Dynamic Knee Valgus in Single-Leg Movement Tasks. Potentially Modifiable Factors and Exercise Training Options. A Literature Review

Bartosz Wilczyński, Katarzyna Zorena, Daniel Ślęzak, Bartosz Wilczyński, Katarzyna Zorena, Daniel Ślęzak

Abstract

Dynamic knee valgus (DKV) as an incorrect movement pattern is recognized as a risk factor for lower limb injuries. Therefore, it is important to find the reasons behind this movement to select effective preventive procedures. There is a limited number of publications focusing on specific tasks, separating the double-leg from the single-leg tasks. Test patterns commonly used for DKV assessment, such as single-leg squat (SLS) or single leg landings (SLL), may show different results. The current review presents the modifiable factors of knee valgus in squat and landing single-leg tests in healthy people, as well as exercise training options. The authors used the available literature from PubMed, Scopus, PEDro and clinicaltrials.gov databases, and reviewed physiotherapy journals and books. For the purpose of the review, studies were searched for using 2D or 3D motion analysis methods only in the SLL and SLS tasks among healthy active people. Strengthening and activating gluteal muscles, improving trunk lateral flexion strength, increasing ROM dorsiflexion ankle and midfoot mobility should be taken into account when planning training programs aimed at reducing DKV occurring in SLS. In addition, knee valgus during SLL may occur due to decreased hip abductors, extensors, external rotators strength and higher midfoot mobility. Evidence from several studies supports the addition of biofeedback training exercises to reduce the angles of DKV.

Keywords: anterior cruciate ligament; injury prevention; knee abduction; knee kinetics; single-leg squat; sport performance.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Example of dynamic knee valgus—knee move inwards from foot position (A) and correct movement pattern—knee under foot (B) during Single Leg Squat. Valgus quantitative assessment—angle between anterior superior iliac spine (ASIS), patella and center of malleolus (A)—145˚, (B)—180˚.

References

    1. van Mechelen W., Hlobil H., Kemper H.C.G. Incidence, Severity, Aetiology and Prevention of Sports Injuries. Sports Med. 1992;14:82–99. doi: 10.2165/00007256-199214020-00002.
    1. Van Tiggelen D., Wickes S., Stevens V., Roosen P., Witvrouw E. Effective prevention of sports injuries: A model integrating efficacy, efficiency, compliance and risk-taking behaviour. Br. J. Sports Med. 2008;42:648–652. doi: 10.1136/bjsm.2008.046441.
    1. Ellenberger L., Oberle F., Lorenzetti S., Frey W.O., Snedeker J.G., Spörri J. Dynamic knee valgus in competitive alpine skiers: Observation from youth to elite and influence of biological maturation. Scand. J. Med. Sci. Sports. 2020;30:1212–1220. doi: 10.1111/sms.13657.
    1. Agel J., Rockwood T., Klossner D. Collegiate ACL Injury Rates Across 15 Sports: National Collegiate Athletic Association Injury Surveillance System Data Update (2004–2005 Through 2012–2013) Clin. J. Sport Med. 2016;26:518–523. doi: 10.1097/JSM.0000000000000290.
    1. Neal B.S., Barton C.J., Gallie R., O’Halloran P., Morrissey D. Runners with patellofemoral pain have altered biomechanics which targeted interventions can modify: A systematic review and meta-analysis. Gait Posture. 2016;45:69–82. doi: 10.1016/j.gaitpost.2015.11.018.
    1. Benjaminse A., Webster K.E., Kimp A., Meijer M., Gokeler A. Revised Approach to the Role of Fatigue in Anterior Cruciate Ligament Injury Prevention: A Systematic Review with Meta-Analyses. Sports Med. 2019;49:565–586. doi: 10.1007/s40279-019-01052-6.
