Who is going to walk? A review of the factors influencing walking recovery after spinal cord injury

Giorgio Scivoletto, Federica Tamburella, Letizia Laurenza, Monica Torre, Marco Molinari, Giorgio Scivoletto, Federica Tamburella, Letizia Laurenza, Monica Torre, Marco Molinari

Abstract

The recovery of walking function is considered of extreme relevance both by patients and physicians. Consequently, in the recent years, recovery of locomotion become a major objective of new pharmacological and rehabilitative interventions. In the last decade, several pharmacological treatment and rehabilitative approaches have been initiated to enhance locomotion capacity of SCI patients. Basic science advances in regeneration of the central nervous system hold promise of further neurological and functional recovery to be studied in clinical trials. Therefore, a precise knowledge of the natural course of walking recovery after SCI and of the factors affecting the prognosis for recovery has become mandatory. In the present work we reviewed the prognostic factors for walking recovery, with particular attention paid to the clinical ones (neurological examination at admission, age, etiology gender, time course of recovery). The prognostic value of some instrumental examinations has also been reviewed. Based on these factors we suggest that a reliable prognosis for walking recovery is possible. Instrumental examinations, in particular evoked potentials could be useful to improve the prognosis.

Keywords: prognostic factors; spinal cord injury; walking recovery.

Figures

Figure 1
Figure 1
Scoring sheet for the International Standards for Neurological Classification of Spinal Cord Injury. American Spinal Injury Association: International Standards for Neurological Classification of Spinal Cord Injury, revised 2013; Atlanta, GA. Reprinted 2013.
Figure 2
Figure 2
Scoring sheet for the International Standards for Neurological Classification of Spinal Cord Injury. American Spinal Injury Association: International Standards for Neurological Classification of Spinal Cord Injury, revised 2013; Atlanta, GA. Reprinted 2013.

References

    1. (2002). Management of acute central cervical spinal cord injuries. Neurosurgery 50(3 Suppl), S166–S172
    1. Aalfs C. M., Koelman J. H., Meyjes F. E., de Visser B. W. O. (1993). Posterior tibial and sural nerve somatosensory evoked potentials: a study in spastic paraparesis in spinal cord lesions. Electroencephalogr. Clin. Neurophysiol. 89, 437–441 10.1016/0168-5597(93)90118-9
    1. Aito S., D'Andrea M., Werhagen L., Farsetti L., Cappelli S., Bandini B., et al. (2006). Neurological and functional outcome in traumatic central cord syndrome. Spinal Cord 45, 292–297 10.1038/sj.sc.3101944
    1. American Spinal Injury Association. (2000). International standards for neurological classifications of spinal cord Injury (revised). Chicago, IL: American Spinal Injury Association
    1. Andreoli C., Colaiacomo M. C., Rojas Beccaglia M., Di Biasi C., Casciani E., Gualdi G. (2005). MRI in the acute phase of spinal cord traumatic lesions: Relationship between MRI findings and neurological outcome. Radiol. Med. 110, 636–645
    1. Bauer R. D., Errico T. J. (1991). Cervical spine injuries, in Spinal Trauma, eds Errico T. J., Bauer R. D., Waugh T. (Philadelphia, PA: JB Lippincott; ), 71–121
    1. Becker D., McDonald J. W., 3rd. (2012). Approaches to repairing the damaged spinal cord: overview. Handb. Clin. Neurol. 109, 445–461 10.1016/B978-0-444-52137-8.00028-0
    1. Bohlman H. H. (1979). Acute fractures and dislocations of the cervical spine. An analysis of three hundred hospitalized patients and review of the literature. J. Bone Joint Surg. Am. 61, 1119–1142
