Relationship between structural brainstem and brain plasticity and lower-limb training in spinal cord injury: a longitudinal pilot study

Michael Villiger, Patrick Grabher, Marie-Claude Hepp-Reymond, Daniel Kiper, Armin Curt, Marc Bolliger, Sabina Hotz-Boendermaker, Spyros Kollias, Kynan Eng, Patrick Freund, Michael Villiger, Patrick Grabher, Marie-Claude Hepp-Reymond, Daniel Kiper, Armin Curt, Marc Bolliger, Sabina Hotz-Boendermaker, Spyros Kollias, Kynan Eng, Patrick Freund

Abstract

Rehabilitative training has shown to improve significantly motor outcomes and functional walking capacity in patients with incomplete spinal cord injury (iSCI). However, whether performance improvements during rehabilitation relate to brain plasticity or whether it is based on functional adaptation of movement strategies remain uncertain. This study assessed training improvement-induced structural brain plasticity in chronic iSCI patients using longitudinal MRI. We used tensor-based morphometry (TBM) to analyze longitudinal brain volume changes associated with intensive virtual reality (VR)-augmented lower limb training in nine traumatic iSCI patients. The MRI data was acquired before and after a 4-week training period (16-20 training sessions). Before training, voxel-based morphometry (VBM) and voxel-based cortical thickness (VBCT) assessed baseline morphometric differences in nine iSCI patients compared to 14 healthy controls. The intense VR-augmented training of limb control improved significantly balance, walking speed, ambulation, and muscle strength in patients. Retention of clinical improvements was confirmed by the 3-4 months follow-up. In patients relative to controls, VBM revealed reductions of white matter volume within the brainstem and cerebellum and VBCT showed cortical thinning in the primary motor cortex. Over time, TBM revealed significant improvement-induced volume increases in the left middle temporal and occipital gyrus, left temporal pole and fusiform gyrus, both hippocampi, cerebellum, corpus callosum, and brainstem in iSCI patients. This study demonstrates structural plasticity at the cortical and brainstem level as a consequence of VR-augmented training in iSCI patients. These structural changes may serve as neuroimaging biomarkers of VR-augmented lower limb neurorehabilitation in addition to performance measures to detect improvements in rehabilitative training.

Keywords: lower limb; spinal cord injury; structural plasticity; tensor-based morphometry; virtual reality-augmented neurorehabilitation; voxel-based morphometry.

Figures

Figure 1
Figure 1
Performance improvements. Improvements of (A) 10 meter walking test (10 MWT), (B) Berg balance scale (BBS), (C) lower extremity motor score (LEMS) and (D) spinal cord independence measure (SCIM) in patients with incomplete spinal cord injury (iSCI) after 16–20 interactive training sessions during 4 weeks (post-training) and 12–16 weeks after training (follow-up). Individual results (blue) and means with standard deviations (red) are shown.
Figure 2
Figure 2
Cross-sectional structural changes (VBM/VBCT). Statistical parametric maps (thresholded at p < 0.001 uncorrected, for illustrative purposes) showing volume reductions in patients with iSCI compared with controls at baseline. (Left) Voxel-based morphometry (VBM): cerebellum and brainstem (medulla oblongata) and (right) voxel-based cortical thickness (VBCT): left primary motor cortex. The color bars indicate the t-scores.
Figure 3
Figure 3
Longitudinal structural changes (TBM). Overlay of statistical parametric maps (thresholded at p < 0.001 uncorrected, for illustrative purposes) showing correlations between volume increases measured by tensor-based morphometry (TBM) and clinical improvements in balance (BBS, red), lower extremity motor score (LEMS, yellow), and spinal cord independence measure (SCIM, green). The corresponding t-scores are indicated by the color bars. Correlations are shown in brainstem (left), hippocampus (middle), and left temporal gyrus and cerebellum (right).