    1. Bittencourt N.F.N., Meeuwisse W.H., Mendonça L.D., Nettel-Aguirre A., Ocarino J.M., Fonseca S.T. Complex systems approach for sports injuries: Moving from risk factor identification to injury pattern recognition-narrative review and new concept. Br. J. Sports Med. 2016;50:1309–1314. doi: 10.1136/bjsports-2015-095850.
    1. Radzimiński Ł., Szwarc A., Padrón-Cabo A., Jastrzębski Z. Correlations between body composition, aerobic capacity, speed and distance covered among professional soccer players during official matches. J. Sports Med. Phys. Fit. 2020;60:257–262. doi: 10.23736/S0022-4707.19.09979-1.
    1. Hewett T.E., Myer G.D., Ford K.R., Heidt R.S., Colosimo A.J., McLean S.G., van den Bogert A.J., Paterno M.V., Succop P. Biomechanical measures of neuromuscular control and valgus loading of the knee predict anterior cruciate ligament injury risk in female athletes: A prospective study. Am. J. Sports Med. 2005;33:492–501. doi: 10.1177/0363546504269591.
    1. Mauntel T.C., Frank B.S., Begalle R.L., Blackburn J.T., Padua D.A. Kinematic differences between those with and without medial knee displacement during a single-leg squat. J. Appl. Biomech. 2014;30:707–712. doi: 10.1123/jab.2014-0003.
    1. Hewett T.E., Myer G.D., Ford K.R. Anterior cruciate ligament injuries in female athletes: Part 1, mechanisms and risk factors. Am. J. Sports Med. 2006;34:299–311. doi: 10.1177/0363546505284183.
    1. Holden S., Boreham C., Delahunt E. Sex Differences in Landing Biomechanics and Postural Stability During Adolescence: A Systematic Review with Meta-Analyses. Sports Med. 2016;46:241–253. doi: 10.1007/s40279-015-0416-6.
    1. Waldén M., Krosshaug T., Bjørneboe J., Andersen T.E., Faul O., Hägglund M. Three distinct mechanisms predominate in non-contact anterior cruciate ligament injuries in male professional football players: A systematic video analysis of 39 cases. Br. J. Sports Med. 2015;49:1452–1460. doi: 10.1136/bjsports-2014-094573.
    1. Grassi A., Smiley S.P., Di Roberti Sarsina T., Signorelli C., Marcheggiani Muccioli G.M., Bondi A., Romagnoli M., Agostini A., Zaffagnini S. Mechanisms and situations of anterior cruciate ligament injuries in professional male soccer players: A YouTube-based video analysis. Eur. J Orthop. Surg. Traumatol. 2017;27:967–981. doi: 10.1007/s00590-017-1905-0.
    1. Kanamori A., Woo S.L., Ma C.B., Zeminski J., Rudy T.W., Li G., Livesay G.A. The forces in the anterior cruciate ligament and knee kinematics during a simulated pivot shift test: A human cadaveric study using robotic technology. Arthroscopy. 2000;16:633–639. doi: 10.1053/jars.2000.7682.
    1. Fukuda Y., Woo S.L.-Y., Loh J.C., Tsuda E., Tang P., McMahon P.J., Debski R.E. A quantitative analysis of valgus torque on the ACL: A human cadaveric study. J. Orthop. Res. 2003;21:1107–1112. doi: 10.1016/S0736-0266(03)00084-6.
    1. Winby C.R., Lloyd D.G., Besier T.F., Kirk T.B. Muscle and external load contribution to knee joint contact loads during normal gait. J. Biomech. 2009;42:2294–2300. doi: 10.1016/j.jbiomech.2009.06.019.
    1. Gadikota H.R., Kikuta S., Qi W., Nolan D., Gill T.J., Li G. Effect of increased iliotibial band load on tibiofemoral kinematics and force distributions: A direct measurement in cadaveric knees. J. Orthop. Sports Phys. Ther. 2013;43:478–485. doi: 10.2519/jospt.2013.4506.
    1. Lephart S.M., Pincivero D.M., Giraldo J.L., Fu F.H. The role of proprioception in the management and rehabilitation of athletic injuries. Am. J. Sports Med. 1997;25:130–137. doi: 10.1177/036354659702500126.
