Nicotinamide riboside does not alter mitochondrial respiration, content or morphology in skeletal muscle from obese and insulin-resistant men

Ole L Dollerup, Sabina Chubanava, Marianne Agerholm, Stine D Søndergård, Ali Altıntaş, Andreas B Møller, Kasper F Høyer, Steffen Ringgaard, Hans Stødkilde-Jørgensen, Gareth G Lavery, Romain Barrès, Steen Larsen, Clara Prats, Niels Jessen, Jonas T Treebak, Ole L Dollerup, Sabina Chubanava, Marianne Agerholm, Stine D Søndergård, Ali Altıntaş, Andreas B Møller, Kasper F Høyer, Steffen Ringgaard, Hans Stødkilde-Jørgensen, Gareth G Lavery, Romain Barrès, Steen Larsen, Clara Prats, Niels Jessen, Jonas T Treebak

Abstract

Key points: This is the first long-term human clinical trial to report on effects of nicotinamide riboside (NR) on skeletal muscle mitochondrial function, content and morphology. NR supplementation decreases nicotinamide phosphoribosyltransferase (NAMPT) protein abundance in skeletal muscle. NR supplementation does not affect NAD metabolite concentrations in skeletal muscle. Respiration, distribution and quantity of muscle mitochondria are unaffected by NR. NAMPT in skeletal muscle correlates positively with oxidative phosphorylation Complex I, sirtuin 3 and succinate dehydrogenase.

Abstract: Preclinical evidence suggests that the nicotinamide adenine dinucleotide (NAD+ ) precursor nicotinamide riboside (NR) boosts NAD+ levels and improves diseases associated with mitochondrial dysfunction. We aimed to determine if dietary NR supplementation in middle-aged, obese, insulin-resistant men affects mitochondrial respiration, content and morphology in skeletal muscle. In a randomized, placebo-controlled clinical trial, 40 participants received 1000 mg NR or placebo twice daily for 12 weeks. Skeletal muscle biopsies were collected before and after the intervention. Mitochondrial respiratory capacity was determined by high-resolution respirometry on single muscle fibres. Protein abundance and mRNA expression were measured by Western blot and quantitative PCR analyses, respectively, and in a subset of the participants (placebo n = 8; NR n = 8) we quantified mitochondrial fractional area and mitochondrial morphology by laser scanning confocal microscopy. Protein levels of nicotinamide phosphoribosyltransferase (NAMPT), an essential NAD+ biosynthetic enzyme in skeletal muscle, decreased by 14% with NR. However, steady-state NAD+ levels as well as gene expression and protein abundance of other NAD+ biosynthetic enzymes remained unchanged. Neither respiratory capacity of skeletal muscle mitochondria nor abundance of mitochondrial associated proteins were affected by NR. Moreover, no changes in mitochondrial fractional area or network morphology were observed. Our data do not support the hypothesis that dietary NR supplementation has significant impact on skeletal muscle mitochondria in obese and insulin-resistant men. Future studies on the effects of NR on human skeletal muscle may include both sexes and potentially provide comparisons between young and older people.

Trial registration: ClinicalTrials.gov NCT02303483.

Keywords: NAD+; NAMPT; human skeletal muscle; mitochondria; nicotinamide riboside.

© 2019 The Authors. The Journal of Physiology © 2019 The Physiological Society.

