) 13:17. 10.5049/EBP.2015.13.1.17
    1. Tamargo J, Caballero R, Delpón E. New therapeutic approaches for the treatment of hyperkalemia in patients treated with renin angiotensin-aldosterone system inhibitors. Cardiovasc Drugs Ther. (2018) 32:99–119. 10.1007/s10557-017-6767-5
    1. Zannad F, Gattis Stough W, Rossignol P, Bauersachs J, McMurray JJV, Swedberg K, et al. . Mineralocorticoid receptor antagonists for heart failure with reduced ejection fraction: integrating evidence into clinical practice. Eur Heart J. (2012) 33:2782–95. 10.1093/eurheartj/ehs257
    1. Cooper LB, Lippmann SJ, Greiner MA, Sharma A, Kelly JP, Fonarow GC, et al. Use of mineralocorticoid receptor antagonists in patients with heart failure and comorbid diabetes mellitus or chronic kidney disease. J Am Heart Assoc. (2017) 6:e006540 10.1161/JAHA.117.006540
    1. McMurray JJV, Solomon SD, Inzucchi SE, Kober L, Kosiborod MN, Martinez FA, et al. . Dapagliflozin in patients with heart failure and reduced ejection fraction. N Engl J Med. (2019) 381:1995–2008. 10.1056/NEJMoa1911303
    1. Lambers Heerspink HJ, de Zeeuw D, Wie L, Leslie B, List J. Dapagliflozin a glucose-regulating drug with diuretic properties in subjects with type 2 diabetes. Diabetes Obes Metab. (2013) 15:853–62. 10.1111/dom.12127
    1. Griffin MR, Ivey-Miranda V, Fleming J, Maulion J, Moskow C, Mahoney J, et al. Late breaking science abstracts and featured science abstracts from the American Heart Association's Scientific Sessions 2019: empagliflozin in heart failure: diuretic and cardio-renal effects. Circulation. (2019) 140:20180 10.1161/CIR.0000000000000742
    1. Kanai Y, Lee WS, You G, Brown D, Hediger MA. The human kidney low affinity Na+/glucose cotransporter SGLT2: delineation of the major renal reabsorptive mechanism for D-glucose. J Clin Invest. (1994) 93:397–404. 10.1172/JCI116972
    1. Rahman A, Kittikulsuth W, Fujisawa Y, Sufiun A, Rafiq K, Hitomi H, et al. . Effects of diuretics on sodium-dependent glucose cotransporter 2 inhibitor-induced changes in blood pressure in obese rats suffering from the metabolic syndrome. J Hypertens. (2016) 34:893–906. 10.1097/HJH.0000000000000871
    1. Oliva RV, Bakris GL. Blood pressure effects of sodium-glucose co-transport 2 (SGLT2) inhibitors. J Am Soc Hypertens. (2014) 8:330–9. 10.1016/j.jash.2014.02.003
    1. Cherney DZ, Perkins BA, Soleymanlou N, Har R, Fagan N, Johansen OE, et al. . The effect of empagliflozin on arterial stiffness and heart rate variability in subjects with uncomplicated type 1 diabetes mellitus. Cardiovasc Diabetol. (2014) 13:28. 10.1186/1475-2840-13-28
    1. McMurray JJV, DeMets DL, Inzucchi SE, Køber L, Kosiborod MN, Langkilde AM, et al. DAPA- HF Committees and Investigators. A trial to evaluate the effect of the sodium–glucose co-transporter 2 inhibitor dapagliflozin on morbidity and mortality in patients with heart failure and reduced left ventricular ejection fraction (DAPA-HF). Eur J Heart Fail. (2019) 381:665–75. 10.1002/ejhf.1432