    1. Boldin C., Raith J., Fankhauser F., Haunschmid C., Schwantzer G., Schweighofer F. (2006). Predicting neurologic recovery in cervical spinal cord injury with postoperative MR imaging. Spine 31, 554–559 10.1097/01.brs.0000201274.59427.a4
    1. Bondurant F. J., Cotler H. B., Kulkarni M. V., McArdle C. B., Harris J. H. (1990). Acute spinal cord injury: a study using physical examination and magnetic resonance imaging. Spine 15, 161–168 10.1097/00007632-199003000-00002
    1. Bozzo A., Marcoux J., Radhakrishna M., Pelletier J., Goulet B. (2011). The role of magnetic resonance imaging in the management of acute spinal cord injury. J. Neurotrauma 28, 1401–1411 10.1089/neu.2009.1236
    1. Bracken M. B., Collins W. F., Freeman D. F., Shepard M. J., Wagner F. W., Silten R. M., et al. (1984). Efficacy of methylprednisolone in acute spinal cord injury. JAMA 251, 45–52 10.1001/jama.1984.03340250025015
    1. Bracken M. B., Shepard M. J., Collins W. F., Holford T. R., Young W., Baskin D. S., et al. (1990). A randomized, controlled trial of methylprednisolone or naloxone in the treatment of acute spinal-cord injury. Results of the second national acute spinal cord injury study. N. Engl. J. Med. 322, 1405–1411 10.1056/NEJM199005173222001
    1. Bracken M. B., Shepard M. J., Holford T. R., Leo-Summers L., Aldrich E. F., Fazl M., et al. (1997). Administration of methylprednisolone for 24 or 48 hours or tirilazad mesylate for 48 hours in the treatment of acute spinal cord injury. Results of the third national acute spinal cord injury randomized controlled trial. national acute spinal cord injury study. JAMA 277, 1597–1604 10.1001/jama.1997.03540440031029
    1. Brown-Sequard C. E. (1868). Lectures on the physiology and pathology of the central nervous system and the treatment of organic nervous affections. Lancet 2, 593–595, 659–662, 755–757, 821–823. 10.1016/S0140-6736(02)52465-X
    1. Buchan A. C., Fulford G. E., Jellineck E., Kerr W. G., Newsam J. E., Stark G. D. (1972). A preliminary survey of the incidence and etiology of spinal paralysis. Paraplegia 10, 23–28 10.1038/sc.1972.5
    1. Burns A. S., Marino R. J., Flanders A. E., Flett H. (2012). Clinical diagnosis and prognosis following spinal cord injury. Handb. Clin. Neurol. 109, 47–62 10.1016/B978-0-444-52137-8.00003-6
    1. Burns S. P., Golding D. G., Rolle W. A., Jr., Graziani V., Ditunno J. F. (1997). Recovery of ambulation in motor incomplete tetraplegia. Arch. Phys. Med. Rehabil. 78, 1169–1172 10.1016/S0003-9993(97)90326-9
    1. Bydon M., Lin J., Macki M., Gokaslan Z. L., Bydon A. (2013). The current role of steroids in acute spinal cord injury. World Neurosurg. [Epub ahead of print]. 10.1016/j.wneu.2013.02.062
    1. Celani M. G., Spizzichino L., Ricci S., Zampolini M., Franceschini M. (2001). Spinal cord injury in Italy: a multicenter retrospective study. Arch. Phys. Med. Rehab. 82, 589–596 10.1053/apmr.2001.21948
    1. Chabot R., York D. H., Watts C., Waugh W. A. (1985). Somatosensory evoked potentials evaluated in normal subjects in spinal cord injured patients. J. Neurosurg. 63, 544–551 10.3171/jns.1985.63.4.0544
    1. Cheshire W. E., Santos C. C., Massey E. W., Howard J. E. (1996). Spinal cord infarction: etiology and outcome. Neurology 47, 321–330 10.1212/WNL.47.2.321
    1. Citterio A., Franceschini M., Spizzichino L., Reggio A., Rossi B., Stampacchia G. (2004). Nontraumatic spinal cord injury: an Italian survey. Arch. Phys. Med. Rehabil. 85, 1483–1487 10.1016/j.apmr.2003.09.028