References

    1. Agerholm M, Dall M, Jensen BAH, Prats C, Madsen S, Basse AL, Graae AS, Risis S, Goldenbaum J, Quistorff B, Larsen S, Vienberg SG & Treebak JT (2018). Perturbations of NAD salvage systems impact mitochondrial function and energy homeostasis in mouse myoblasts and intact skeletal muscle. Am J Physiol Endocrinol Metab 314, E377-E395.
    1. Airhart SE, Shireman LM, Risler LJ, Anderson GD, Nagana Gowda GA, Raftery D, Tian R, Shen DD & O'Brien KD (2017). An open-label, non-randomized study of the pharmacokinetics of the nutritional supplement nicotinamide riboside (NR) and its effects on blood NAD+ levels in healthy volunteers. PLoS One 12, e0186459.
    1. Alp PR, Newsholme EA & Zammit VA (1976). Activities of citrate synthase and NAD+-linked and NADP+-linked isocitrate dehydrogenase in muscle from vertebrates and invertebrates. Biochem J 154, 689-700.
    1. Andreux PA, Houtkooper RH & Auwerx J (2013). Pharmacological approaches to restore mitochondrial function. Naure Rev Drug Disc 12, 465-483.
    1. Avalos JL, Bever KM & Wolberger C (2005). Mechanism of sirtuin inhibition by nicotinamide: altering the NAD(+) cosubstrate specificity of a Sir2 enzyme. Mol Cell 17, 855-868.
    1. Bai P, Canto C, Oudart H, Brunyánszki A, Cen Y, Thomas C, Yamamoto H, Huber A, Kiss B, Houtkooper RH, Schoonjans K, Schreiber V, Sauve AA, Murcia JM-d & Auwerx J (2011). PARP-1 inhibition increases mitochondrial metabolism through SIRT1 activation. Cell Metab 13, 461-468.
    1. Benjamini Y & Hochberg Y (1995). Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc B (Methodol) 57, 289-300.
    1. Bonkowski MS & Sinclair DA (2016). Slowing ageing by design: the rise of NAD+ and sirtuin-activating compounds. Nat Rev Mol Cell Biol 17, 679-690.
    1. Brandauer J, Vienberg SG, Andersen MA, Ringholm S, Risis S, Larsen PS, Kristensen JM, Frøsig C, Leick L, Fentz J, Jørgensen S, Kiens B, Wojtaszewski JFP, Richter EA, Zierath JR, Goodyear LJ, Pilegaard H & Treebak JT (2013). AMP-activated protein kinase regulates nicotinamide phosphoribosyl transferase expression in skeletal muscle. J Physiol 591, 5207-5220.
    1. Canto C, Gerhart-Hines Z, Feige JN, Lagouge M, Noriega L, Milne JC, Elliott PJ, Puigserver P & Auwerx J (2009). AMPK regulates energy expenditure by modulating NAD+ metabolism and SIRT1 activity. Nature 458, 1056-1060.
    1. Canto C, Houtkooper RH, Pirinen E, Youn DY, Oosterveer MH, Cen Y, Fernandez-Marcos PJ, Yamamoto H, Andreux PA, Cettour-Rose P, Gademann K, Rinsch C, Schoonjans K, Sauve AA & Auwerx J (2012). The NAD+ precursor nicotinamide riboside enhances oxidative metabolism and protects against high-fat diet-induced obesity. Cell Metab 15, 838-847.
    1. Cantó C, Jiang LQ, Deshmukh AS, Mataki C, Coste A, Lagouge M, Zierath JR & Auwerx J (2010). Interdependence of AMPK and SIRT1 for metabolic adaptation to fasting and exercise in skeletal muscle. Cell Metab 11, 213-219.
    1. Cerutti R, Pirinen E, Lamperti C, Marchet S, Sauve AA, Li W, Leoni V, Schon EA, Dantzer F, Auwerx J, Viscomi C & Zeviani M (2014). NAD+-dependent activation of Sirt1 corrects the phenotype in a mouse model of mitochondrial disease. Cell Metab 19, 1042-1049.
    1. Costford SR, Bajpeyi S, Pasarica M, Albarado DC, Thomas SC, Xie H, Church TS, Jubrias SA, Conley KE & Smith SR (2010). Skeletal muscle NAMPT is induced by exercise in humans. Am J Physiol Endocrinol Metab 298, E117-126.
    1. Dahl R, Larsen S, Dohlmann TL, Qvortrup K, Helge JW, Dela F & Prats C (2015). Three-dimensional reconstruction of the human skeletal muscle mitochondrial network as a tool to assess mitochondrial content and structural organization. Acta Physiol 213, 145-155.
