Coronary Angiography-Derived Index of Microvascular Resistance

Hu Ai, Yundi Feng, Yanjun Gong, Bo Zheng, Qinhua Jin, Hui-Ping Zhang, Fucheng Sun, Jianping Li, Yundai Chen, Yunlong Huo, Yong Huo, Hu Ai, Yundi Feng, Yanjun Gong, Bo Zheng, Qinhua Jin, Hui-Ping Zhang, Fucheng Sun, Jianping Li, Yundai Chen, Yunlong Huo, Yong Huo

Abstract

A coronary angiography-derived index of microvascular resistance (caIMR) is proposed for physiological assessment of microvasular diseases in coronary circulation. The aim of the study is to assess diagnostic performance of caIMR, using wire-derived index of microvascular resistance (IMR) as the reference standard. IMR was demonstrated in 56 patients (57 vessels) with stable/unstable angina pectoris and no obstructive coronary arteries in three centers using the Certus pressure wire. Based on the aortic pressure wave and coronary angiograms from two projections, the caIMR was computed and assessed in blinded fashion against the IMR at an independent core laboratory. Diagnostic accuracy, sensitivity, specificity, positive predictive value and negative predictive value of the caIMR with a cutoff value of 25 were 84.2% (95% CI: 72.1% to 92.5%), 86.1% (95% CI: 70.5% to 95.3%), 81.0% (95% CI: 58.1% to 94.6%), 88.6% (95% CI: 76.1% to 95.0%), and 77.3% (95% CI: 59.5% to 88.7%) against the IMR with a cutoff value of 25. The receiver-operating curve had area under the curve of 0.919 and the correlation coefficient equaled to 0.746 between caIMR and wire-derived IMR. Hence, caIMR could eliminate the need of a pressure wire, reduce technical error, and potentially increase adoption of physiological assessment of microvascular diseases in patients with ischemic heart disease.

Keywords: computational fluid dynamics (CFD); fractional flow reserve (FFR); hemodynamics; index of microcirculatory resistance; instantaneous wave–free ratio (IFR).

Conflict of interest statement

YH holds stocks of Rainmed Ltd., Suzhou, China. HA is supported by the Beijing Hospital Clinical Research 121 Project (BJ-2019-193); and there is nothing to disclose for others.

Copyright © 2020 Ai, Feng, Gong, Zheng, Jin, Zhang, Sun, Li, Chen, Huo and Huo.

Figures

FIGURE 1
FIGURE 1
Schematic representative performance of caIMR.
FIGURE 2
FIGURE 2
Correlation and agreement between wire-derived IMR and caIMR. A A least-squares fit shows a relationship: caIMR = 0.590⋅IMR + 13.4 (R = 0.746) (Vessel Number: n = 57) and (B) Bland-Altman plots for pairwise comparisons (mean difference: −1.68; SD: 14.8; 95% limits of agreement −30.7 to 27.4) (Vessel Number: n = 57). The student’s t-test shows p value of 0.654 (Vessel Number: n = 57).
FIGURE 3
FIGURE 3
Receiver-operating curve for wire-derived IMR (a cutoff of 25) and caIMR (a cutoff of 25), where AUC (area under the curve) is 0.919 (Vessel Number: n = 57).

