Application of Noninvasive Vagal Nerve Stimulation to Stress-Related Psychiatric Disorders

James Douglas Bremner, Nil Z Gurel, Matthew T Wittbrodt, Mobashir H Shandhi, Mark H Rapaport, Jonathon A Nye, Bradley D Pearce, Viola Vaccarino, Amit J Shah, Jeanie Park, Marom Bikson, Omer T Inan, James Douglas Bremner, Nil Z Gurel, Matthew T Wittbrodt, Mobashir H Shandhi, Mark H Rapaport, Jonathon A Nye, Bradley D Pearce, Viola Vaccarino, Amit J Shah, Jeanie Park, Marom Bikson, Omer T Inan

Abstract

Background: Vagal Nerve Stimulation (VNS) has been shown to be efficacious for the treatment of depression, but to date, VNS devices have required surgical implantation, which has limited widespread implementation.

Methods: New noninvasive VNS (nVNS) devices have been developed which allow external stimulation of the vagus nerve, and their effects on physiology in patients with stress-related psychiatric disorders can be measured with brain imaging, blood biomarkers, and wearable sensing devices. Advantages in terms of cost and convenience may lead to more widespread implementation in psychiatry, as well as facilitate research of the physiology of the vagus nerve in humans. nVNS has effects on autonomic tone, cardiovascular function, inflammatory responses, and central brain areas involved in modulation of emotion, all of which make it particularly applicable to patients with stress-related psychiatric disorders, including posttraumatic stress disorder (PTSD) and depression, since dysregulation of these circuits and systems underlies the symptomatology of these disorders.

Results: This paper reviewed the physiology of the vagus nerve and its relevance to modulating the stress response in the context of application of nVNS to stress-related psychiatric disorders.

Conclusions: nVNS has a favorable effect on stress physiology that is measurable using brain imaging, blood biomarkers of inflammation, and wearable sensing devices, and shows promise in the prevention and treatment of stress-related psychiatric disorders.

Keywords: PTSD; VNS; depressive disorders; inflammation; interferon; interleukin-6; posttraumatic; stress; stress disorders; sympathetic; vagal nerve stimulation; vagus nerve.

Conflict of interest statement

J.D.B. has research funding support from ElectroCore LLC who also donated devices used in the research reviewed here.

Figures

Figure 1
Figure 1
Model of effects of transcutaneous Vagal Nerve Stimulation (VNS) on physiological function. Stimulation of the vagus nerve in the neck as it passes through the carotid sheath (transcutaneous cervical VNS (tcVNS)) or in the ear (transcutaneous auricular VNS (taVNS)) activates the Nucleus Tractus Solitarius (NTS) in the brainstem, which has projections to other key brainstem nuclei containing cell bodies for neurotransmitters, including the locus coeruleus (LC), site of norepinephrine (NE), pedunculopontine nucleus (PPN) for acetylcholine (Ach), and raphe nucleus (RN) for serotonin (5-HT), and the reticular activating system (RAS). These regions, in turn, originate pathways to multiple brain areas involved in modulation of fear and emotion, as well as memory and neuroplasticity, including the anterior cingulate, hippocampus, amygdala, and cortex (including insula). Vagal efferents project to peripheral cardiovascular, autonomic, and inflammatory pathways. The vagus also projects information from the periphery back to the brain through afferents.
Figure 2
Figure 2
Study protocol undergoing since 2017. Physiological sensing data is collected continuously throughout three study days. The protocol timeline depicts neutral and trauma scripts, HR-PET scans (first day), mental stress tasks of public speech and mental arithmetic (second and third day), stimulation with active tcVNS or sham, and blood draws (all days).