    1. Daniele G, Eldor R, Merovci A, Clarke GD, Xiong J, Tripathy D, Taranova A, Abdul-Ghani M & DeFronzo RA (2014). Chronic reduction of plasma free fatty acid improves mitochondrial function and whole-body insulin sensitivity in obese and type 2 diabetic individuals. Diabetes 63, 2812-2820.
    1. de Guia RM, Agerholm M, Nielsen TS, Consitt LA, Søgaard D, Helge JW, Larsen S, Brandauer J, Houmard JA & Treebak JT (2019). Aerobic and resistance exercise training reverses age-dependent decline in NAD+ salvage capacity in human skeletal muscle. Physiol Rep 7, e14139.
    1. Dollerup OL, Christensen B, Svart M, Schmidt MS, Sulek K, Ringgaard S, Stødkilde-Jørgensen H, Møller N, Brenner C, Treebak JT & Jessen N (2018). A randomized placebo-controlled clinical trial of nicotinamide riboside in obese men: Safety, insulin-sensitivity, and lipid-mobilizing effects. Am J Clin Nutr 108, 343-353.
    1. Dollerup OL, Trammell SAJ, Hartmann B, Holst JJ, Christensen B, Møller N, Gillum MP, Treebak JT & Jessen N (2019). Effects of nicotinamide riboside on endocrine pancreatic function and incretin hormones in obese, non-diabetic men. J Clin Endocrinol Metab 104, 5703-5714.
    1. Elhassan YS, Kluckova K, Fletcher RS, Schmidt MS, Garten A, Doig CL, Cartwright DM, Oakey L, Burley CV, Jenkinson N, Wilson M, Lucas SJE, Akerman I, Seabright A, Lai YC, Tennant DA, Nightingale P, Wallis GA, Manolopoulos KN, Brenner C, Philp A & Lavery GG (2019). Nicotinamide riboside augments the aged human skeletal muscle NAD+ metabolome and induces transcriptomic and anti-inflammatory signatures. Cell Rep 28, 1717-1728. e1716.
    1. Fang EF, Lautrup S, Hou Y, Demarest TG, Croteau DL, Mattson MP & Bohr VA (2017). NAD+ in aging: molecular mechanisms and translational implications. Trends Mol Med 23, 899-916.
    1. Felici R, Lapucci A, Cavone L, Pratesi S, Berlinguer-Palmini R & Chiarugi A (2015). Pharmacological NAD-boosting strategies improve mitochondrial homeostasis in human complex I-mutant fibroblasts. Mol Pharmacol 87, 965-971.
    1. Fletcher RS & Lavery G (2018). The emergence of the nicotinamide riboside kinases in the regulation of NAD+ metabolism. J Mol Endocrinol 61, R107-R121.
    1. Fletcher RS, Ratajczak J, Doig CL, Oakey LA, Callingham R, Da Silva Xavier G, Garten A, Elhassan YS, Redpath P, Migaud ME, Philp A, Brenner C, Canto C & Lavery GG (2017). Nicotinamide riboside kinases display redundancy in mediating nicotinamide mononucleotide and nicotinamide riboside metabolism in skeletal muscle cells. Mol Metab 6, 819-832.
    1. Frederick DW, Loro E, Liu L, Davila A, Jr, Chellappa K, Silverman IM, Quinn WJ, 3rd, Gosai SJ, Tichy ED, Davis JG, Mourkioti F, Gregory BD, Dellinger RW, Redpath P, Migaud ME, Nakamaru-Ogiso E, Rabinowitz JD, Khurana TS & Baur JA (2016). Loss of NAD homeostasis leads to progressive and reversible degeneration of skeletal muscle. Cell Metab 24, 269-282.
    1. Gariani K, Menzies KJ, Ryu D, Wegner CJ, Wang X, Ropelle ER, Moullan N, Zhang H, Perino A, Lemos V, Kim B, Park YK, Piersigilli A, Pham TX, Yang Y, Ku CS, Koo SI, Fomitchova A, Canto C, Schoonjans K, Sauve AA, Lee JY & Auwerx J (2016). Eliciting the mitochondrial unfolded protein response by nicotinamide adenine dinucleotide repletion reverses fatty liver disease in mice. Hepatology 63, 1190-1204.
    1. Gomes AP, Price NL, Ling AJ, Moslehi JJ, Montgomery MK, Rajman L, White JP, Teodoro JS, Wrann CD, Hubbard BP, Mercken EM, Palmeira CM, de Cabo R, Rolo AP, Turner N, Bell EL & Sinclair DA (2013). Declining NAD+ induces a pseudohypoxic state disrupting nuclear-mitochondrial communication during aging. Cell 155, 1624-1638.
