An observational study of circulating tumor cells and (18)F-FDG PET uptake in patients with treatment-naive non-small cell lung cancer

Viswam S Nair, Khun Visith Keu, Madelyn S Luttgen, Anand Kolatkar, Minal Vasanawala, Ware Kuschner, Kelly Bethel, Andrei H Iagaru, Carl Hoh, Joseph B Shrager, Billy W Loo Jr, Lyudmila Bazhenova, Jorge Nieva, Sanjiv S Gambhir, Peter Kuhn, Viswam S Nair, Khun Visith Keu, Madelyn S Luttgen, Anand Kolatkar, Minal Vasanawala, Ware Kuschner, Kelly Bethel, Andrei H Iagaru, Carl Hoh, Joseph B Shrager, Billy W Loo Jr, Lyudmila Bazhenova, Jorge Nieva, Sanjiv S Gambhir, Peter Kuhn

Abstract

Introduction: We investigated the relationship of circulating tumor cells (CTCs) in non-small cell lung cancer (NSCLC) with tumor glucose metabolism as defined by (18)F-fluorodeoxyglucose (FDG) uptake since both have been associated with patient prognosis.

Materials & methods: We performed a retrospective screen of patients at four medical centers who underwent FDG PET-CT imaging and phlebotomy prior to a therapeutic intervention for NSCLC. We used an Epithelial Cell Adhesion Molecule (EpCAM) independent fluid biopsy based on cell morphology for CTC detection and enumeration (defined here as High Definition CTCs or "HD-CTCs"). We then correlated HD-CTCs with quantitative FDG uptake image data calibrated across centers in a cross-sectional analysis.

Results: We assessed seventy-one NSCLC patients whose median tumor size was 2.8 cm (interquartile range, IQR, 2.0-3.6) and median maximum standardized uptake value (SUVmax) was 7.2 (IQR 3.7-15.5). More than 2 HD-CTCs were detected in 63% of patients, whether across all stages (45 of 71) or in stage I disease (27 of 43). HD-CTCs were weakly correlated with partial volume corrected tumor SUVmax (r = 0.27, p-value = 0.03) and not correlated with tumor diameter (r = 0.07; p-value = 0.60). For a given partial volume corrected SUVmax or tumor diameter there was a wide range of detected HD-CTCs in circulation for both early and late stage disease.

Conclusions: CTCs are detected frequently in early-stage NSCLC using a non-EpCAM mediated approach with a wide range noted for a given level of FDG uptake or tumor size. Integrating potentially complementary biomarkers like these with traditional patient data may eventually enhance our understanding of clinical, in vivo tumor biology in the early stages of this deadly disease.

Conflict of interest statement

Competing Interests: The authors have the following interest. Peter Kuhn, Kelly Bethel, and Jorge Nieva have an ownership interest in Epic Sciences, which has licensed the HD-CTC technology used in this study. There are no further patents, products in development or marketed products to declare. This does not alter the authors' adherence to all the PLOS ONE policies on sharing data and materials, as detailed online in the guide for authors.

Figures

Figure 1. Detecting Putative DAPI(+), CK(+), CD45(-)…
Figure 1. Detecting Putative DAPI(+), CK(+), CD45(-) HD-CTCs by Fluid Biopsy.
A representative image of High Definition Circulating Tumor Cells (HD-CTCs) from a Stanford patient with stage I non-small cell lung cancer shown in composite immunofluorescence (A) and by Wright-Giemsa brightfield microscopy (B). HD-CTCs are characterized as 4′,6-diamidino-2-phenylindole (DAPI) positive with a nucleus that is larger than surrounding white blood cells (Blue, C), cytokeratin (CK) positive (Red, D) and CD45 leukocyte marker negative (Green, E).
Figure 2. Non-small Cell Lung Cancer FDG…
Figure 2. Non-small Cell Lung Cancer FDG PET-CT Imaging Features.
A three dimensional, maximum intensity projection, whole body 18F-FDG PET-CT (left). Physiologic uptake is seen in the brain, heart and liver with excretion through the renal pelvis and bladder. This tumor showed an intense FDG uptake with SUVmax of 19, SUVmean of 9.6, and TLG of 65.6 using a 50% SUVmax threshold (upper right). On CT, the lesion volume was estimated at 6.0 cm3 with a maximum diameter of 22 mm (lower right).
Figure 3. FDG Uptake and CTC Features…
Figure 3. FDG Uptake and CTC Features Correlation Matrix*.
TLG = Total Lesion Glycolysis; SUV = Standardized Uptake Value; PVC = Partial Volume Corrected; 10 M WBC = 10 Million White Blood Cells. Bolded numbers are significant by p-value

Figure 4. HD-CTC Scatter Plots for SUV…

Figure 4. HD-CTC Scatter Plots for SUV maxPVC and CT diameter*.