References

    1. Anda R.F., Felitti V.J., Walker J., Whitfield C., Bremner J.D., Perry B.D., Dube S.R., Giles W.H. The enduring effects of childhood abuse and related experiences in childhood: A convergence of evidence from neurobiology and epidemiology. Eur. Arch. Psychiatry Clin. Neurosci. 2006;256:174–186. doi: 10.1007/s00406-005-0624-4.
    1. Kessler R.C., Magee W.J. Childhood adversities and adult depression: Basic patterns of association in a US national survey. Psychol. Med. 1993;23:679–690. doi: 10.1017/S0033291700025460.
    1. Kendler K.S., Thornton L.M., Gardner C.O. Stressful life events and previous episodes in the etiology of major depression in women: An evaluation of the “kindling” hypothesis. Am. J. Psychiatry. 2000;157:1243–1251. doi: 10.1176/appi.ajp.157.8.1243.
    1. Weathers F.W., Bovin M.J., Lee D.J., Sloan D.M., Schnurr P.P., Kaloupek D.G., Keane T.M., Marx B.P. The Clinician-Administered PTSD Scale for DSM-5 (CAPS-5): Development and initial psychometric evaluation in military veterans. Psychol. Assess. 2018;30:383–395. doi: 10.1037/pas0000486.
    1. Kessler R.C., McGonagle K.A., Zhao S., Nelson C.B., Hughes M., Eschleman S., Wittchen H.-U., Kendler K. Lifetime and 12-month prevalence of DSM-III-R psychiatric disorders in the United States: Results from the National Comorbidity Study. Arch. Gen. Psychiatry. 1994;51:8–19. doi: 10.1001/archpsyc.1994.03950010008002.
    1. Stewart W.F., Ricci J.A., Chee E., Hahn S.R., Morganstein D. Cost of lost productive work time among US workers with depression. J. Am. Med. Assoc. 2003;289:3135–3144. doi: 10.1001/jama.289.23.3135.
    1. Pietrzak R.H., Goldstein R.B., Southwick S.M., Grant B.F. Prevalence and Axis I comorbidity of full and partial posttraumatic stress disorder in the United States: Results from Wave 2 of the National Epidemiologic Survey on Alcohol and Related Conditions. J. Anxiety Disord. 2011;25:456–465. doi: 10.1016/j.janxdis.2010.11.010.
    1. Eibner C. The Invisible Wounds of War: Quantifying the Societal Costs of Psychological and Cognitive Injuries. RAND Corporation; Santa Monica, CA, USA: 2008.
    1. McCauley J., Kern D.E., Kolodner K., Dill L., Schroeder A.F., DeChant H.K., Ryden J., Derogatis L.R., Bass E.G. Clinical characteristics of women with a history of childhood abuse: Unhealed wounds. J. Am. Med. Assoc. 1997;277:1362–1368. doi: 10.1001/jama.1997.03540410040028.
    1. MacMillan H.L., Fleming J.E., Trocme N., Boyle M.H., Wong M., Racine Y.A., Beardslee W.R., Offord D.R. Prevalence of child physical and sexual abuse in the community: Results from the Ontario Health Supplement. J. Am. Med. Assoc. 1997;278:131–135. doi: 10.1001/jama.1997.03550020063039.
    1. Kessler R.C., Sonnega A., Bromet E., Hughes M., Nelson C.B. Posttraumatic stress disorder in the National Comorbidity Survey. Arch. Gen. Psychiatry. 1995;52:1048–1060. doi: 10.1001/archpsyc.1995.03950240066012.
    1. Kessler R.C., Berglund P., Demler O., Jin R., Merikangas K.R., Walters E.E. Lifetime prevalence and age-of-onset distributions of DSM-IV disorders in the National Comorbidity Survey Replication. Arch. Gen. Psychiatry. 2005;62:593–602. doi: 10.1001/archpsyc.62.6.593.