    1. Consortium for Spinal Cord Medicine. (2007). Early Acute Management in Adults with Spinal Cord Injury: a Clinical Practice Guideline for Health-Care Providers. Washington, DC: Paralyzed Veterans of America
    1. Crozier K. S., Cheng L. L., Graziani V., Zorn G., Herbison G., Ditunno J. F., Jr. (1992). Spinal cord injury: prognosis for ambulation based on quadriceps recovery. Paraplegia 30, 762–767 10.1038/sc.1992.147
    1. Crozier K. S., Graziani V., Ditunno J. F., Jr., Herbison G. J. (1991). Spinal cord injury: prognosis for ambulation based on sensory examination in patients who are initially motor complete. Arch. Phys. Med. Rehabil. 72, 119–121
    1. Curt A., Dietz V. (1997). Ambulatory capacity in spinal cord injury: significance of somatosensory evoked potentials and ASIA protocols in predicting outcome. Arch. Phys. Med. Rehabil. 78, 39–43 10.1016/S0003-9993(97)90007-1
    1. Curt A., Keck M. E., Dietz V. (1998). Functional outcome following spinal cord injury: significance of motor-evoked potentials and ASIA scores. Arch. Phys. Med. Rehabil. 79, 81–86 10.1016/S0003-9993(98)90213-1
    1. Dai L., Jia L. (2000). Central cord injury complicating acute cervical disc herniation in trauma. Spine 25, 331–335 10.1097/00007632-200002010-00012
    1. Delamarter R. B., Sherman J., Carr J. B. (1995). Pathophysiology of spinal cord injury: recovery after immediate and delayed compression. J. Bone Joint Surg. Am. 77, 1042–1049
    1. DiGiovanna A. G. (2000). Human Ageing: Biological Perspectives, 2nd Edn. New York, NY: McGraw Hill Companies
    1. Ditunno J. F. (1999). The John Stanley Coulter Lecture. Predicting recovery after spinal cord injury: a rehabilitation imperative. Arch. Phys. Med. Rehabil. 80, 361–364
    1. Ditunno J. F., Scivoletto G., Patrick M., Biering-Sorensen F., Abel R., Marino R. (2008b). Validation of the walking index for spinal cord injury in a US and European clinical population. Spinal Cord 46, 181–188 10.1038/sj.sc.3102071
    1. Ditunno P. L., Patrick M., Stineman M., Ditunno J. F. (2008a). Who wants to walk? Preferences for recovery after SCI: a longitudinal and cross-sectional study. Spinal Cord. 46, 500–506 10.1038/sj.sc.3102172
    1. Domingo A., Al-Yahya A. A., Asiri Y., Eng J. J., Tania Lam T., Spinal Cord Injury Rehabilitation Evidence Research Team. (2012). A systematic review of the effects of pharmacological agents on walking function in people with spinal cord injury. J. Neurotrauma 29, 865–879 10.1089/neu.2011.2052
    1. Dvorak M. F., Fisher C. G., Hoekema J., Boyd M., Noonan V., Wing P. C., et al. (2005). Factors Predicting motor recovery and functional outcome after traumatic central cord syndrome a long-term follow-up. Spine 30, 2303–2311 10.1097/01.brs.0000182304.35949.11
    1. Fawcett J. W., Curt A., Steeves J. D., Coleman W. P., Tuszynski M. H., Lammertse D., et al. (2006). Guidelines for the conduct of clinical trials for spinal cord injury as developed by the ICCP panel: spontaneous recovery after spinal cord injury and statistical power needed for therapeutic clinical trials. Spinal Cord 45, 190–205 10.1038/sj.sc.3102007
    1. Fehlings M. G., Perrin R. G. (2005). The role and timing of early decompression for cervical spine injury: update with a review of the recent clinical evidence. Injury 36(Suppl. 2), B13–B26 10.1016/j.injury.2005.06.011
    1. Fehlings M. G., Tator C. H. (1999). An evidence-based review of decompressive surgery in acute spinal cord injury: rationale, indications, and timing based on experimental and clinical studies. J. Neurosurg. Spine 91, 1–11 10.3171/spi.1999.91.1.0001
