Differential permeability of the blood-brain barrier in experimental brain metastases produced by human neoplasms implanted into nude mice

R D Zhang, J E Price, T Fujimaki, C D Bucana, I J Fidler, R D Zhang, J E Price, T Fujimaki, C D Bucana, I J Fidler

Abstract

This study clarified whether and when the blood-brain barrier in experimental brain metastases is impaired by using hydrosoluble sodium fluorescein (MW 376) as a blood-brain barrier function indicator. Cells from eight human tumor lines (four melanomas, two breast carcinomas, one colon carcinoma, and one renal carcinoma) were inoculated into the internal carotid artery of nude mice. Brain metastases at different stages of development were sampled and the permeability of the blood-brain barrier around the metastases determined. Histologic examination showed two patterns of tumor growth. In the first, tumor cells formed isolated, well-defined nodules in the parenchyma of the brain. In lesions smaller than 0.2 mm2, the blood-brain barrier was intact. In the second, small diffuse nests of tumor cells were distributed throughout the brain parenchyma. The blood-brain barrier was intact until the small tumor cell colonies coalesced to form large tumor masses. These results suggest that the permeability of the blood-brain barrier varies among different experimental brain metastases and that its function is related to the growth pattern and size of the lesions.

References

    1. Cancer Chemother Pharmacol. 1990;27(1):1-7
    1. J Neuropathol Exp Neurol. 1990 Sep;49(5):486-97
    1. Int J Microcirc Clin Exp. 1990 Nov;9(4):369-83
    1. Am J Pathol. 1990 Jan;136(1):95-102
    1. Cancer Chemother Pharmacol. 1990;26(4):263-8
    1. Adv Neurol. 1990;52:21-7
    1. AJR Am J Roentgenol. 1989 Jul;153(1):141-6
    1. Cancer Invest. 1989;7(4):313-21
    1. Int J Cancer. 1989 Nov 15;44(5):892-7
    1. Neurosci Biobehav Rev. 1989 Spring;13(1):47-53
    1. J Neuroradiol. 1989;16(3):238-50
    1. Sel Cancer Ther. 1989;5(2):73-9
    1. No Shinkei Geka. 1989 Sep;17(9):841-8
    1. Neurosurgery. 1989 Oct;25(4):523-31; discussion 531-2
    1. J Neurooncol. 1987;5(4):299-307
    1. Eur J Cell Biol. 1988 Aug;46(3):425-34
    1. Ann Intern Med. 1986 Jul;105(1):82-95
    1. Brain Behav Evol. 1988;32(2):65-75
    1. Semin Oncol. 1986 Mar;13(1):56-69
    1. J Comput Assist Tomogr. 1987 May-Jun;11(3):390-7
    1. J Natl Cancer Inst. 1988 Sep 7;80(13):1027-34
    1. Ann N Y Acad Sci. 1988;529:31-9
    1. Cancer Treat Rev. 1987 Mar;14(1):1-28
    1. Cancer Res. 1988 Apr 1;48(7):1943-8
    1. Int J Cancer. 1988 Apr 15;41(4):589-94
    1. Cancer Res. 1988 Jun 15;48(12):3478-84
    1. Ann N Y Acad Sci. 1988;529:21-30
    1. J Natl Cancer Inst. 1987 Jul;79(1):123-30
    1. J Neurosurg. 1987 Nov;67(5):697-705
    1. Acta Neuropathol. 1987;74(2):191-3
    1. Cancer Res. 1986 Aug;46(8):4109-15
    1. J Neurol. 1986 Aug;233(4):193-4
    1. Lab Invest. 1972 Apr;26(4):465-8
    1. J Nucl Med. 1984 Apr;25(4):461-5
    1. J Neurosurg. 1983 Aug;59(2):304-10
    1. J Neurosurg. 1982 Sep;57(3):394-8
    1. Dev Biol. 1981 May;84(1):183-92
    1. J Comp Neurol. 1980 May 1;191(1):103-7
    1. Arch Neurol. 1964 Sep;11:248-64
    1. J Neuropathol Exp Neurol. 1979 Jan;38(1):19-34
    1. Am J Pathol. 1990 Jun;136(6):1393-405
    1. Cancer Res. 1991 Apr 15;51(8):2029-35
    1. Biochem Biophys Res Commun. 1990 Apr 16;168(1):358-63
    1. Sel Cancer Ther. 1990 Fall;6(3):109-18
    1. Eye (Lond). 1990;4 ( Pt 2):249-54
    1. Adv Exp Med Biol. 1990;274:25-39

Source: PubMed

3
Suscribir