    1. Bremner J.D., editor. Posttraumatic Stress Disorder: From Neurobiology to Treatment. 1st ed. John Wiley & Sons; Hoboken, NJ, USA: 2016.
    1. Blanchard E.B., Buckley T.C., Hickling E.J., Taylor A.E. Posttraumatic stress disorder and comorbid major depression: Is the correlation an illusion? J. Anxiety Disord. 1998;12:1–37. doi: 10.1016/S0887-6185(97)00047-9.
    1. Franklin C.L., Zimmerman M. Posttraumatic stress disorder and major depressive disorder: Investigating the role of overlapping symptoms in diagnostic comorbidity. J. Nerv. Ment. Dis. 2001;189:548–551. doi: 10.1097/00005053-200108000-00008.
    1. Flory J.D., Yehuda R. Comorbidity between post-traumatic stress disorder and major depressive disorder: Alternative explanations and treatment considerations. Dialogues Clin. Neurosci. 2015;17:141–150.
    1. Nijdam M.J., Gersons B.P.R., Olff M. The role of major depression in neurocognitive functioning in patients with posttraumatic stress disorder. Eur. J. Psychotraumatol. 2013;4:19979. doi: 10.3402/ejpt.v4i0.19979.
    1. Shalev A.Y., Freedman S., Peri T. Prospective study of post-traumatic stress disorder and depression following trauma. Am. J. Psychiatry. 1988;155:630–637. doi: 10.1176/ajp.155.5.630.
    1. Rytwinski N.K., Scur M.D., Feeny N.C., Youngstrom E.A. The co-occurrence of major depressive disorder among individuals with posttraumatic stress disorder: A meta-analysis. J. Trauma. Stress. 2013;26:299–309. doi: 10.1002/jts.21814.
    1. Oquendo M., Brent D.A., Birmaher B., Greenhill L., Kolko D., Stanley B., Zelazny J., Burke A.K., Firinciogullari S., Ellis S.P., et al. Posttraumatic stress disorder comorbid with major depression: Factors mediating the association with suicidal behavior. Am. J. Psychiatry. 2005;162:560–566. doi: 10.1176/appi.ajp.162.3.560.
    1. Ramsawh H.J., Fullerton C.S., Mash H.B.H., Ng T.H.H., Kessler R.C., Stein M.B., Ursano R.J. Risk for suicidal behaviors associated with PTSD, depression, and their comorbidity in the U.S. Army. J. Affect. Disord. 2014;161:116–122. doi: 10.1016/j.jad.2014.03.016.
    1. Ballenger J.C., Davidson J.R., Lecrubier Y., Nutt D.J., Foa E.B., Kessler R.C., McFarlane A.C., Shalev A.Y. Consensus statement on posttraumatic stress disorder from the International Consensus Group on Depression and Anxiety. J. Clin. Psychiatry. 2000;61:60–66.
    1. Foa E.B., Davidson J.R.T., Frances A., Culpepper L., Ross R., Ross D. The expert consensus guideline series: Treatment of posttraumatic stress disorder. J. Clin. Psychiatry. 1999;60:4–76.
    1. Schottenbauer M.A., Glass C.R., Arnkoff D.B., Tendick V., Gray S.H. Nonresponse and dropout rates in outcome studies on PTSD: Review and methodological considerations. Psychiatry. 2008;71:134–168. doi: 10.1521/psyc.2008.71.2.134.
    1. Hembree E.A., Foa E.B., Dorfan N.M., Street G.P., Kowalski J., Tu X. Do patients drop out prematurely from exposure therapy for PTSD? J. Trauma. Stress. 2003;16:555–562. doi: 10.1023/B:JOTS.0000004078.93012.7d.