    1. Petrie MC, Verma S, Docherty KF, Inzucchi SE, Anand I, Belohlávek J, et al. . Effect of dapagliflozin on worsening heart failure and cardiovascular death in patients with heart failure with and without diabetes. JAMA. (2020) 323:1353–68. 10.1001/jama.2020.1906
    1. Ansary TM, Fujisawa Y, Rahman A, Nakano D, Hitomi H, Kobara H, et al. . Responses of renal hemodynamics and tubular functions to acute sodium-glucose cotransporter 2 inhibitor administration in non-diabetic anesthetized rats. Sci Rep. (2017) 7:9555. 10.1038/s41598-017-09352-5
    1. Thomson SC, Rieg T, Miracle C, Mansoury H, Whaley J, Vallon V, et al. . Acute and chronic effects of SGLT2 blockade on glomerular and tubular function in the early diabetic rat. Am J Physiol Regul Integr Comp Physiol. (2012) 302:R75–83. 10.1152/ajpregu.00357.2011
    1. Takeshige Y, Fujisawa Y, Rahman A, Kittikulsuth W, Nakano D, Mori H, et al. . A sodium-glucose co-transporter 2 inhibitor empagliflozin prevents abnormality of circadian rhythm of blood pressure in salt-treated obese rats. Hypertens Res. (2016) 39:415–22. 10.1038/hr.2016.2
    1. Wilcox CS, Shen W, Boulton DW, Leslie BR, Griffen SC. Interaction between the sodium-glucose-linked transporter 2 inhibitor dapagliflozin and the loop diuretic bumetanide in normal human subjects. J Am Heart Assoc. (2018) 7:e007046. 10.1161/JAHA.117.007046
    1. Griffin M, Riello R, Rao VS, Ivey-Miranda J, Fleming J, Maulion C, et al. . Sodium glucose cotransporter 2 inhibitors as diuretic adjuvants in acute decompensated heart failure: a case series. ESC Heart Fail. (2020) 7:1966–71. 10.1002/ehf2.12759
    1. Cahn A, Melzer-Cohen C, Pollack R, Chodick G, Shalev V. Acute renal outcomes with sodium-glucose co-transporter-2 inhibitors: real-world data analysis. Diabetes Obes Metab. (2019) 21:340–8. 10.1111/dom.13532
    1. Yavin Y, Mansfield TA, Ptaszynska A, Johnsson K, Parikh S, Johnsson E. Effect of the SGLT2 inhibitor dapagliflozin on potassium levels in patients with type 2 diabetes mellitus: a pooled analysis. Diabetes Ther. (2016) 7:125–37. 10.1007/s13300-015-0150-y
    1. Kambara T, Shibata R, Osanai H, Nakashima Y, Asano H, Murohara T, et al. . Importance of sodium-glucose cotransporter 2 inhibitor use in diabetic patients with acute heart failure. Ther Adv Cardiovasc Dis. (2019) 13:1753944719894509. 10.1177/1753944719894509
    1. Jackson AM, Dewan P, Anand IS, Bělohlávek J, Bengtsson O, de Boer RA, et al. . Dapagliflozin and diuretic use in patients with heart failure and reduced ejection fraction in DAPA-HF. Circulation. (2020) 142:1040–54. 10.1161/CIRCULATIONAHA.120.047077
    1. Damman K, Beusekamp JC, Boorsma EM, Swart HP, Smilde TDJ, Elvan A, et al. . Randomized, double-blind, placebo- controlled, multicentre pilot study on the effects of empagliflozin on clinical outcomes in patients with acute decompensated heart failure (EMPA-RESPONSE- AHF). Eur J Heart Failure. (2020) 22:713–22. 10.1002/ejhf.1713
    1. Ibrahim A, Ghaleb R, Mansour H, Hanafy A, Mahmoud NM, Elsharef MA. Safety and Efficacy of adding Dapagliflozin to Furosemide in Type 2 Diabetic Patients with Decompensated Heart Failure and Reduced Ejection Fraction. Assiut: Research Square; (2020).

Source: PubMed

3
Suscribir