    1. Cerulli G., Benoit D.L., Caraffa A., Ponteggia F. Proprioceptive training and prevention of anterior cruciate ligament injuries in soccer. J. Orthop. Sports Phys. Ther. 2001;31:655–660. doi: 10.2519/jospt.2001.31.11.655. discussion 661.
    1. Acevedo R.J., Rivera-Vega A., Miranda G., Micheo W. Anterior Cruciate Ligament Injury. Curr. Sports Med. Rep. 2014;13:186–191. doi: 10.1249/JSR.0000000000000053.
    1. Gokeler A., Neuhaus D., Benjaminse A., Grooms D.R., Baumeister J. Principles of Motor Learning to Support Neuroplasticity After ACL Injury: Implications for Optimizing Performance and Reducing Risk of Second ACL Injury. Sports Med. 2019;49:853–865. doi: 10.1007/s40279-019-01058-0. Correction in 2019, 49, 979.
    1. Petersen W., Rembitzki I., Liebau C. Patellofemoral pain in athletes. Open Access J. Sports Med. 2017;8:143–154. doi: 10.2147/OAJSM.S133406.
    1. Carson D.W., Ford K.R. Sex differences in knee abduction during landing: A systematic review. Sports Health. 2011;3:373–382. doi: 10.1177/1941738111410180.
    1. Schurr S.A., Marshall A.N., Resch J.E., Saliba S.A. Two-dimensional video analysis is comparable to 3d motion capture in lower extremity movement assessment. Int. J. Sports Phys. Ther. 2017;12:163–172.
    1. Werner D.M., Di Stasi S., Lewis C.L., Barrios J.A. Test-retest reliability and minimum detectable change for various frontal plane projection angles during dynamic tasks. Phys. Ther. Sport. 2019;40:169–176. doi: 10.1016/j.ptsp.2019.09.011.
    1. Prins M.R., van der Wurff P. Females with patellofemoral pain syndrome have weak hip muscles: A systematic review. Aust. J. Physiother. 2009;55:9–15. doi: 10.1016/S0004-9514(09)70055-8.
    1. Herrington L. Knee valgus angle during single leg squat and landing in patellofemoral pain patients and controls. Knee. 2014;21:514–517. doi: 10.1016/j.knee.2013.11.011.
    1. Yamazaki J., Muneta T., Ju Y.J., Sekiya I. Differences in kinematics of single leg squatting between anterior cruciate ligament-injured patients and healthy controls. Knee Surg. Sports Traumatol. Arthrosc. 2010;18:56–63. doi: 10.1007/s00167-009-0892-z.
    1. DiCesare C.A., Montalvo A., Barber Foss K.D., Thomas S.M., Ford K.R., Hewett T.E., Jayanthi N.A., Stracciolini A., Bell D.R., Myer G.D. Lower Extremity Biomechanics Are Altered Across Maturation in Sport-Specialized Female Adolescent Athletes. Front. Pediatr. 2019;7:268. doi: 10.3389/fped.2019.00268.
    1. Munro A., Herrington L., Comfort P. The Relationship Between 2-Dimensional Knee-Valgus Angles During Single-Leg Squat, Single-Leg-Land, and Drop-Jump Screening Tests. J. Sport Rehabil. 2017;26:72–77. doi: 10.1123/jsr.2015-0102.
    1. Padua D.A., Bell D.R., Clark M.A. Neuromuscular characteristics of individuals displaying excessive medial knee displacement. J. Athl. Train. 2012;47:525–536. doi: 10.4085/1062-6050-47.5.10.
    1. Ali N., Rouhi G., Robertson G. Gender, Vertical Height and Horizontal Distance Effects on Single-Leg Landing Kinematics: Implications for Risk of non-contact ACL Injury. J. Hum. Kinet. 2013;37:27–38. doi: 10.2478/hukin-2013-0022.