    1. Ballenger J.C., Davidson J.R., Lecrubier Y., Nutt D.J., Marshall R.D., Nemeroff C.B., Shalev A.Y., Yehuda R. Consensus statement update on posttraumatic stress disorder from the international consensus group on depression and anxiety. J. Clin. Psychiatry. 2004;65(Suppl. 1):55–62.
    1. Davis L., Hamner M., Bremner J.D. Pharmacotherapy for PTSD: Effects on PTSD symptoms and the brain. In: Bremner J.D., editor. Posttraumatic Stress Disorder: From Neurobiology to Treatment. John Wiley & Sons; Hoboken, NJ, USA: 2016. pp. 389–412.
    1. Institute of Medicine of the National Academies . Treatment for Posttraumatic Stress Disorder in Military and Veteran Populations: Final Assessment. National Academies of Science, Engineering and Medicine, Health and Medicine Division; Washington, DC, USA: 2014.
    1. Rush A.J., Trivedi M.H., Wisniewski S.R., Nierenberg A.A., Stewart J.W., Warden D., Niederehe G., Thase M.E., Lavori P.W., Lebowitz B.D., et al. Acute and longer-term outcomes in depressed outpatients requiring one or several treatment steps: A STAR*D report. Am. J. Psychiatry. 2006;163:1905–1907. doi: 10.1176/ajp.2006.163.11.1905.
    1. Komegae E.N., Farmer D.G.S., Brooks V.L., McKinley M.J., McAllen R.M., Martelli D. Vagal afferent activation suppresses systemic inflammation via the splanchnic anti-inflammatory pathway. Brain Behav. Immun. 2018;73:441–449. doi: 10.1016/j.bbi.2018.06.005.
    1. Bremner J.D., Charney D.S. Neural circuits in fear and anxiety. In: Stein D.J., Hollander E., Rothbaum B.O., editors. Textbook of Anxiety Disorders. 2nd ed. American Psychiatric Publishing; Arlington, VA, USA: 2010. pp. 55–71.
    1. Charney D.S., Bremner J.D. The neurobiology of anxiety disorders. In: Charney D.S., Nestler E.J., Bunney S.S., editors. Neurobiology of Mental Illness. Oxford University Press; Oxford, UK: 1999. pp. 494–517.
    1. Bremner J.D., Pearce B. Neurotransmitter, neurohormonal, and neuropeptidal function in stress and PTSD. In: Bremner J.D., editor. Posttraumatic Stress Disorder: From Neurobiology to Treatment. John Wiley & Sons; Hoboken, NJ, USA: 2016. pp. 181–232.
    1. Campanella C., Bremner J.D. Neuroimaging of PTSD. In: Bremner J.D., editor. Posttraumatic Stress Disorder: From Neurobiology to Treatment. John Wiley & Sons; Hoboken, NJ, USA: 2016. pp. 291–320.
    1. Yehuda R. Post-traumatic stress disorder. N. Engl. J. Med. 2002;346:108–114. doi: 10.1056/NEJMra012941.
    1. Vermetten E. Epilogue: Neuroendocrinology of PTSD. Prog. Brain Res. 2008;167:311–313. doi: 10.1016/s0079-6123(07)67030-7.
    1. De Kloet C.S., Vermetten E., Geuze E., Kavelaars A., Heijnen C.J., Westenberg H.G. Assessment of HPA-axis function in posttraumatic stress disorder: Pharmacological and non-pharmacological challenge tests, a review. J. Psychiatr. Res. 2006;40:550–567. doi: 10.1016/j.jpsychires.2005.08.002.
    1. Van Zuiden M., Kavelaars A., Geuze E., Olff M., Heijnen C.J. Predicting PTSD: Pre-existing vulnerabilities in glucocorticoid-signaling and implications for preventive interventions. Brain Behav. Immun. 2013;30:12–21. doi: 10.1016/j.bbi.2012.08.015.
    1. Yehuda R., Golier J.A., Yang R.-K., Tischler L. Enhanced sensitivity to glucocorticoids in peripheral mononuclear leukocytes in posttraumatic stress disorder. Biol. Psychiatry. 2004;55:1110–1116. doi: 10.1016/j.biopsych.2004.02.010.