    1. Fehlings M. G., Vaccaro A., Wilson J. R., Singh A. W., Cadotte D., Harrop J. S., et al. (2012). Early versus delayed decompression for traumatic cervical spinal cord injury: results of the Surgical Timing in Acute Spinal Cord Injury Study (STASCIS). PLoS ONE 7:e32037 10.1371/journal.pone.0032037
    1. Flanders A. E., Schaefer D. M., Doan H. T., Mishkin M. M., Gonzalez C. F., Northrup B. E. (1990). Acute cervical spine trauma: correlation of MR imaging findings with degree of neurologic deficit. Radiology 177, 25–33
    1. Flanders A. E., Spettell C. M., Tartaglino L. M., Friedman D. P., Herbison G. J. (1996). Forecasting motor recovery after cervical spinal cord injury: value of MR imaging. Radiology 201, 649–655
    1. Foo D. (1986). Spinal cord injury in forty-four patients with cervical spondylosis. Paraplegia 24, 301–306 10.1038/sc.1986.42
    1. Foo D., Subrahmanyan T. S., Rossier A. B. (1981). Post-traumatic acute anterior spinal cord syndrome. Paraplegia. 19, 201–205 10.1038/sc.1981.42
    1. Gentleman D., Harrington M. (1984). Penetrating injury of the spinal cord. Injury 16, 7–8 10.1016/0020-1383(84)90101-3
    1. Greenwald B. D., Seel R. T., Cifu D. X., Shah A. N. (2001). Gender-related differences in acute rehabilitation lengths of stay, charges, and functional outcomes for a matched sample with spinal cord injury: a multicenter investigation. Arch. Phys. Med. Rehabil. 82, 1181–1187 10.1053/apmr.2001.24891
    1. Herbison G. J., Zerby S. A., Cohen M. E., Marino R. J., Ditunno J. E. (1991). Motor power difference within the first two weeks post-SCI in cervical spinal cord quadriplegic subjects. J. Neurotrauma 9, 373–380 10.1089/neu.1992.9.373
    1. Hurlbert R. J. (2001). The role of steroids in acute spinal cord injury. An evidence-based analysis. Spine 26, S39–S46 10.1097/00007632-200112151-00009
    1. Hussey R. W., Stauffer E. S. (1973). Spinal cord injury: requirements for ambulation. Arch. Phys. Med. Rehabil. 54, 544–547
    1. Jacobs S. R., Yeaney N. K., Herbison G. J., Ditunno J. F., Jr. (1995). Future ambulation prognosis as predicted by somatosensory evoked potentials in motor complete and incomplete quadriplegia. Arch. Phys. Med. Rehabil. 76, 635–641 10.1016/S0003-9993(95)80632-6
    1. Jakob W., Wirz M., van Hedel H. J., Dietz V., EM-SCI Study Group. (2009). Difficulty of elderly SCI subjects to translate motor recovery—“body function”–into daily living activities. J. Neurotrauma 26, 2037–2044 10.1089/neu.2008.0824
    1. Kaplan B. J., Friedman W. A., Gavenstein D. (1985). Somatosensory evoked potential in hysterical paraplegia. Surg. Neurol. 23, 502–506 10.1016/0090-3019(85)90246-0
    1. Kaplan P. E., Rosen J. S. (1981). Somatosensory evoked potentials in spinal cord injured patients. Paraplegia 19, 118–122 10.1038/sc.1981.26
    1. Katoh S., el Masry W. S. (1995). Motor recovery of patients presenting with motor paralysis and sensory sparing following cervical spinal cord injuries. Paraplegia 33, 506–509
    1. Katz R. T., Tolkeikis R. J., Knuth A. E. (1991). Somatosensory-evoked and dermatomal-evoked potentials are not clinically useful in the prognostication of acute spinal cord injury. Spine 16, 730–735 10.1097/00007632-199107000-00007
    1. Kirshblum S. C., O'Connor K. C. (1998). Predicting neurologic recovery in traumatic cervical spinal cord injury. Arch. Phys. Med. Rehabil. 79, 1456–1466
    1. Ko H-Y., Ditunno J. F., Graziani V., Little J. W. (1999). The pattern of reflex recovery during spinal shock. Spinal Cord 37, 402–409 10.1038/sj.sc.3100840
    1. La Rosa G., Conti A., Cardali S., Cacciola F., Tomasello F. (2004). Does early decompression improve neurological outcome of spinal cord injured patients? Appraisal of the literature using a meta-analytical approach. Spinal Cord 42, 503–512 10.1038/sj.sc.3101627