    1. Lyle M.A., Valero-Cuevas F.J., Gregor R.J., Powers C.M. Control of dynamic foot-ground interactions in male and female soccer athletes: Females exhibit reduced dexterity and higher limb stiffness during landing. J. Biomech. 2014;47:512–517. doi: 10.1016/j.jbiomech.2013.10.038.
    1. Donohue M.R., Ellis S.M., Heinbaugh E.M., Stephenson M.L., Qin Z., Boyi D. Differences and correlations in knee and hip mechanics during single-leg landing, single-leg squat, double-leg landing, and double-leg squat tasks. Res. Sports Med. 2015;23:394–411. doi: 10.1080/15438627.2015.1076413.
    1. Harty C.M., DuPont C.E., Chmielewski T.L., Mizner R.L. Intertask comparison of frontal plane knee position and moment in female athletes during three distinct movement tasks. Scand. J. Med. Sci. Sports. 2011;21:98–105. doi: 10.1111/j.1600-0838.2009.01022.x.
    1. Taylor J.B., Ford K.R., Nguyen A.D. Shultz SJ. Biomechanical Comparison of Single- and Double-Leg Jump Landings in the Sagittal and Frontal Plane. Orthop. J. Sports Med. 2016;4 doi: 10.1177/2325967116655158.
    1. Santamaria L.J., Webster K.E. The Effect of Fatigue on Lower-Limb Biomechanics During Single-Limb Landings: A Systematic Review. J. Orthop. Sports Phys. Ther. 2010;40:464–473. doi: 10.2519/jospt.2010.3295.
    1. Koga H., Nakamae A., Shima Y., Iwasa J., Myklebust G., Engebretsen L., Bahr R., Krosshaug T. Mechanisms for noncontact anterior cruciate ligament injuries: Knee joint kinematics in 10 injury situations from female team handball and basketball. Am. J. Sports Med. 2010;38:2218–2225. doi: 10.1177/0363546510373570.
    1. Krosshaug T., Nakamae A., Boden B.P., Engebretsen L., Smith G., Slauterbeck J.R., Hewett T.E., Bahr R. Mechanisms of anterior cruciate ligament injury in basketball: Video analysis of 39 cases. Am. J. Sports Med. 2007;35:359–367. doi: 10.1177/0363546506293899.
    1. Hewett T.E., Torg J.S., Boden B.P. Video analysis of trunk and knee motion during non-contact anterior cruciate ligament injury in female athletes: Lateral trunk and knee abduction motion are combined components of the injury mechanism. Br. J. Sports Med. 2009;43:417–422. doi: 10.1136/bjsm.2009.059162.
    1. Hewett T.E., Ford K.R., Hoogenboom B.J., Myer G.D. Understanding and preventing acl injuries: Current biomechanical and epidemiologic considerations—Update 2010. N. Am. J. Sports Phys. Ther. 2010;5:234–251.
    1. Nakagawa T.H., Maciel C.D., Serrão F.V. Trunk biomechanics and its association with hip and knee kinematics in patients with and without patellofemoral pain. Man. Ther. 2015;20:189–193. doi: 10.1016/j.math.2014.08.013.
    1. Chuter V.H., Janse de Jonge X.A.K. Proximal and distal contributions to lower extremity injury: A review of the literature. Gait Posture. 2012;36:7–15. doi: 10.1016/j.gaitpost.2012.02.001.
    1. Wilson J.D., Ireland M.L., Davis I. Core Strength and Lower Extremity Alignment during Single Leg Squats. Med. Sci. Sports Exerc. 2006;38:5. doi: 10.1249/01.mss.0000218140.05074.fa.
    1. Stickler L., Finley M., Gulgin H. Relationship between hip and core strength and frontal plane alignment during a single leg squat. Phys. Ther. Sport. 2015;16:66–71. doi: 10.1016/j.ptsp.2014.05.002.