    1. Young E.A., Haskett R.F., Murphy-Weinberg V., Watson S.J., Akil H. Loss of glucocorticoid fast feedback in depression. Arch. Gen. Psychiatry. 1991;48:693–699. doi: 10.1001/archpsyc.1991.01810320017003.
    1. Yehuda R., Teicher M.H., Trestman R.L., Levengood R.A., Siever L.J. Cortisol regulation in posttraumatic stress disorder and major depression: A chronobiological analysis. Biol. Psychiatry. 1996;40:79–88. doi: 10.1016/0006-3223(95)00451-3.
    1. Carroll B.J., Curtis G.C., Davies B.M., Mendels J., Sugarman A.A. Urinary free cortisol excretion in depression. Psychol. Med. 1976;6:43–50. doi: 10.1017/S0033291700007480.
    1. Hosoi T., Okuma Y., Nomura Y. Electrical stimulation of afferent vagus nerve induces IL-1β expression in the brain and activates HPA axis. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2000;279:R141–R147. doi: 10.1152/ajpregu.2000.279.1.R141.
    1. Watkins L.R., Maier S.F., Goehler L.E. Cytokine-to-brain communication: A review and analysis of alternative mechanisms. Life Sci. 1995;57:1011–1026. doi: 10.1016/0024-3205(95)02047-M.
    1. Thrivikraman K.V., Zejnelovic F., Bonsall R.W., Owens M.J. Neuroendocrine homeostasis after vagus nerve stimulation in rats. Psychoneuroendocrinology. 2013;38:1067–1077. doi: 10.1016/j.psyneuen.2012.10.015.
    1. Agorastos A., Boel J.A., Heppner P.S., Hager T., Moeller-Bertram T., Haji U., Motazedi A., Yanagi M.A., Baker D.G., Stiedl O. Diminished vagal activity and blunted diurnal variation of heart rate dynamics in posttraumatic stress disorder. Stress. 2013;16:300–310. doi: 10.3109/10253890.2012.751369.
    1. Delgado P.L., Moreno F.A. Role of norepinephrine in depression. J. Clin. Psychiatry. 2000;61:S5–S12.
    1. Golden R.N., Markey S.P., Risby E.D., Rudorfer M.V., Cowdry R.W., Potter W.Z. Antidepressants reduce whole-body norepinephrine turnover while enhancing 6-hydroxymelatonin output. Arch. Gen. Psychiatry. 1988;45:150–154. doi: 10.1001/archpsyc.1988.01800260060008.
    1. Lake C.R., Pickar D., Ziegler M.G., Lipper S., Slater S., Murphy D.L. High plasma NE levels in patients with major affective disorder. Am. J. Psychiatry. 1982;139:1315–1318.
    1. Veith R.C., Lewis L., Linares O.A. Sympathetic nervous system activity in major depression: Basal and desipramine-induced alterations in plasma norepinephrine kinetics. Arch. Gen. Psychiatry. 1994;51:411–422. doi: 10.1001/archpsyc.1994.03950050071008.
    1. Bremner J.D., Krystal J.H., Southwick S.M., Charney D.S. Noradrenergic mechanisms in stress and anxiety: II. Clinical studies. Synapse. 1996;23:39–51. doi: 10.1002/(SICI)1098-2396(199605)23:1<39::AID-SYN5>;2-I.
    1. Blanchard E.B., Kolb L.C., Prins A., Gates S., McCoy G.C. Changes in plasma norepinephrine to combat-related stimuli among Vietnam veterans with posttraumatic stress disorder. J. Nerv. Ment. Dis. 1991;179:371–373. doi: 10.1097/00005053-199106000-00012.