Non-metastatic patients are highlighted in…

Figure 4. HD-CTC Scatter Plots for SUVmaxPVC and CT diameter*.
Non-metastatic patients are highlighted in red (see methods for definition) and the axes are shown as log2(x,y) for ease of interpretation. Increasing SUVmaxPVC (left) was weakly correlated (r = 0.27, p-value = 0.03) with increasing HD-CTC/10 M WBC count compared to tumor diameter on CT (right; r = 0.07, p-value = 0.60), which showed no correlation. *Shown for 62 of 71 patients with data extracted by PET-VCAR.
Figure 4. HD-CTC Scatter Plots for SUV…
Figure 4. HD-CTC Scatter Plots for SUVmaxPVC and CT diameter*.
Non-metastatic patients are highlighted in red (see methods for definition) and the axes are shown as log2(x,y) for ease of interpretation. Increasing SUVmaxPVC (left) was weakly correlated (r = 0.27, p-value = 0.03) with increasing HD-CTC/10 M WBC count compared to tumor diameter on CT (right; r = 0.07, p-value = 0.60), which showed no correlation. *Shown for 62 of 71 patients with data extracted by PET-VCAR.

References

    1. Tanaka F, Yoneda K, Kondo N, Hashimoto M, Takuwa T, et al. (2009) Circulating tumor cell as a diagnostic marker in primary lung cancer. Clinical Cancer Res 15: 6980–6986.
    1. James ML, Gambhir SS (2012) A molecular imaging primer: modalities, imaging agents, and applications. Physiol Rev 92: 897–965.
    1. Gould MK, Maclean CC, Kuschner WG, Rydzak CE, Owens DK (2001) Accuracy of positron emission tomography for diagnosis of pulmonary nodules and mass lesions: a meta-analysis. JAMA 285: 914–924.
    1. van Tinteren H, Hoekstra OS, Smit EF, van den Bergh JH, Schreurs AJ, et al. (2002) Effectiveness of positron emission tomography in the preoperative assessment of patients with suspected non-small-cell lung cancer: the PLUS multicentre randomised trial. Lancet 359: 1388–1393.
    1. Warburg O (1956) On respiratory impairment in cancer cells. Science 124: 269–270.
    1. Jadvar H, Alavi A, Gambhir SS (2009) 18F-FDG uptake in lung, breast, and colon cancers: molecular biology correlates and disease characterization. J Nucl Med 50: 1820–1827.
    1. Paesmans M, Berghmans T, Dusart M, Garcia C, Hossein-Foucher C, et al. (2010) Primary tumor standardized uptake value measured on fluorodeoxyglucose positron emission tomography is of prognostic value for survival in non-small cell lung cancer: update of a systematic review and meta-analysis by the European Lung Cancer Working Party for the International Association for the Study of Lung Cancer Staging Project. J Thorac Oncol 5: 612–619.
    1. Dang CV (2010) Rethinking the Warburg effect with Myc micromanaging glutamine metabolism. Cancer research 70: 859–862.
    1. Palaskas NJ, Larson SM, Schultz N, Komisopoulou E, Wong J, et al. (2011) 18F-fluorodeoxy-glucose positron emission tomography (18FDG-PET) marks MYC-overexpressing human basal-like breast cancers. Cancer research 5164–5174: 1–11.
    1. Hou JM, Krebs M, Ward T, Sloane R, Priest L, et al. (2011) Circulating tumor cells as a window on metastasis biology in lung cancer. Am J Pathol 178: 989–996.
    1. Paterlini-Brechot P, Benali NL (2007) Circulating tumor cells (CTC) detection: clinical impact and future directions. Cancer Lett 253: 180–204.
    1. Kalluri R, Weinberg RA (2009) The basics of epithelial-mesenchymal transition. J Clin Invest 119: 1420–1428.
    1. Scheel C, Weinberg RA (2012) Cancer stem cells and epithelial-mesenchymal transition: Concepts and molecular links. Semin Cancer Biol 22: 396–403.
    1. Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144: 646–674.
    1. Vesselle H, Salskov A, Turcotte E, Wiens L, Schmidt R, et al. (2008) Relationship between non-small cell lung cancer FDG uptake at PET, tumor histology, and Ki-67 proliferation index. J Thorac Oncol 3: 971–978.
    1. Goldstraw P, Crowley J, Chansky K, Giroux DJ, Groome PA, et al. (2007) The IASLC Lung Cancer Staging Project: proposals for the revision of the TNM stage groupings in the forthcoming (seventh) edition of the TNM Classification of malignant tumours. J Thorac Oncol 2: 706–714.
    1. Marrinucci D, Bethel K, Kolatkar A, Luttgen MS, Malchiodi M, et al. (2012) Fluid biopsy in patients with metastatic prostate, pancreatic and breast cancers. Phys Biol 9: 016003.
