Efficacy of naloxone in reducing postictal central respiratory dysfunction in patients with epilepsy: study protocol for a double-blind, randomized, placebo-controlled trial

Sylvain Rheims, Luc Valton, Véronique Michel, Louis Maillard, Vincent Navarro, Philippe Convers, Fabrice Bartolomei, Arnaud Biraben, Arielle Crespel, Philippe Derambure, Bertrand de Toffol, Edouard Hirsch, Philippe Kahane, Martine Lemesle Martin, Didier Tourniaire, Sébastien Boulogne, Catherine Mercier, Pascal Roy, Philippe Ryvlin, ENALEPSY study group, Sylvain Rheims, Luc Valton, Véronique Michel, Louis Maillard, Vincent Navarro, Philippe Convers, Fabrice Bartolomei, Arnaud Biraben, Arielle Crespel, Philippe Derambure, Bertrand de Toffol, Edouard Hirsch, Philippe Kahane, Martine Lemesle Martin, Didier Tourniaire, Sébastien Boulogne, Catherine Mercier, Pascal Roy, Philippe Ryvlin, ENALEPSY study group

Abstract

Background: Generalized tonic-clonic seizures (GTCSs) are the main risk factor for sudden unexpected death in epilepsy (SUDEP). Experimental and clinical data strongly suggest that the majority of SUDEP results from a postictal respiratory dysfunction progressing to terminal apnea. Postictal apnea could partly derive from a seizure-induced massive release of endogenous opioids. The main objective of this study is to evaluate the efficacy of an opioid antagonist, naloxone, administered in the immediate aftermath of a GTCS, in reducing the severity of the postictal central respiratory dysfunction.

Methods/design: The Efficacy of Naloxone in Reducing Postictal Central Respiratory Dysfunction in Patients with Epilepsy (ENALEPSY) study is a multicenter, double-blind, randomized, placebo-controlled trial conducted in patients with drug-resistant focal epilepsy who are undergoing long-term video-electroencephalogram (EEG) monitoring (LTM) in an epilepsy monitoring unit (EMU). We plan to randomize 166 patients (1:1) to receive intravenous naloxone (0.4 mg) or placebo in the immediate aftermath of a GTCS. Because inclusion in the study needs to take place prior to the occurrence of the GTCS, and because such occurrence is observed in about one-fourth of patients undergoing LTM, we plan to include a maximum of 700 patients upon admission in the EMU. The primary endpoint will be the proportion of patients whose oxygen saturation is <90 % between 1 and 3 min after the end of a GTCS. Secondary outcomes will include the following: the proportion of patients who show postictal apnea, the occurrence and duration of postictal generalized EEG suppression, the total duration of the postictal coma, postictal pain, and the number of patients who have a second GTCS within 120 min after the intravenous injection.

Discussion: The demonstration of naloxone's efficacy on the severity of postictal hypoxemia will have two primary consequences. First, naloxone would be the first and only therapeutic approach that could be delivered immediately to reverse postictal apnea. Second, demonstration that an opioid antagonist can effectively reduce postictal apnea would pave the way for an assessment of a preventive therapy for SUDEP targeting the same pathophysiological pathway using oral administration of naltrexone.

Trial registration: ClinicalTrials.gov identifier: NCT02332447 . Registered on 5 January 2015.

Keywords: Epilepsy; Naloxone; Opioids; SUDEP.

Figures

Fig. 1
Fig. 1
Flowchart of the trial. EEG Electroencephalogram, EKG Electrocardiogram, GTCS Generalized tonic-clonic seizure, SEEG Stereoelectroencephalography, SpO2 Peripheral oxygen saturation measured by pulse oximetry