    1. Geracioti T.D.J., Baker D.G., Ekhator N.N., West S.A., Hill K.K., Bruce A.B., Schmidt D., Rounds-Kugler B., Yehuda R., Keck P.E.J., et al. CSF norepinephrine concentrations in posttraumatic stress disorder. Am. J. Psychiatry. 2001;158:1227–1230. doi: 10.1176/appi.ajp.158.8.1227.
    1. Mason J.W., Giller E.L., Kosten T.R. Elevation of urinary norepinephrine/cortisol ratio in posttraumatic stress disorder. J. Nerv. Ment. Dis. 1988;176:498–502. doi: 10.1097/00005053-198808000-00008.
    1. Zoladz P.R., Diamond D.M. Current status on behavioral and biological markers of PTSD: A search for clarity in a conflicting literature. Neurosci. Biobehav. Rev. 2013;37:860–895. doi: 10.1016/j.neubiorev.2013.03.024.
    1. Bremner J.D., Krystal J.H., Southwick S.M., Charney D.S. Noradrenergic mechanisms in stress and anxiety: I. Preclinical studies. Synapse. 1996;23:28–38. doi: 10.1002/(SICI)1098-2396(199605)23:1<28::AID-SYN4>;2-J.
    1. Southwick S.M., Krystal J.H., Bremner J.D., Morgan C.A., Nicolaou A., Nagy L.M., Johnson D.R., Heninger G.R., Charney D.S. Noradrenergic and serotonergic function in posttraumatic stress disorder. Arch. Gen. Psychiatry. 1997;54:749–758. doi: 10.1001/archpsyc.1997.01830200083012.
    1. Miller A.H., Raison C.L. The role of inflammation in depression: From evolutionary imperative to modern treatment target. Nat. Rev. Immunol. 2016;16:22–34. doi: 10.1038/nri.2015.5.
    1. Pace T.W.W., Heim C.M. A short review on the psychoneuroimmunology of posttraumatic stress disorder: From risk factors to medical comorbidities. Brain Behav. Immun. 2011;25:6–13. doi: 10.1016/j.bbi.2010.10.003.
    1. Marsland A.L., Walsh C., Lockwood K., John-Henderson N.A. The effects of acute psychological stress on circulating and stimulated inflammatory markers: A systematic review and meta-analysis. Brain Behav. Immun. 2017;64:208–219. doi: 10.1016/j.bbi.2017.01.011.
    1. Steptoe A., Hamer M., Chida Y. The effects of acute psychological stress on circulating inflammatory factors in humans: A review and meta-analysis. Brain Behav. Immun. 2007;21:901–912. doi: 10.1016/j.bbi.2007.03.011.
    1. Sugama S., Conti B. Interleukin-18 and stress. Brain Res. Rev. 2008;58:85–95. doi: 10.1016/j.brainresrev.2007.11.003.
    1. Lima B.B., Hammadah M., Wilmot K., Pearce B.D., Shah A., Levantsevych O., Kaseer B., Obideen M., Gafeer M.M., Kim J.H., et al. Posttraumatic Stress Disorder is associated with enhanced interleukin-6 response to mental stress in subjects with a recent myocardial infarction. Brain Behav. Immun. 2019;75:26–33. doi: 10.1016/j.bbi.2018.08.015.
    1. Pace T.W.W., Mletzko T.C., Alagbe O., Musselman D.L., Nemeroff C.B., Miller A.H., Heim C.M. Increased stress-induced inflammatory responses in male patients with major depression and increased early life stress. Am. J. Psychiatry. 2006;163:1630–1633. doi: 10.1176/ajp.2006.163.9.1630.
    1. Miller A.H., Maletic V., Raison C.L. Inflammation and its discontents: The role of cytokines in the pathphysiology of depression. Biol. Psychiatry. 2009;65:732–741. doi: 10.1016/j.biopsych.2008.11.029.
    1. Bierhaus A., Wolf J., Andrassy M., Rohleder N., Humpert P.M., Petrov D., Ferstl R., von Eynatten M., Wendt T., Rudofsky G., et al. A mechanism converting psychosocial stress into mononuclear cell activation. Proc. Natl. Acad. Sci. USA. 2003;100:1920–1925. doi: 10.1073/pnas.0438019100.