    1. Cronström A., Creaby M.W., Nae J., Ageberg E. Gender differences in knee abduction during weight-bearing activities: A systematic review and meta-analysis. Gait Posture. 2016;49:315–328. doi: 10.1016/j.gaitpost.2016.07.107.
    1. Ford K.R., Nguyen A.-D., Dischiavi S.L., Hegedus E.J., Zuk E.F., Taylor J.B. An evidence-based review of hip-focused neuromuscular exercise interventions to address dynamic lower extremity valgus. Open Access J. Sports Med. 2015;6:291–303. doi: 10.2147/OAJSM.S72432.
    1. Hollman J.H., Ginos B.E., Kozuchowski J., Vaughn A.S., Krause D.A., Youdas J.W. Relationships between Knee Valgus, Hip-Muscle Strength, and Hip-Muscle Recruitment during a Single-Limb Step-Down. J. Sport Rehabil. 2009;18:104–117. doi: 10.1123/jsr.18.1.104.
    1. Neumann D.A. Kinesiology of the hip: A focus on muscular actions. J. Orthop. Sports Phys. Ther. 2010;40:82–94. doi: 10.2519/jospt.2010.3025.
    1. Claiborne T.L., Armstrong C.W., Gandhi V., Pincivero D.M. Relationship between Hip and Knee Strength and Knee Valgus during a Single Leg Squat. J. Appl. Biomech. 2006;22:41–50. doi: 10.1123/jab.22.1.41.
    1. Suzuki H., Omori G., Uematsu D., Nishino K., Endo N. The influence of hip strength on knee kinematics during a single-legged medial drop landing among competitive collegiate basketball players. Int. J. Sports Phys. Ther. 2015;10:592–601.
    1. Neamatallah Z., Herrington L., Jones R. An investigation into the role of gluteal muscle strength and EMG activity in controlling HIP and knee motion during landing tasks. Phys. Ther. Sport. 2020;43 doi: 10.1016/j.ptsp.2019.12.008.
    1. Kagaya Y., Fujii Y., Nishizono H. Association between hip abductor function, rear-foot dynamic alignment, and dynamic knee valgus during single-leg squats and drop landings. J. Sport Health Sci. 2015;4:182–187. doi: 10.1016/j.jshs.2013.08.002.
    1. Jacobs C.A., Uhl T.L., Mattacola C.G., Shapiro R., Rayens W.S. Hip abductor function and lower extremity landing kinematics: Sex differences. J. Athl. Train. 2007;42:76–83.
    1. Malloy P.J., Morgan A.M., Meinerz C.M., Geiser C.F., Kipp K. Hip External Rotator Strength Is Associated With Better Dynamic Control of the Lower Extremity During Landing Tasks. J. Strength Cond. Res. 2016;30:282–291. doi: 10.1519/JSC.0000000000001069.
    1. Dix J., Marsh S., Dingenen B., Malliaras P. The relationship between hip muscle strength and dynamic knee valgus in asymptomatic females: A systematic review. Phys. Ther. Sport. 2019;37:197–209. doi: 10.1016/j.ptsp.2018.05.015.
    1. Cashman G.E. The effect of weak hip abductors or external rotators on knee valgus kinematics in healthy subjects: A systematic review. J. Sport Rehabil. 2012;21:273–284. doi: 10.1123/jsr.21.3.273.
    1. Hollman J.H., Hohl J.M., Kraft J.L., Strauss J.D., Traver K.J. Modulation of Frontal-Plane Knee Kinematics by Hip-Extensor Strength and Gluteus Maximus Recruitment During a Jump-Landing Task in Healthy Women. J. Sport Rehabil. 2013;22:184–190. doi: 10.1123/jsr.22.3.184.
    1. Latash M.L. Muscle coactivation: Definitions, mechanisms, and functions. J. Neurophysiol. 2018;120:88–104. doi: 10.1152/jn.00084.2018.
    1. Wild C.Y., Steele J.R., Munro B.J. Insufficient hamstring strength compromises landing technique in adolescent girls. Med. Sci. Sports Exerc. 2013;45:497–505. doi: 10.1249/MSS.0b013e31827772f6.