References

    1. Aarnoudse W., Fearon W. F., Manoharan G., Geven M., van de Vosse F., Rutten M., et al. (2004). Epicardial stenosis severity does not affect minimal microcirculatory resistance. Circulation 110 2137–2142. 10.1161/01.CIR.0000143893.18451.0E
    1. Ahn S. G., Hung O. Y., Lee J. W., Lee J. H., Youn Y. J., Ahn M. S., et al. (2016). Combination of the thermodilution-derived index of microcirculatory resistance and coronary flow reserve is highly predictive of microvascular obstruction on cardiac magnetic resonance imaging after ST-segment elevation myocardial infarction. JACC Cardiovasc. Interv. 9 793–801. 10.1016/j.jcin.2015.12.025
    1. Cannon R. O., III, Epstein S. E. (1988). “Microvascular angina” as a cause of chest pain with angiographically normal coronary arteries. Am. J. Cardiol. 61 1338–1343. 10.1016/0002-9149(88)91180-0
    1. Davies J. E., Sen S., Dehbi H. M., Al-Lamee R., Petraco R., Nijjer S. S., et al. (2017). Use of the instantaneous wave-free ratio or fractional flow reserve in PCI. N. Engl. J. Med. 376 1824–1834. 10.1056/NEJMoa1700445
    1. Dodge J. T., Jr., Rizzo M., Nykiel M., Altmann J., Hobkirk K., Brennan M., et al. (1998). Impact of injection rate on the thrombolysis in myocardial infarction (TIMI) trial frame count. Am. J. Cardiol. 81 1268–1270. 10.1016/s0002-9149(98)00138-6
    1. Fearon W. F., Aarnoudse W., Pijls N. H., De Bruyne B., Balsam L. B., Cooke D. T., et al. (2004). Microvascular resistance is not influenced by epicardial coronary artery stenosis severity: experimental validation. Circulation 109 2269–2272. 10.1161/01.CIR.0000128669.99355.CB
    1. Fearon W. F., Achenbach S., Engstrom T., Assali A., Shlofmitz R., Jeremias A., et al. (2019). Accuracy of fractional flow reserve derived from coronary angiography. Circulation 139 477–484. 10.1161/CIRCULATIONAHA.118.037350
    1. Fearon W. F., Balsam L. B., Farouque H. M., Caffarelli A. D., Robbins R. C., Fitzgerald P. J., et al. (2003). Novel index for invasively assessing the coronary microcirculation. Circulation 107 3129–3132. 10.1161/01.CIR.0000080700.98607.D1
    1. Fearon W. F., Bornschein B., Tonino P. A., Gothe R. M., Bruyne B. D., Pijls N. H., et al. (2010). Economic evaluation of fractional flow reserve-guided percutaneous coronary intervention in patients with multivessel disease. Circulation 122 2545–2550. 10.1161/CIRCULATIONAHA.109.925396
    1. Fearon W. F., Low A. F., Yong A. S., McGeoch R., Berry C., Shah M. G., et al. (2013). Prognostic value of the index of microcirculatory resistance measured after primary percutaneous coronary intervention. Circulation 127 2436–2441. 10.1161/CIRCULATIONAHA.112.000298
    1. Ford T. J., Ong P., Sechtem U., Beltrame J., Camici P. G., Crea F., et al. (2020a). Assessment of vascular dysfunction in patients without obstructive coronary artery disease: why, how, and when. JACC Cardiovasc. Interv. 13 1847–1864. 10.1016/j.jcin.2020.05.052
    1. Ford T. J., Stanley B., Good R., Rocchiccioli P., McEntegart M., Watkins S., et al. (2018). Stratified medical therapy using invasive coronary function testing in angina: the CorMicA trial. J. Am. Coll. Cardiol. 72(23 Pt A) 2841–2855. 10.1016/j.jacc.2018.09.006
    1. Ford T. J., Stanley B., Sidik N., Good R., Rocchiccioli P., McEntegart M., et al. (2020b). 1-year outcomes of angina management guided by invasive coronary function testing (CorMicA). JACC Cardiovasc. Interv. 13 33–45. 10.1016/j.jcin.2019.11.001
    1. Gibson C. M., Cannon C. P., Daley W. L., Dodge J. T., Jr., Alexander B., Jr., Marble S. J., et al. (1996). TIMI frame count: a quantitative method of assessing coronary artery flow. Circulation 93 879–888. 10.1161/01.cir.93.5.879