References

    1. Adamovich S. V., Fluet G. G., Tunik E., Merians A. S. (2009). Sensorimotor training in virtual reality: a review. NeuroRehabilitation 25, 29–44. 10.3233/NRE-2009-0497
    1. Albouy G., Sterpenich V., Balteau E., Vandewalle G., Desseilles M., Dang-Vu T., et al. . (2008). Both the hippocampus and striatum are involved in consolidation of motor sequence memory. Neuron 58, 261–272. 10.1016/j.neuron.2008.02.008
    1. Ashburner J. (2007). A fast diffeomorphic image registration algorithm. Neuroimage 38, 95–113. 10.1016/j.neuroimage.2007.07.007
    1. Ashburner J., Friston K. J. (2000). Voxel-based morphometry–the methods. Neuroimage 11, 805–821. 10.1006/nimg.2000.0582
    1. Ashburner J., Friston K. J. (2005). Unified segmentation. Neuroimage 26, 839–851. 10.1016/j.neuroimage.2005.02.018
    1. Ashburner J., Ridgway G. R. (2013). Symmetric diffeomorphic modeling of longitudinal structural MRI. Front. Neurosci. 6:197. 10.3389/fnins.2012.00197
    1. Berg K., Wood-Dauphinee S., Williams J. I. (1995). The balance scale: reliability assessment with elderly residents and patients with an acute stroke. Scand. J. Rehabil. Med. 27, 27–36.
    1. Bohil C. J., Alicea B., Biocca F. A. (2011). Virtual reality in neuroscience research and therapy. Nat. Rev. Neurosci. 12, 752–762. 10.1038/nrn3122
    1. Bryce T. N., Biering-Sørensen F., Finnerup N. B., Cardenas D. D., Defrin R., Ivan E., et al. . (2012). International Spinal Cord Injury Pain (ISCIP) classification: part 2. Initial validation using vignettes. Spinal Cord 50, 404–412. 10.1038/sc.2012.2
    1. Burciu R. G., Fritsche N., Granert O., Schmitz L., Spönemann N., Konczak J., et al. . (2013). Brain changes associated with postural training in patients with cerebellar degeneration: a voxel-based morphometry study. J. Neurosci. 33, 4594–4604. 10.1523/JNEUROSCI.3381-12.2013
    1. Catz A., Itzkovich M., Tesio L., Biering-Sorensen F., Weeks C., Laramee M. T., et al. . (2007). A multicenter international study on the spinal cord independence measure, version III: Rasch psychometric validation. Spinal Cord 45, 275–291. 10.1038/sj.sc.3101960
    1. Classen J., Liepert J., Wise S. P., Hallett M., Cohen L. G. (1998). Rapid plasticity of human cortical movement representation induced by practice. J. Neurophysiol. 79, 1117–1123.
    1. Cohen-Adad J., El Mendili M. M., Lehéricy S., Pradat P. F., Blancho S., Rossignol S., et al. . (2011). Demyelination and degeneration in the injured human spinal cord detected with diffusion and magnetization transfer MRI. Neuroimage 55, 1024–1033. 10.1016/j.neuroimage.2010.11.089
    1. Deliagina T. G., Beloozerova I. N., Zelenin P. V., Orlovsky G. N. (2008). Spinal and supraspinal postural networks. Brain Res. Rev. 57, 212–221. 10.1016/j.brainresrev.2007.06.017
    1. Draganski B., Gaser C., Busch V., Schuierer G., Bogdahn U., May A. (2004). Neuroplasticity: changes in grey matter induced by training. Nature 427, 311–312. 10.1038/427311a
    1. Draganski B., May A. (2008). Training-induced structural changes in the adult human brain. Behav. Brain Res. 192, 137–142. 10.1016/j.bbr.2008.02.015
    1. Driemeyer J., Boyke J., Gaser C., Büchel C., May A. (2008). Changes in gray matter induced by learning–revisited. PLoS One 3:e2669. 10.1371/journal.pone.0002669
    1. Freund P., Schneider T., Nagy Z., Hutton C., Weiskopf N., Friston K., et al. . (2012a). Degeneration of the injured cervical cord is associated with remote changes in corticospinal tract integrity and upper limb impairment. PLoS One 7:e51729. 10.1371/journal.pone.0051729
    1. Freund P., Weiskopf N., Ashburner J., Wolf K., Sutter R., Altmann D. R., et al. . (2013). MRI investigation of the sensorimotor cortex and the corticospinal tract after acute spinal cord injury: a prospective longitudinal study. Lancet Neurol. 12, 873–881. 10.1016/s1474-4422(13)70146-7
    1. Freund P., Weiskopf N., Ward N. S., Hutton C., Gall A., Ciccarelli O., et al. . (2011). Disability, atrophy and cortical reorganization following spinal cord injury. Brain 134, 1610–1622. 10.1093/brain/awr093