    1. Marciello M., Flanders A. E., Herbison G. J., Schaefer D. M., Friedman D. P., Lane J. I. (1993). Magnetic resonance imaging related to neurologic outcome in cervical spinal cord injury. Arch. Phys. Med. Rehabil. 74, 940–946
    1. Marinho A. R., Flett H. M., Craven C., Ottensmeyer C. A., Parsons D., Verrier M. C. (2012). Walking-related outcomes for individuals with traumatic and non-traumatic spinal cord injury inform physical therapy practice. J. Spinal Cord Med. 35, 371–381 10.1179/2045772312Y.0000000038
    1. Matsumoto T., Tamaki T., Kawakami M., Yoshida M., Ando M., Yamada H. (2001). Early complications of high-dose methylprednisolone sodium succinate treatment in the follow-up of acute cervical spinal cord injury. Spine 26, 426–430 10.1097/00007632-200102150-00020
    1. Maynard F. M., Glen G. R., Fountain S., Wilmot C., Hamilton R. (1979). Neurological prognosis after traumatic quadriplegia. J. Neurosurg. 50, 611–616 10.3171/jns.1979.50.5.0611
    1. Maynard F. M., Jr., Bracken M. B., Creasey G., Ditunno J. F., Jr., Donovan W. H., Ducker T. B., et al. (1997). International standards for neurological and functional classification of spinal cord injury patients (revised). Spinal Cord 35, 266–274 10.1038/sj.sc.3100432
    1. McKinley W., Santos K., Meade M., Brooke K. (2007). Incidence and outcomes of spinal cord injury clinical syndromes. J. Spinal Cord Med. 30, 215–224
    1. McKinley W. O., Huang M. E., Tewksbury M. A. (2000). Neoplastic vs. traumatic spinal cord injury: an inpatient rehabilitation comparison. Am. J. Phys. Med. Rehabil. 79, 138–144 10.1097/00002060-200003000-00005
    1. McKinley W. O., Seel R. T., Gadi R. K., Tewksbury M. A. (2001). Nontraumatic vs. traumatic spinal cord injury. Am. J. Phys. Med. Rehab. 80, 693–699 10.1097/00002060-200109000-00010
    1. Mckinley W. O., Tewksbury M. A., Mujteba N. M. (2002). Spinal stenosis vs traumatic spinal cord injury: a rehabilitation outcome comparison. J. Spinal Cord Med. 25, 28–32
    1. Merriam W. E., Taylor T. K. F., Ruff S. J., McPhail M. J. (1986). A reappraisal of acute traumatic central cord syndrome. J. Bone Joint Surg. 68B, 708–713
    1. Miyanji F., Furlan J. C., Aarabi B., Arnold P. M., Fehlings M. G. (2007). Acute cervical traumatic spinal cord injury: MR imaging findings correlated with neurologic outcome—prospective study with 100 consecutive patients. Radiology 243, 820–827 10.1148/radiol.2433060583
    1. Newey M. L., Sen P. K., Fraser R. D. (2000). The long-term outcome after central cord syndrome: a study of the natural history. J. Bone Joint Surg. Br. 82, 851–855 10.1302/0301-620X.82B6.9866
    1. Oleson C. V., Burns A. S., Ditunno J. F., Geisler F. H., Coleman W. P. (2005). Prognostic value of pinprick preservation in motor complete, sensory incomplete spinal cord injury. Arch. Phys. Med. Rehabil. 86, 988–992 10.1016/j.apmr.2004.09.031
    1. Pagliacci M. C., Celani M. G., Spizzichino L., Zampolini M., Aito S., Citterio A., et al. (2003). Gruppo Italiano Studio Epidemiologico Mielolesioni (GISEM) Group. spinal cord lesion management in Italy: a 2-year survey. Spinal Cord 41, 620–628 10.1038/sj.sc.3101521
    1. Penrod L. E., Hegde S. K., Ditunno J. E. (1990). Age effect on prognosis for functional recovery in acute, traumatic central cord syndrome. Arch. Phys. Med. Rehabil. 71, 963–968
    1. Perot P. L., Vera C. L. (1982). Scalp-recorded somatosensory evoked potentials to stimulation of nerves in the lower extremities and evaluation of patients with spinal cord trauma. Ann. N.Y. Acad. Sci. 388, 359–368 10.1111/j.1749-6632.1982.tb50802.x