    1. Gong Y., Feng Y., Yi T., Yang F., Li Y., Zhang L., et al. (2020). Coronary angiography-derived diastolic pressure ratio. Front. Bioeng. Biotechnol. 8:596401. 10.3389/fbioe.2020.596401
    1. Gotberg M., Christiansen E. H., Gudmundsdottir I. J., Sandhall L., Danielewicz M., Jakobsen L., et al. (2017). Instantaneous wave-free ratio versus fractional flow reserve to guide PCI. N. Engl. J. Med. 376 1813–1823. 10.1056/NEJMoa1616540
    1. Hoffman J. I., Spaan J. A. (1990). Pressure-flow relations in coronary circulation. Physiol. Rev. 70 331–390. 10.1152/physrev.1990.70.2.331
    1. Huo Y., Kaimovitz B., Lanir Y., Wischgoll T., Hoffman J. I., Kassab G. S. (2009). Biophysical model of the spatial heterogeneity of myocardial flow. Biophys. J. 96 4035–4043. 10.1016/j.bpj.2009.02.047
    1. Huo Y., Kassab G. S. (2009). Effect of compliance and hematocrit on wall shear stress in a model of the entire coronary arterial tree. J. Appl. Physiol. 107 500–505. 10.1152/japplphysiol.91013.2008
    1. Huo Y., Li B. Q. (2004). Three-dimensional Marangoni convection in electrostatically positioned droplets under microgravity. Int. J. Heat Mass Transf. 47 3533–3547. 10.1016/j.ijheatmasstransfer.2004.01.021
    1. Johnson N. P., Jeremias A., Zimmermann F. M., Adjedj J., Witt N., Hennigan B., et al. (2016). Continuum of vasodilator stress from rest to contrast medium to adenosine hyperemia for fractional flow reserve assessment. JACC Cardiovasc. Interv. 9 757–767. 10.1016/j.jcin.2015.12.273
    1. Johnson N. P., Kirkeeide R. L., Asrress K. N., Fearon W. F., Lockie T., Marques K. M., et al. (2013). Does the instantaneous wave-free ratio approximate the fractional flow reserve? J. Am. Coll. Cardiol. 61 1428–1435. 10.1016/j.jacc.2012.09.064
    1. Johnson N. P., Li W., Chen X., Hennigan B., Watkins S., Berry C., et al. (2019). Diastolic pressure ratio: new approach and validation vs. the instantaneous wave-free ratio. Eur. Heart J. 40 2585–2594. 10.1093/eurheartj/ehz230
    1. Kaski J. C., Crea F., Gersh B. J., Camici P. G. (2018). Reappraisal of ischemic heart disease. Circulation 138 1463–1480. 10.1161/CIRCULATIONAHA.118.031373
    1. Knuuti J., Wijns W., Saraste A., Capodanno D., Barbato E., Funck-Brentano C., et al. (2020). 2019 ESC guidelines for the diagnosis and management of chronic coronary syndromes. Eur. Heart J. 41 407–477. 10.1093/eurheartj/ehz425
    1. Kobayashi Y., Lee J. M., Fearon W. F., Lee J. H., Nishi T., Choi D. H., et al. (2017). Three-vessel assessment of coronary microvascular dysfunction in patients with clinical suspicion of ischemia: prospective observational study with the index of microcirculatory resistance. Circ. Cardiovasc. Interv. 10:e005445. 10.1161/CIRCINTERVENTIONS.117.005445
    1. Kunadian V., Chieffo A., Camici P. G., Berry C., Escaned J., Maas A., et al. (2020). An EAPCI expert consensus document on ischaemia with non-obstructive coronary arteries in collaboration with european society of cardiology working group on coronary pathophysiology & microcirculation endorsed by coronary vasomotor disorders international study group. Eur. Heart J. 41 3504–3520. 10.1093/eurheartj/ehaa503
    1. Lanza G. A. (2019). Diagnostic approach to patients with stable angina and no obstructive coronary arteries. Eur. Cardiol. 14 97–102. 10.15420/ecr.2019.22.2
    1. Lee J. M., Layland J., Jung J. H., Lee H. J., Echavarria-Pinto M., Watkins S., et al. (2015). Integrated physiologic assessment of ischemic heart disease in real-world practice using index of microcirculatory resistance and fractional flow reserve: insights from the international index of microcirculatory resistance registry. Circ. Cardiovasc. Interv. 8:e002857. 10.1161/CIRCINTERVENTIONS.115.002857