    1. Freund P., Wheeler-Kingshott C. A., Nagy Z., Gorgoraptis N., Weiskopf N., Friston K., et al. . (2012b). Axonal integrity predicts cortical reorganisation following cervical injury. J. Neurol. Neurosurg. Psychiatry 83, 629–637. 10.1136/jnnp-2011-301875
    1. Furlan J. C., Bracken M. B., Fehlings M. G. (2010). Is age a key determinant of mortality and neurological outcome after acute traumatic spinal cord injury? Neurobiol. Aging 31, 434–446. 10.1016/j.neurobiolaging.2008.05.003
    1. Ghosh A., Haiss F., Sydekum E., Schneider R., Gullo M., Wyss M. T., et al. . (2010). Rewiring of hindlimb corticospinal neurons after spinal cord injury. Nat. Neurosci. 13, 97–104. 10.1038/nn.2448
    1. Hassanpour K., Hotz-Boendermaker S., Dokladal P., European Multicenter Study for Human Spinal Cord Injury Study group. Curt A. (2012). Low depressive symptoms in acute spinal cord injury compared to other neurological disorders. J. Neurol. 259, 1142–1150. 10.1007/s00415-011-6316-2
    1. Holden M. K. (2005). Virtual environments for motor rehabilitation: review. Cyberpsychol. Behav. 8, 187–211; discussion 212–219. 10.1089/cpb.2005.8.187
    1. Houk J. C., Buckingham J. T., Barto A. G. (1996). Models of the cerebellum and motor learning. Behav. Brain Sci. 19, 368–383 10.1017/S0140525X00081474
    1. Hua X., Hibar D. P., Ching C. R., Boyle C. P., Rajagopalan P., Gutman B. A., et al. . (2013). Unbiased tensor-based morphometry: improved robustness and sample size estimates for Alzheimer’s disease clinical trials. Neuroimage 66, 648–661. 10.1016/j.neuroimage.2012.10.086
    1. Hutton C., De Vita E., Ashburner J., Deichmann R., Turner R. (2008). Voxel-based cortical thickness measurements in MRI. Neuroimage 40, 1701–1710. 10.1016/j.neuroimage.2008.01.027
    1. Hutton C., Draganski B., Ashburner J., Weiskopf N. (2009). A comparison between voxel-based cortical thickness and voxel-based morphometry in normal aging. Neuroimage 48, 371–380. 10.1016/j.neuroimage.2009.06.043
    1. Kantak S. S., Jones-Lush L. M., Narayanan P., Judkins T. N., Wittenberg G. F. (2013). Rapid plasticity of motor corticospinal system with robotic reach training. Neuroscience 247, 55–64. 10.1016/j.neuroscience.2013.05.001
    1. Koeneke S., Lutz K., Herwig U., Ziemann U., Jäncke L. (2006). Extensive training of elementary finger tapping movements changes the pattern of motor cortex excitability. Exp. Brain Res. 174, 199–209. 10.1007/s00221-006-0440-8
    1. Landi S. M., Baguear F., Della-Maggiore V. (2011). One week of motor adaptation induces structural changes in primary motor cortex that predict long-term memory one year later. J. Neurosci. 31, 11808–11813. 10.1523/JNEUROSCI.2253-11.2011
    1. Maguire E. A., Gadian D. G., Johnsrude I. S., Good C. D., Ashburner J., Frackowiak R. S., et al. . (2000). Navigation-related structural change in the hippocampi of taxi drivers. Proc. Natl. Acad. Sci. U S A 97, 4398–4403. 10.1073/pnas.070039597
    1. Marino R. J., Barros T., Biering-Sorensen F., Burns S. P., Donovan W. H., Graves D. E., et al. (2003). International standards for neurological classification of spinal cord injury. J. Spinal Cord Med. 26, 50–56.
    1. Markham J. A., Greenough W. T. (2004). Experience-driven brain plasticity: beyond the synapse. Neuron Glia Biol. 1, 351–363. 10.1017/s1740925x05000219
    1. Moseley G. L. (2007). Using visual illusion to reduce at-level neuropathic pain in paraplegia. Pain 130, 294–298. 10.1016/j.pain.2007.01.007
    1. Pascual-Leone A., Nguyet D., Cohen L. G., Brasil-Neto J. P., Cammarota A., Hallett M. (1995). Modulation of muscle responses evoked by transcranial magnetic stimulation during the acquisition of new fine motor skills. J. Neurophysiol. 74, 1037–1045.
    1. Perez M. A., Lungholt B. K., Nyborg K., Nielsen J. B. (2004). Motor skill training induces changes in the excitability of the leg cortical area in healthy humans. Exp. Brain Res. 159, 197–205. 10.1007/s00221-004-1947-5
    1. Quallo M. M., Price C. J., Ueno K., Asamizuya T., Cheng K., Lemon R. N., et al. . (2009). Gray and white matter changes associated with tool-use learning in macaque monkeys. Proc. Natl. Acad. Sci. U S A 106, 18379–18384. 10.1073/pnas.0909751106