    1. Pointillart V., Petitjean M. E., Wiart L., Vital J. M., Lassie P., Thicoipe M., et al. (2000). Pharmacological therapy of spinal cord injury during the acute phase. Spinal Cord 38, 71–76 10.1038/sj.sc.3100962
    1. Quian T., Guo X., Levi A. D., Vanni S., Shebert R. T., Sipski M. L. (2004). High-dose methylprednisolone may cause myopathy in acute spinal cord injury patients. Spinal Cord 43, 199–203 10.1038/sj.sc.3101681
    1. Raineteau O., Schwab M. E. (2001). Plasticity of motor systems after incomplete spinal cord injury. Nat. Rev. Neurosci. 2, 263–273 10.1038/35067570
    1. Ramón S., Domínguez R., Ramírez L., Paraira M., Olona M., Castelló T., et al. (1997). Clinical and magnetic resonance imaging correlation in acute spinal cord injury. Spinal Cord 35, 664–673 10.1038/sj.sc.3100490
    1. Roth E. J., Lawler M. H., Yarkony G. M. (1990). Traumatic central cord syndrome: clinical features and functional outcomes. Arch. Phys. Med. Rehabil. 71, 18–23
    1. Roth E. J., Park T., Pang T., Yarkony G. M., Lee M. Y. (1991). Traumatic cervical Brown-Sequard and Brown-Sequard plus syndromes: the spectrum of presentations and outcomes. Paraplegia 29, 582–589 10.1038/sc.1991.86
    1. Sato T., Kokubun S., Rijal K. P., Ojima T., Moriai N., Hashimoto M., et al. (1994). Prognosis of cervical spinal cord injury in correlation with magnetic resonance imaging. Paraplegia 32, 81–85 10.1038/sc.1994.14
    1. Schaefer D. M., Flanders A. E., Osterholm J. L., Northrup B. E. (1992). Prognostic significance of magnetic resonance imaging in the acute phase of cervical spine injury. J. Neurosurg. 76, 218–223 10.3171/jns.1992.76.2.0218
    1. Scivoletto G., Farchi S., Laurenza L., Molinari M. (2011). Traumatic and non-traumatic spinal cord lesions: an Italian comparison of neurological and functional outcomes. Spinal Cord 49, 391–396 10.1038/sc.2010.85
    1. Scivoletto G., Morganti B., Ditunno P., Ditunno J. F., Molinari M. (2003). Effects on age on spinal cord lesion patients' rehabilitation. Spinal Cord 41, 457–464 10.1038/sj.sc.3101489
    1. Scivoletto G., Morganti B., Molinari M. (2004a). Neurologic recovery of spinal cord injury patients in Italy. Arch. Phys. Med. Rehabil. 85, 485–489 10.1016/S0003-9993(03)00766-4
    1. Scivoletto G., Morganti B., Molinari M. (2004b). Sex-related differences of rehabilitation outcomes of spinal cord lesion patients. Clin. Rehabil. 18, 709–713 10.1191/0269215504cr749oa
    1. Selden N. R., Quint D. J., Patel N., D'Arcy H. S., Papadopoulos S. M. (1999). Emergency magnetic resonance imaging of cervical spinal cord injuries: clinical correlation and prognosis. Neurosurgery 44, 785–792
    1. Shimada K., Tokioka T. (1999). Sequential MR studies of cervical cord injury: correlation with neurological damage and clinical outcome. Spinal Cord 37, 410–415 10.1038/sj.sc.3100858
    1. Sipski M. L., Jackson A. B., Gómez-Marín O., Estores I., Stein A. (2004). Effects of gender on neurologic and functional recovery after spinal cord injury. Arch. Phys. Med. Rehabil. 85, 1826–1836 10.1016/j.apmr.2004.04.031
    1. Song K. J., Kim G. H., Lee K. B. (2008). The efficacy of the modified classification system of soft tissue injury in extension injury of the lower cervical spine. Spine 33, E488–E493 10.1097/BRS.0b013e31817b6191
    1. Stahlman G. C., Hanley E. N. (1992). Surgical management of spinal injuries, in Skeletal Trauma, eds Browner B. D., Jupiter J. B., Levine A. M., Trafton P. G. (Philadelphia: WB Saunders; ), 837–860