    1. Li J., Gong Y., Wang W., Yang Q., Liu B., Lu Y., et al. (2020). Accuracy of computational pressure-fluid dynamics applied to coronary angiography to derive fractional flow reserve: FLASH FFR. Cardiovasc. Res. 116 1349–1356. 10.1093/cvr/cvz289
    1. Martinez G. J., Yong A. S., Fearon W. F., Ng M. K. (2015). The index of microcirculatory resistance in the physiologic assessment of the coronary microcirculation. Coron. Artery Dis. 26(Suppl. 1) e15–e26. 10.1097/MCA.0000000000000213
    1. Melikian N., Vercauteren S., Fearon W. F., Cuisset T., MacCarthy P. A., Davidavicius G., et al. (2010). Quantitative assessment of coronary microvascular function in patients with and without epicardial atherosclerosis. EuroIntervention 5 939–945. 10.4244/EIJV5I8A158
    1. Meuwissen M., Chamuleau S. A., Siebes M., Schotborgh C. E., Koch K. T., de Winter R. J., et al. (2001). Role of variability in microvascular resistance on fractional flow reserve and coronary blood flow velocity reserve in intermediate coronary lesions. Circulation 103 184–187. 10.1161/01.cir.103.2.184
    1. Nijjer S. S., de Waard G. A., Sen S., van de Hoef T. P., Petraco R., Echavarria-Pinto M., et al. (2016). Coronary pressure and flow relationships in humans: phasic analysis of normal and pathological vessels and the implications for stenosis assessment: a report from the Iberian-Dutch-English (IDEAL) collaborators. Eur. Heart J. 37 2069–2080. 10.1093/eurheartj/ehv626
    1. Pagonas N., Gross C. M., Li M., Bondke A., Klauss V., Buschmann E. E. (2014). Influence of epicardial stenosis severity and central venous pressure on the index of microcirculatory resistance in a follow-up study. EuroIntervention 9 1063–1068. 10.4244/EIJV9I9A180
    1. Pijls N. H., Fearon W. F., Tonino P. A., Siebert U., Ikeno F., Bornschein B., et al. (2010). Fractional flow reserve versus angiography for guiding percutaneous coronary intervention in patients with multivessel coronary artery disease: 2-year follow-up of the FAME (Fractional flow reserve versus angiography for multivessel evaluation) study. J. Am. Coll. Cardiol. 56 177–184. 10.1016/j.jacc.2010.04.012
    1. Pijls N. H., van Schaardenburgh P., Manoharan G., Boersma E., Bech J. W., van’t Veer M., et al. (2007). Percutaneous coronary intervention of functionally nonsignificant stenosis: 5-year follow-up of the DEFER study. J. Am. Coll. Cardiol. 49 2105–2111. 10.1016/j.jacc.2007.01.087
    1. Sen S., Escaned J., Malik I. S., Mikhail G. W., Foale R. A., Mila R., et al. (2012). Development and validation of a new adenosine-independent index of stenosis severity from coronary wave-intensity analysis: results of the ADVISE (ADenosine vasodilator independent stenosis evaluation) study. J. Am. Coll. Cardiol. 59 1392–1402. 10.1016/j.jacc.2011.11.003
    1. Tonino P. A., De Bruyne B., Pijls N. H., Siebert U., Ikeno F., van’ t Veer M., et al. (2009). Fractional flow reserve versus angiography for guiding percutaneous coronary intervention. N. Engl. J. Med. 360 213–224. 10.1056/NEJMoa0807611
    1. Trevethan R. (2017). Sensitivity, specificity, and predictive values: foundations, pliabilities, and pitfalls in research and practice. Front. Public Health 5:307. 10.3389/fpubh.2017.00307
    1. van Nunen L. X., Zimmermann F. M., Tonino P. A., Barbato E., Baumbach A., Engstrom T., et al. (2015). Fractional flow reserve versus angiography for guidance of PCI in patients with multivessel coronary artery disease (FAME): 5-year follow-up of a randomised controlled trial. Lancet 386 1853–1860. 10.1016/S0140-6736(15)00057-4
    1. Xu B., Tu S., Qiao S., Qu X., Chen Y., Yang J., et al. (2017). Diagnostic accuracy of angiography-based quantitative flow ratio measurements for online assessment of coronary stenosis. J. Am. Coll. Cardiol. 70 3077–3087. 10.1016/j.jacc.2017.10.035

Source: PubMed

3
Suscribir