    1. Rabe K., Livne O., Gizewski E. R., Aurich V., Beck A., Timmann D., et al. . (2009). Adaptation to visuomotor rotation and force field perturbation is correlated to different brain areas in patients with cerebellar degeneration. J. Neurophysiol. 101, 1961–1971. 10.1152/jn.91069.2008
    1. Sagi Y., Tavor I., Hofstetter S., Tzur-Moryosef S., Blumenfeld-Katzir T., Assaf Y. (2012). Learning in the fast lane: new insights into neuroplasticity. Neuron 73, 1195–1203. 10.3410/f.717952851.793458334
    1. Sampaio-Baptista C., Filippini N., Stagg C. J., Near J., Scholz J., Johansen-Berg H. (2015). Changes in functional connectivity and GABA levels with long-term motor learning. Neuroimage 106, 15–20. 10.1016/j.neuroimage.2014.11.032
    1. Schendan H. E., Searl M. M., Melrose R. J., Stern C. E. (2003). An FMRI study of the role of the medial temporal lobe in implicit and explicit sequence learning. Neuron 37, 1013–1025. 10.1016/s0896-6273(03)00123-5
    1. Sehm B., Taubert M., Conde V., Weise D., Classen J., Dukart J., et al. . (2014). Structural brain plasticity in Parkinson’s disease induced by balance training. Neurobiol. Aging 35, 232–239. 10.1016/j.neurobiolaging.2013.06.021
    1. Tao G., Datta S., He R., Nelson F., Wolinsky J. S., Narayana P. A. (2009). Deep gray matter atrophy in multiple sclerosis: a tensor based morphometry. J. Neurol. Sci. 282, 39–46. 10.1016/j.jns.2008.12.035
    1. Taubert M., Draganski B., Anwander A., Müller K., Horstmann A., Villringer A., et al. . (2010). Dynamic properties of human brain structure: learning-related changes in cortical areas and associated fiber connections. J. Neurosci. 30, 11670–11677. 10.1523/JNEUROSCI.2567-10.2010
    1. Taubert M., Lohmann G., Margulies D. S., Villringer A., Ragert P. (2011). Long-term effects of motor training on resting-state networks and underlying brain structure. Neuroimage 57, 1492–1498. 10.1016/j.neuroimage.2011.05.078
    1. Tessa C., Lucetti C., Giannelli M., Diciotti S., Poletti M., Danti S., et al. . (2014). Progression of brain atrophy in the early stages of Parkinson’s disease: a longitudinal tensor-based morphometry study in de novo patients without cognitive impairment. Hum. Brain Mapp. 35, 3932–3944. 10.1002/hbm.22449
    1. van Hedel H. J., Wirz M., Curt A. (2006). Improving walking assessment in subjects with an incomplete spinal cord injury: responsiveness. Spinal Cord 44, 352–356. 10.1038/sj.sc.3101853
    1. van Hedel H. J., Wirz M., Dietz V. (2005). Assessing walking ability in subjects with spinal cord injury: validity and reliability of 3 walking tests. Arch. Phys. Med. Rehabil. 86, 190–196. 10.1016/j.apmr.2004.02.010
    1. Villiger M., Bohli D., Kiper D., Pyk P., Spillmann J., Meilick B., et al. . (2013). Virtual reality-augmented neurorehabilitation improves motor function and reduces neuropathic pain in patients with incomplete spinal cord injury. Neurorehabil. Neural Repair 27, 675–683. 10.1177/1545968313490999
    1. Villiger M., Hepp-Reymond M. C., Pyk P., Kiper D., Spillman J., Meilick B., et al. (2011). “Virtual reality rehabilitation system for neuropathic pain and motor dysfunction in spinal cord injury patients,” in International Conference on Virtual Rehabilitation (ICVR) (Zurich, Switzerland).
    1. Walz A. D., Doppl K., Kaza E., Roschka S., Platz T., Lotze M. (2015). Changes in cortical, cerebellar and basal ganglia representation after comprehensive long term unilateral hand motor training. Behav. Brain Res. 278, 393–403. 10.1016/j.bbr.2014.08.044
    1. Wyndaele M., Wyndaele J. J. (2006). Incidence, prevalence and epidemiology of spinal cord injury: what learns a worldwide literature survey? Spinal Cord 44, 523–529. 10.1038/sj.sc.3101893
    1. Zörner B., Bachmann L. C., Filli L., Kapitza S., Gullo M., Bolliger M., et al. . (2014). Chasing central nervous system plasticity: the brainstem’s contribution to locomotor recovery in rats with spinal cord injury. Brain 137, 1716–1732. 10.1093/brain/awu078

Source: PubMed

3
Suscribir