    1. Lloyd D.G., Buchanan T.S. Strategies of muscular support of varus and valgus isometric loads at the human knee. J. Biomech. 2001;34:1257–1267. doi: 10.1016/S0021-9290(01)00095-1.
    1. Dhaher Y.Y., Tsoumanis A.D., Rymer W.Z. Reflex muscle contractions can be elicited by valgus positional perturbations of the human knee. J. Biomech. 2003;36:199–209. doi: 10.1016/S0021-9290(02)00334-2.
    1. Palmieri-Smith R.M., Wojtys E.M., Ashton-Miller J.A. Association between preparatory muscle activation and peak valgus knee angle. J. Electromyogr Kinesiol. 2008;18:973–979. doi: 10.1016/j.jelekin.2007.03.007.
    1. Brown T.N., McLean S.G., Palmieri-Smith R.M. Associations between lower limb muscle activation strategies and resultant multi-planar knee kinetics during single leg landings. J. Sci. Med. Sport. 2014;17:408–413. doi: 10.1016/j.jsams.2013.05.010.
    1. Dill K.E., Begalle R.L., Frank B.S., Zinder S.M., Padua D.A. Altered knee and ankle kinematics during squatting in those with limited weight-bearing-lunge ankle-dorsiflexion range of motion. J. Athl. Train. 2014;49:723–732. doi: 10.4085/1062-6050-49.3.29.
    1. Wyndow N., de Jong A., Rial K., Tucker K., Collins N., Vicenzino B., Russel T., Crossley K. The relationship of foot and ankle mobility to the frontal plane projection angle in asymptomatic adults. J. Foot Ankle Res. 2016;9:3. doi: 10.1186/s13047-016-0134-9.
    1. Lima Y.L., Ferreira V.M.L.M., de Paula Lima P.O., Bezerra M.A., de Oliveira R.R., Almeida G.P.L. The association of ankle dorsiflexion and dynamic knee valgus: A systematic review and meta-analysis. Phys. Ther. Sport. 2018;29:61–69. doi: 10.1016/j.ptsp.2017.07.003.
    1. Mason-Mackay A.R., Whatman C., Reid D. The effect of reduced ankle dorsiflexion on lower extremity mechanics during landing: A systematic review. J. Sci Med. Sport. 2017;20:451–458. doi: 10.1016/j.jsams.2015.06.006.
    1. Pohl M.B., Messenger N., Buckley J.G. Changes in foot and lower limb coupling due to systematic variations in step width. Clin. Biomech. 2006;21:175–183. doi: 10.1016/j.clinbiomech.2005.09.005.
    1. Benjaminse A., Habu A., Sell T.C., Abt J.P., Fu F.H., Myers J.B., Lephart S.M. Fatigue alters lower extremity kinematics during a single- leg stop-jump task. Knee Surg. Sports Traumatol. Arthrosc. 2008;16:400–407. doi: 10.1007/s00167-007-0432-7.
    1. Kellis E., Kouvelioti V. Agonist versus antagonist muscle fatigue effects on thigh muscle activity and vertical ground reaction during drop landing. J. Elect. Kinesiol. 2009;19:55–64. doi: 10.1016/j.jelekin.2007.08.002.
    1. Gandevia S.C. Spinal and supraspinal factors in human muscle fatigue. Physiol. Rev. 2001;81:1725–1789. doi: 10.1152/physrev.2001.81.4.1725.
    1. Tamura A., Akasaka K., Otsudo T., Sawada Y., Okubo Y., Shiozawa J., Toda Y., Yamada K. Fatigue alters landing shock attenuation duringa single-leg vertical drop jump. Orthop. J. Sports Med. 2016;4 doi: 10.1177/2325967115626412.