References

    1. Nashef L, So EL, Ryvlin P, Tomson T. Unifying the definitions of sudden unexpected death in epilepsy. Epilepsia. 2012;53:227–233. doi: 10.1111/j.1528-1167.2011.03358.x.
    1. Devinsky O. Sudden, unexpected death in epilepsy. N Engl J Med. 2011;365:1801–1811. doi: 10.1056/NEJMra1010481.
    1. Hesdorffer DC, Tomson T, Benn E, Sander JW, Nilsson L, Langan Y, et al. Do antiepileptic drugs or generalized tonic-clonic seizure frequency increase SUDEP risk? A combined analysis. Epilepsia. 2012;53:249–252. doi: 10.1111/j.1528-1167.2011.03354.x.
    1. Ryvlin P, Cucherat M, Rheims S. Risk of sudden unexpected death in epilepsy in patients given adjunctive antiepileptic treatment for refractory seizures: a meta-analysis of placebo-controlled randomised trials. Lancet Neurol. 2011;10:961–968. doi: 10.1016/S1474-4422(11)70193-4.
    1. World Health Organization. Epilepsy in the WHO European region: fostering epilepsy care in Europe: epilepsy out of the shadows. 2010. . Accessed 23 Oct 2016.
    1. Ryvlin P, Nashef L, Tomson T. Prevention of sudden unexpected death in epilepsy: a realistic goal? Epilepsia. 2013;54(Suppl 2):23–28. doi: 10.1111/epi.12180.
    1. Shorvon S, Tomson T. Sudden unexpected death in epilepsy. Lancet. 2011;378:2028–2038. doi: 10.1016/S0140-6736(11)60176-1.
    1. Richerson GB, Boison D, Faingold CL, Ryvlin P. From unwitnessed fatality to witnessed rescue: pharmacologic intervention in sudden unexpected death in epilepsy. Epilepsia. 2016;57(Suppl 1):35–45. doi: 10.1111/epi.13236.
    1. Ryvlin P, Nashef L, Lhatoo SD, Bateman LM, Bird J, Bleasel A, et al. Incidence and mechanisms of cardiorespiratory arrests in epilepsy monitoring units (MORTEMUS): a retrospective study. Lancet Neurol. 2013;12:966–977. doi: 10.1016/S1474-4422(13)70214-X.
    1. Lhatoo SD, Faulkner HJ, Dembny K, Trippick K, Johnson C, Bird JM. An electroclinical case–control study of sudden unexpected death in epilepsy. Ann Neurol. 2010;68:787–796. doi: 10.1002/ana.22101.
    1. Alexandre V, Mercedes B, Valton L, Maillard L, Bartolomei F, Szurhaj W, et al. Risk factors of postictal generalized EEG suppression in generalized convulsive seizures. Neurology. 2015;85:1598–1603. doi: 10.1212/WNL.0000000000001949.
    1. Benarroch EE. Endogenous opioid systems: current concepts and clinical correlations. Neurology. 2012;79:807–814. doi: 10.1212/WNL.0b013e3182662098.
    1. Hammers A, Asselin MC, Hinz R, Kitchen I, Brooks DJ, Duncan JS, et al. Upregulation of opioid receptor binding following spontaneous epileptic seizures. Brain. 2007;130:1009–1016. doi: 10.1093/brain/awm012.
    1. Koepp MJ, Richardson MP, Brooks DJ, Duncan JS. Focal cortical release of endogenous opioids during reading-induced seizures. Lancet. 1998;352:952–955. doi: 10.1016/S0140-6736(97)09077-6.
    1. Feldman JL, Mitchell GS, Nattie EE. Breathing: rhythmicity, plasticity, chemosensitivity. Annu Rev Neurosci. 2003;26:239–266. doi: 10.1146/annurev.neuro.26.041002.131103.
    1. Boyer EW. Management of opioid analgesic overdose. N Engl J Med. 2012;367:146–155. doi: 10.1056/NEJMra1202561.
    1. Pattinson KT. Opioids and the control of respiration. Br J Anaesth. 2008;100:747–758. doi: 10.1093/bja/aen094.
    1. Bateman LM, Li CS, Seyal M. Ictal hypoxemia in localization-related epilepsy: analysis of incidence, severity and risk factors. Brain. 2008;131:3239–3245. doi: 10.1093/brain/awn277.
    1. Nashef L, Walker F, Allen P, Sander JW, Shorvon SD, Fish DR. Apnoea and bradycardia during epileptic seizures: relation to sudden death in epilepsy. J Neurol Neurosurg Psychiatry. 1996;60:297–300. doi: 10.1136/jnnp.60.3.297.
    1. Noe KH, Drazkowski JF. Safety of long-term video-electroencephalographic monitoring for evaluation of epilepsy. Mayo Clin Proc. 2009;84:495–500. doi: 10.4065/84.6.495.
    1. Di Gennaro G, Picardi A, Sparano A, Mascia A, Meldolesi GN, Grammaldo LG, et al. Seizure clusters and adverse events during pre-surgical video-EEG monitoring with a slow anti-epileptic drug (AED) taper. Clin Neurophysiol. 2012;123:486–488. doi: 10.1016/j.clinph.2011.08.011.
    1. Ray LA, Chin PF, Miotto K. Naltrexone for the treatment of alcoholism: clinical findings, mechanisms of action, and pharmacogenetics. CNS Neurol Disord: Drug Targets. 2010;9:13–22. doi: 10.2174/187152710790966704.
    1. Samokhvalov AV, Irving H, Mohapatra S, Rehm J. Alcohol consumption, unprovoked seizures, and epilepsy: a systematic review and meta-analysis. Epilepsia. 2010;51:1177–1184. doi: 10.1111/j.1528-1167.2009.02426.x.

Source: PubMed

3
Suscribir