    1. Steeves J. D., Lammertse D., Curt A., Fawcett J. W., Tuszynski M. H., Ditunno J. F., et al. (2007). International campaign for cures of spinal cord injury paralysis. guidelines for the conduct of clinical trials for spinal cord injury (SCI) as developed by the ICCP panel: clinical trial outcome measures. Spinal Cord 45, 190–205 10.1038/sj.sc.3102008
    1. Suberviola B., Gonzalez-Castro A., Llorca J., Ortiz-Melon F., Minambres E. (2008). Early complications of high-dose methylprednisolone in acute spinal cord injury patients. Injury 39, 748–752 10.1016/j.injury.2007.12.005
    1. Vaccaro A. R., Daugherty R. J., Sheehan T. P., Dante S. J., Cotler J. M., Balderston R. A., et al. (1997). Neurologic outcome of early versus late surgery for cervical spinal cord injury. Spine 22, 2609–2613 10.1097/00007632-199711150-00006
    1. van Middendorp J. J., Hosman A. J., Doi S. A. (2013). The effects of the timing of spinal surgery after traumatic spinal cord injury: a systematic review and meta-analysis. J. Neurotrauma 30, 1781–1794 10.1089/neu.2013.2932
    1. van Middendorp J. J., Hosman A. J., Donders A. R., Pouw M. H., Ditunno J. F., Jr., Curt A., et al. (2011). A clinical prediction rule for ambulation outcomes after traumatic spinal cord injury: a longitudinal cohort study. Lancet 377, 1004–1010 10.1016/S0140-6736(10)62276-3
    1. van Middendorp J. J., Hosman A. J., Pouw M. H., EM-SCI Study Group, Van de Meent H. (2009). ASIA impairment scale conversion in traumatic SCI: is it related with the ability to walk? A descriptive comparison with functional ambulation outcome measures in 273 patients. Spinal Cord 47, 555–560 10.1038/sc.2008.162
    1. Waters R. L., Adkins R. H., Yakura J. S., Sie I. (1994a). Motor and sensory recovery following incomplete tetraplegia. Arch. Phys. Med. Rehabil. 75, 306–311 10.1016/0003-9993(94)90034-5
    1. Waters R. L., Adkins R. H., Yakura J. S., Sie I. (1994b). Motor and sensory recovery following incomplete paraplegia. Arch. Phys. Med. Rehabil. 75, 67–72 10.1016/0003-9993(94)90034-5
    1. Weinstein D. E., Ko H. Y., Graziani V., Ditunno J. F., Jr. (1997). Prognostic significance of the delayed plantar reflex following spinal cord injury. Spinal Cord Med. 20, 207–211
    1. Wernig A., Muller S. (1992). Laufband locomotion with body weight support improved walking in persons with severe spinal cord injuries. Paraplegia 30, 229–238 10.1038/sc.1992.61
    1. Wilson J. R., Grossman R. G., Frankowski R. F., Kiss A., Davis A. M., Kulkarni A. V., et al. (2012). A clinical prediction model for long-term functional outcome after traumatic spinal cord injury based on acute clinical and imaging factors. J. Neurotrauma 29, 2263–2271 10.1089/neu.2012.2417
    1. Yamashita Y., Takahashi M., Matsuno Y., Kojima R., Sakamoto Y., Oguni T., et al. (1991). Acute spinal cord injury: magnetic resonance imaging correlated with myelopathy. Br. J. Radiol. 64, 201–209 10.1259/0007-1285-64-759-201
    1. Young J. S., Dexter W. R. (1979). Neurological recovery distal to the zone of injury in 172 cases of closed, traumatic spinal cord injury. Paraplegia 16, 39–49 10.1038/sc.1978.6
    1. Young W. (1985). Somatosensory evoked potentials (SEPs) in spinal cord injury, in Spinal Cord Monitoring, eds Schranml J., Jones S. J. (Berlin: Springer-Verlag; ), 127–142
    1. Ziganow S. (1986). Neurometric evaluation of the cortical somatosensory evoked potential in acute incomplete spinal cord injuries. Electroencephalogr. Clin. Neurophysiol. 65, 86–93 10.1016/0168-5597(86)90040-7
    1. Zörner B., Blanckenhorn W. U., Dietz V., EM-SCI Study Group, Curt A. (2010). Clinical algorithm for improved prediction of ambulation and patient stratification after incomplete spinal cord injury. J. Neurotrauma 27, 241–252 10.1089/neu.2009.0901

Source: PubMed

3
Suscribir