    1. Gong B, Pan Y, Vempati P, Zhao W, Knable L, Ho L, Wang J, Sastre M, Ono K, Sauve AA & Pasinetti GM (2013). Nicotinamide riboside restores cognition through an upregulation of proliferator-activated receptor-gamma coactivator 1α regulated β-secretase 1 degradation and mitochondrial gene expression in Alzheimer's mouse models. Neurobiol Aging 34, 1581-1588.
    1. Goody MF & Henry CA (2018). A need for NAD+ in muscle development, homeostasis, and aging. Skelet Muscle 8, 9.
    1. Graeff R & Lee HC (2002). A novel cycling assay for cellular cADP-ribose with nanomolar sensitivity. Biochem J 361, 379-384.
    1. Gurtler A, Kunz N, Gomolka M, Hornhardt S, Friedl AA, McDonald K, Kohn JE & Posch A (2013). Stain-Free technology as a normalization tool in Western blot analysis. Analyt Biochem 433, 105-111.
    1. Hepple RT (2014). Mitochondrial involvement and impact in aging skeletal muscle. Front Aging Neurosci 6, 211-211.
    1. Hesselink MK, Schrauwen-Hinderling V & Schrauwen P (2016). Skeletal muscle mitochondria as a target to prevent or treat type 2 diabetes mellitus. Nat Rev Endocrinol 12, 633-645.
    1. Houtkooper RH, Canto C, Wanders RJ & Auwerx J (2010). The secret life of NAD+: an old metabolite controlling new metabolic signaling pathways. Endocrine Rev 31, 194-223.
    1. Kelley DE, He J, Menshikova EV & Ritov VB (2002). Dysfunction of mitochondria in human skeletal muscle in type 2 diabetes. Diabetes 51, 2944-2950.
    1. Khan NA, Auranen M, Paetau I, Pirinen E, Euro L, Forsstrom S, Pasila L, Velagapudi V, Carroll CJ, Auwerx J & Suomalainen A (2014). Effective treatment of mitochondrial myopathy by nicotinamide riboside, a vitamin B3. EMBO Mol Med 6, 721-731.
    1. Koltai E, Szabo Z, Atalay M, Boldogh I, Naito H, Goto S, Nyakas C & Radak Z (2010). Exercise alters SIRT1, SIRT6, NAD and NAMPT levels in skeletal muscle of aged rats. Mech Ageing Dev 131, 21-28.
    1. Lantier L, Williams AS, Williams IM, Yang KK, Bracy DP, Goelzer M, James FD, Gius D & Wasserman DH (2015). SIRT3 is crucial for maintaining skeletal muscle insulin action and protects against severe insulin resistance in high-fat-fed mice. Diabetes 64, 3081-3092.
    1. Larsen S, Nielsen J, Hansen CN, Nielsen LB, Wibrand F, Stride N, Schroder HD, Boushel R, Helge JW, Dela F & Hey-Mogensen M (2012). Biomarkers of mitochondrial content in skeletal muscle of healthy young human subjects. J Physiol 590, 3349-3360.
    1. Lee HJ, Hong YS, Jun W & Yang SJ (2015). Nicotinamide riboside ameliorates hepatic metaflammation by modulating NLRP3 inflammasome in a rodent model of Type 2 diabetes. J Med Food 18, 1207-1213.
    1. Liu L, Su X, Quinn WJ, 3rd, Hui S, Krukenberg K, Frederick DW, Redpath P, Zhan L, Chellappa K, White E, Migaud M, Mitchison TJ, Baur JA & Rabinowitz JD (2018). Quantitative analysis of NAD synthesis-breakdown fluxes. Cell Metab 27, 1067-1080. e1065.
    1. López-Otín C, Blasco MA, Partridge L, Serrano M & Kroemer G (2013). The hallmarks of aging. Cell 153, 1194-1217.
    1. Makimura H, Stanley TL, Suresh C, De Sousa-Coelho AL, Frontera WR, Syu S, Braun LR, Looby SE, Feldpausch MN, Torriani M, Lee H, Patti ME & Grinspoon SK (2016). Metabolic effects of long-term reduction in free fatty acids with acipimox in obesity: a randomized trial. J Clin Endocrinol Metab 101, 1123-1133.
    1. Martens CR, Denman BA, Mazzo MR, Armstrong ML, Reisdorph N, McQueen MB, Chonchol M & Seals DR (2018). Chronic nicotinamide riboside supplementation is well-tolerated and elevates NAD+ in healthy middle-aged and older adults. Nat Commun 9, 1286.
    1. Massudi H, Grant R, Braidy N, Guest J, Farnsworth B & Guillemin GJ (2012). Age-associated changes in oxidative stress and NAD+ metabolism in human tissue. PLoS One 7, e42357.