    1. Lessi G., dos Santos A., Batista L., de Oliveira G., Serrăo F. Effects of fatigue on lower limb, pelvis and trunk kinematics and muscle activation: Gender differences. J. Elect. Kinesiol. 2017;32:9–14. doi: 10.1016/j.jelekin.2016.11.001.
    1. Barber-Westin S.D., Noyes F.R. Effect of fatigue protocols on lower limb neuromuscular function and implications for anterior cruciate ligament injury prevention training: A systematic review. Am. J. Sports Med. 2017;45:3388–3396. doi: 10.1177/0363546517693846.
    1. Hiemstra L.A., Lo I.K., Fowler P.J. Effect of fatigue on knee proprioception: Implications for dynamic stabilization. J. Orthop. Sports Phys. Ther. 2001;31:598–605. doi: 10.2519/jospt.2001.31.10.598.
    1. Abd-Elfattah H.M., Abdelazeim F.H., Elshennawy S. Physical and cognitive consequences of fatigue: A review. J. Adv. Res. 2015;6:351–358. doi: 10.1016/j.jare.2015.01.011.
    1. Kernozek T.W., Torry M.R., Iwasaki M. Gender differences in lower extremity landing mechanics caused by neuromuscular fatigue. Am. J. Sports Med. 2008;36:554–565. doi: 10.1177/0363546507308934.
    1. Pol R., Hristovski R., Medina D., Balague N. From microscopic to macroscopic sports injuries. Applying the complex dynamic systems approach to sports medicine: A narrative review. Br. J. Sports Med. 2008;53 doi: 10.1136/bjsports-2016-097395.
    1. Bourne M.N., Webster K.E., Hewett T.E. Is Fatigue a Risk Factor for Anterior Cruciate Ligament Rupture? Sports Med. 2019;49:1629–1635. doi: 10.1007/s40279-019-01134-5.
    1. Marshall A.N., Hertel J., Hart J.M., Russell S., Saliba S.A. Visual Biofeedback and Changes in Lower Extremity Kinematics in Individuals With Medial Knee Displacement. J. Athl. Train. 2020;55:255–264. doi: 10.4085/1062-6050-383-18.
    1. Palmer K., Hebron C., Williams J.M. A randomised trial into the effect of an isolated hip abductor strengthening programme and a functional motor control programme on knee kinematics and hip muscle strength. BMC Musculoskelet. Disord. 2015;16:105. doi: 10.1186/s12891-015-0563-9.
    1. Hopper A.J., Haff E.E., Joyce C., Lloyd R.S., Haff G.G. Neuromuscular Training Improves Lower Extremity Biomechanics Associated with Knee Injury during Landing in 11–13 Year Old Female Netball Athletes: A Randomized Control Study. Front. Physiol. 2017;8 doi: 10.3389/fphys.2017.00883.
    1. Dawson S.J., Herrington L. Improving Single-Legged–Squat Performance: Comparing 2 Training Methods with Potential Implications for Injury Prevention. J. Athl. Train. 2015;50:921–929. doi: 10.4085/1062-6050-50.9.03.
    1. Sasaki S., Tsuda E., Yamamoto Y., Maeda S., Kimura Y., Fujita Y., Ishibashi Y. Core-Muscle Training and Neuromuscular Control of the Lower Limb and Trunk. J. Athl. Train. 2019;54:959–969. doi: 10.4085/1062-6050-113-17.
    1. Attwood M.J., Roberts S.P., Trewartha G., England M.E., Stokes K.A. Efficacy of a movement control injury prevention programme in adult men’s community rugby union: A cluster randomised controlled trial. Br. J. Sports Med. 2018;52:368–374. doi: 10.1136/bjsports-2017-098005.
    1. Barengo N.C., Meneses-Echávez J.F., Ramírez-Vélez R., Cohen D.D., Tovar G., Bautista J.E. The impact of the FIFA 11+ training program on injury prevention in football players: A systematic review. Int. J. Environ. Res. Public Health. 2014;11:11986–12000. doi: 10.3390/ijerph111111986.

Source: PubMed

3
Suscribir