    1. Wendel M, Bazhenova L, Boshuizen R, Kolatkar A, Honnatti M, et al. (2012) Fluid biopsy for circulating tumor cell identification in patients with early-and late-stage non-small cell lung cancer: a glimpse into lung cancer biology. Phys Biol 9: 016005.
    1. Nieva J, Wendel M, Luttgen MS, Marrinucci D, Bazhenova L, et al. (2012) High-definition imaging of circulating tumor cells and associated cellular events in non-small cell lung cancer patients: a longitudinal analysis. Phys Biol 9: 016004.
    1. Krivacic RT, Ladanyi A, Curry DN, Hsieh HB, Kuhn P, et al. (2004) A rare-cell detector for cancer. Proc Natl Acad Sci U S A 101: 10501–10504.
    1. Cho EH, Wendel M, Luttgen M, Yoshioka C, Marrinucci D, et al. (2012) Characterization of circulating tumor cell aggregates identified in patients with epithelial tumors. Phys Biol 9: 016001.
    1. Vesselle H, Freeman JD, Wiens L, Stern J, Nguyen HQ, et al. (2007) Fluorodeoxyglucose uptake of primary non-small cell lung cancer at positron emission tomography: new contrary data on prognostic role. Clin Cancer Res 13: 3255–3263.
    1. Gulec SA, Suthar RR, Barot TC, Pennington K (2011) The prognostic value of functional tumor volume and total lesion glycolysis in patients with colorectal cancer liver metastases undergoing 90Y selective internal radiation therapy plus chemotherapy. Eur J Nucl Med Mol Imaging 38: 1289–1295.
    1. Lee P, Bazan JG, Lavori PW, Weerasuriya DK, Quon A, et al. (2012) Metabolic tumor volume is an independent prognostic factor in patients treated definitively for non-small-cell lung cancer. Clin Lung Cancer 13: 52–58.
    1. Coleman RE (1999) PET in lung cancer. J Nucl Med 40: 814–820.
    1. Velasquez LM, Boellaard R, Kollia G, Hayes W, Hoekstra OS, et al. (2009) Repeatability of 18F-FDG PET in a multicenter phase I study of patients with advanced gastrointestinal malignancies. J Nucl Med 50: 1646–1654.
    1. Krebs MG, Hou JM, Ward TH, Blackhall FH, Dive C (2010) Circulating tumour cells: their utility in cancer management and predicting outcomes. Ther Adv Med Oncol 2: 351–365.
    1. Krebs MG, Sloane R, Priest L, Lancashire L, Hou JM, et al. (2011) Evaluation and prognostic significance of circulating tumor cells in patients with non-small-cell lung cancer. J Clin Oncol 29: 1556–1563.
    1. Hofman V, Bonnetaud C, Ilie MI, Vielh P, Vignaud JM, et al. (2011) Preoperative circulating tumor cell detection using the isolation by size of epithelial tumor cell method for patients with lung cancer is a new prognostic biomarker. Clin Cancer Res 17: 827–835.
    1. De Giorgi U, Mego M, Rohren EM, Liu P, Handy BC, et al. (2010) 18F-FDG PET/CT findings and circulating tumor cell counts in the monitoring of systemic therapies for bone metastases from breast cancer. J Nucl Med 51: 1213–1218.
    1. De Giorgi U, Valero V, Rohren E, Dawood S, Ueno NT, et al. (2009) Circulating tumor cells and [18F]fluorodeoxyglucose positron emission tomography/computed tomography for outcome prediction in metastatic breast cancer. J Clin Oncol 27: 3303–3311.
    1. Punnoose EA, Atwal S, Liu W, Raja R, Fine BM, et al. (2012) Evaluation of circulating tumor cells and circulating tumor DNA in non-small cell lung cancer: association with clinical endpoints in a phase II clinical trial of pertuzumab and erlotinib. Clin Cancer Res 18: 2391–2401.
    1. Tanaka F YK, Hasegawa S (2010) Circulating tumor cells (CTCs) in lung cancer: current status and future perspectives. Lung Cancer: Targets and Therapy 1: 77–84.
    1. Berezovskaya O, Schimmer AD, Glinskii AB, Pinilla C, Hoffman RM, et al. (2005) Increased expression of apoptosis inhibitor protein XIAP contributes to anoikis resistance of circulating human prostate cancer metastasis precursor cells. Cancer research 65: 2378–2386.
    1. Luzzi KJ, MacDonald IC, Schmidt EE, Kerkvliet N, Morris VL, et al. (1998) Multistep nature of metastatic inefficiency: dormancy of solitary cells after successful extravasation and limited survival of early micrometastases. Am J Pathol 153: 865–873.
    1. Glinsky VV, Glinsky GV, Glinskii OV, Huxley VH, Turk JR, et al. (2003) Intravascular metastatic cancer cell homotypic aggregation at the sites of primary attachment to the endothelium. Cancer research 63: 3805–3811.
    1. Yu M, Bardia A, Wittner BS, Stott SL, Smas ME, et al. (2013) Circulating breast tumor cells exhibit dynamic changes in epithelial and mesenchymal composition. Science 339: 580–584.

Source: PubMed

3
Suscribir