    1. Mills KF, Yoshida S, Stein LR, Grozio A, Kubota S, Sasaki Y, Redpath P, Migaud ME, Apte RS, Uchida K, Yoshino J & Imai SI (2016). Long-term administration of nicotinamide mononucleotide mitigates age-associated physiological decline in mice. Cell Metab 24, 795-806.
    1. Mitchell SJ, Bernier M, Aon MA, Cortassa S, Kim EY, Fang EF, Palacios HH, Ali A, Navas-Enamorado I, Di Francesco A, Kaiser TA, Waltz TB, Zhang N, Ellis JL, Elliott PJ, Frederick DW, Bohr VA, Schmidt MS, Brenner C, Sinclair DA, Sauve AA, Baur JA & de Cabo R (2018). Nicotinamide improves aspects of healthspan, but not lifespan, in mice. Cell Metab 27, 667-676. e664.
    1. Montgomery MK & Turner N (2015). Mitochondrial dysfunction and insulin resistance: an update. Endocr Connect 4, R1-R15.
    1. Murtagh F & Legendre P (2014). Ward's hierarchical agglomerative clustering method: Which algorithms implement ward's criterion? J Classif 31, 274-295.
    1. Nikiforov A, Kulikova V & Ziegler M (2015). The human NAD metabolome: Functions, metabolism and compartmentalization. Crit Rev Biochem Mol Biol 50, 284-297.
    1. Pesta D & Gnaiger E (2012). High-resolution respirometry: OXPHOS protocols for human cells and permeabilized fibers from small biopsies of human muscle. Methods Mol Biol 810, 25-58.
    1. Pirinen E, Cantó C, Jo Young S, Morato L, Zhang H, Menzies Keir J, Williams Evan G, Mouchiroud L, Moullan N, Hagberg C, Li W, Timmers S, Imhof R, Verbeek J, Pujol A, van Loon B, Viscomi C, Zeviani M, Schrauwen P, Sauve Anthony A, Schoonjans K & Auwerx J (2014). Pharmacological inhibition of poly(ADP-ribose) polymerases improves fitness and mitochondrial function in skeletal muscle. Cell Metab 19, 1034-1041.
    1. Provencher SW (1993). Estimation of metabolite concentrations from localized in vivo proton NMR spectra. Magn Reson Med 30, 672-679.
    1. Rajman L, Chwalek K & Sinclair DA (2018). Therapeutic potential of NAD-boosting molecules: the in vivo evidence. Cell Metab 27, 529-547.
    1. Rappou E, Jukarainen S, Rinnankoski-Tuikka R, Kaye S, Heinonen S, Hakkarainen A, Lundbom J, Lundbom N, Saunavaara V, Rissanen A, Virtanen KA, Pirinen E & Pietilainen KH (2016). Weight loss is associated with increased NAD+/SIRT1 expression but reduced PARP activity in white adipose tissue. J Clin Endocrinol Metab 101, 1263-1273.
    1. Ratajczak J, Joffraud M, Trammell SA, Ras R, Canela N, Boutant M, Kulkarni SS, Rodrigues M, Redpath P, Migaud ME, Auwerx J, Yanes O, Brenner C & Canto C (2016). NRK1 controls nicotinamide mononucleotide and nicotinamide riboside metabolism in mammalian cells. Nat Commun 7, 13103.
    1. Rousseeuw PJ (1987). Silhouettes: a graphical aid to the interpretation and validation of cluster analysis. J Comput and Appl Maths 20, 53-65.
    1. Ruggieri S, Orsomando G, Sorci L & Raffaelli N (2015). Regulation of NAD biosynthetic enzymes modulates NAD-sensing processes to shape mammalian cell physiology under varying biological cues. Biochim Biophys Acta 1854, 1138-1149.
    1. Ryu D, Zhang H, Ropelle ER, Sorrentino V, Mazala DA, Mouchiroud L, Marshall PL, Campbell MD, Ali AS, Knowels GM, Bellemin S, Iyer SR, Wang X, Gariani K, Sauve AA, Canto C, Conley KE, Walter L, Lovering RM, Chin ER, Jasmin BJ, Marcinek DJ, Menzies KJ & Auwerx J (2016). NAD+ repletion improves muscle function in muscular dystrophy and counters global PARylation. Sci Transl Med 8, 361ra139.
    1. Scheibye-Knudsen M, Mitchell SJ, Fang EF, Iyama T, Ward T, Wang J, Dunn CA, Singh N, Veith S, Hasan-Olive MM, Mangerich A, Wilson MA, Mattson MP, Bergersen LH, Cogger VC, Warren A, Le Couteur DG, Moaddel R, Wilson DM, 3rd, Croteau DL, de Cabo R & Bohr VA (2014). A high-fat diet and NAD+ activate Sirt1 to rescue premature aging in cockayne syndrome. Cell Metab 20, 840-855.
    1. Schiaffino S & Reggiani C (2011). Fiber types in mammalian skeletal muscles. Physiol Rev 91, 1447-1531.
    1. Shi W, Hegeman MA, van Dartel DA, Tang J, Suarez M, Swarts H, van der Hee B, Arola L & Keijer J (2017). Effects of a wide range of dietary nicotinamide riboside (NR) concentrations on metabolic flexibility and white adipose tissue (WAT) of mice fed a mildly obesogenic diet. Mol Nutr Food Res 61, https://doi/org.10.1002/mnfr.201600878.
    1. Song J, Ke SF, Zhou CC, Zhang SL, Guan YF, Xu TY, Sheng CQ, Wang P & Miao CY (2014). Nicotinamide phosphoribosyltransferase is required for the calorie restriction-mediated improvements in oxidative stress, mitochondrial biogenesis, and metabolic adaptation. J Gerontol A Biol Sci Med Sci 69, 44-57.
    1. Traba J, Kwarteng-Siaw M, Okoli TC, Li J, Huffstutler RD, Bray A, Waclawiw MA, Han K, Pelletier M, Sauve AA, Siegel RM & Sack MN (2015). Fasting and refeeding differentially regulate NLRP3 inflammasome activation in human subjects. J Clin Invest 125, 4592-4600.
    1. Trammell SA, Schmidt MS, Weidemann BJ, Redpath P, Jaksch F, Dellinger RW, Li Z, Abel ED, Migaud ME & Brenner C (2016). Nicotinamide riboside is uniquely and orally bioavailable in mice and humans. Nat Commun 7, 12948.
    1. Troyanskaya O, Cantor M, Sherlock G, Brown P, Hastie T, Tibshirani R, Botstein D & Altman RB (2001). Missing value estimation methods for DNA microarrays. Bioinformatics 17, 520-525.
    1. Uddin GM, Youngson NA, Sinclair DA & Morris MJ (2016). Head to head comparison of short-term treatment with the NAD+ precursor nicotinamide mononucleotide (NMN) and 6 weeks of exercise in obese female mice. Front Pharmacol 7, 258.
    1. van de Weijer T, Phielix E, Bilet L, Williams EG, Ropelle ER, Bierwagen A, Livingstone R, Nowotny P, Sparks LM, Paglialunga S, Szendroedi J, Havekes B, Moullan N, Pirinen E, Hwang JH, Schrauwen-Hinderling VB, Hesselink MK, Auwerx J, Roden M & Schrauwen P (2015). Evidence for a direct effect of the NAD+ precursor acipimox on muscle mitochondrial function in humans. Diabetes 64, 1193-1201.
    1. Westermann B (2012). Bioenergetic role of mitochondrial fusion and fission. Biochim Biophys Acta 1817, 1833-1838.
    1. Xu W, Barrientos T, Mao L, Rockman HA, Sauve AA & Andrews NC (2015). Lethal cardiomyopathy in mice lacking transferrin receptor in the heart. Cell Rep 13, 533-545.
    1. Yang Y & Sauve AA (2016). NAD+ metabolism: bioenergetics, signaling and manipulation for therapy. Biochim Biophys Acta 1864, 1787-1800.
    1. Yoshino J, Baur JA & Imai SI (2017). NAD+ intermediates: the biology and therapeutic potential of NMN and NR. Cell Metab 27, 513-528.
    1. Yoshino J, Mills KF, Yoon MJ & Imai S (2011). Nicotinamide mononucleotide, a key NAD+ intermediate, treats the pathophysiology of diet- and age-induced diabetes in mice. Cell Metab 14, 528-536.
    1. Zhang H, Ryu D, Wu Y, Gariani K, Wang X, Luan P, D'Amico D, Ropelle ER, Lutolf MP, Aebersold R, Schoonjans K, Menzies KJ & Auwerx J (2016). NAD+ repletion improves mitochondrial and stem cell function and enhances life span in mice. Science 352, 1436-1443.
    1. Zhou CC, Yang X, Hua X, Liu J, Fan MB, Li GQ, Song J, Xu TY, Li ZY, Guan YF, Wang P & Miao CY (2016). Hepatic NAD+ deficiency as a therapeutic target for non-alcoholic fatty liver disease in ageing. Br J Pharmacol 173, 2352-2368.
    1. Zhu XH, Lu M, Lee BY, Ugurbil K & Chen W (2015). In vivo NAD assay reveals the intracellular NAD contents and redox state in healthy human brain and their age dependences. Proc Natl Acad Sci U S A 112, 2876-2881.

Source: PubMed

3
Suscribir