    1. Raison C.L., Miller A.H. The evolutionary significance of depression in Pathogen Host Defense (PATHOS-D) Mol. Psychiatry. 2013;18:15–37. doi: 10.1038/mp.2012.2.
    1. Passos C.I., Vasconcelos-Moreno M.P., Costa L.G., Kunz M., Brietzke E., Quevedo J., Salum G., Magalhães P.V., Kapczinski F., Kauer-Sant’Anna M. Inflammatory markers in post-traumatic stress disorder: A systematic review, meta-analysis, and meta-regression. Lancet Psychiatry. 2015;2:1002–1012. doi: 10.1016/S2215-0366(15)00309-0.
    1. Felger J.C., Li L., Marvar P.J., Woolwine B.J., Harrison D.G., Raison C.L., Miller A.H. Tyrosine metabolism during interferon-α administration: Association with fatigue and CSF dopamine concentrations. Brain Behav. Immun. 2013;31:153–160. doi: 10.1016/j.bbi.2012.10.010.
    1. Raison C.L., Kelley K.W., Lawson M.A., Woolwine B.J., Vogt G., Spivey J.R., Saito K., Miller A.H. CSF concentrations of brain tryptophan and kynurenines during immune stimulation with IFN-α: Relationship to CNS immune responses and depression. Mol. Psychiatry. 2010;15:393–403. doi: 10.1038/mp.2009.116.
    1. Delgado P.L., Price L.H., Miller A.H., Salomon R.M., Aghajanian G.K., Heninger G.R., Charney D.S. Serotonin and the neurobiology of depression. Effects of tryptophan depletion in drug-free depressed patients. Arch. Gen. Psychiatry. 1994;51:865–874. doi: 10.1001/archpsyc.1994.03950110025005.
    1. Myint A.M. Kynurenines: From the perspective of major psychiatric disorders. FEBS J. 2012;279:1375–1385. doi: 10.1111/j.1742-4658.2012.08551.x.
    1. Duman R.S., Malberg J.E., Nakagawa S. Regulation of adult neurogenesis by psychotropic drugs and stress. J. Pharmacol. Exp. Ther. 2001;299:401–407.
    1. Duman R.S. Depression: A case of neuronal life and death? Biol. Psychiatry. 2004;56:140–145. doi: 10.1016/j.biopsych.2004.02.033.
    1. Nibuya M., Morinobu S., Duman R.S. Regulation of BDNF and trkB mRNA in rat brain by chronic electroconvulsive seizure and antidepressant drug treatments. J. Neurosci. 1995;15:7539–7547. doi: 10.1523/JNEUROSCI.15-11-07539.1995.
    1. Santarelli L., Saxe M., Gross C., Surget A., Battaglia F., Dulawa S., Weisstaub N., Lee J., Duman R., Arancio O., et al. Requirement of hippocampal neurogenesis for the behavioral effects of antidepressants. Science. 2003;301:805–809. doi: 10.1126/science.1083328.
    1. Nizri E., Brenner T. Modulation of inflammatory pathways by the immune cholinergic system. Amino Acids. 2013;45:73–85. doi: 10.1007/s00726-011-1192-8.
    1. Griffin G.D., Charron D., Al-Daccak R. Post-traumatic stress disorder: Revisiting adrenergics, glucocorticoids, immune system effects and homeostasis. Clin. Transl. Immunol. 2014;3:e27. doi: 10.1038/cti.2014.26.
    1. Zhou J., Nagarkatti P., Zhong Y., Ginsberg J.P., Singh N.P., Zhang J., Nagarkatti M. Dysregulation in microRNA expression is associated with alterations in immune functions in combat veterans with post-traumatic stress disorder. PLoS ONE. 2014;9:e94075. doi: 10.1371/journal.pone.0094075.
    1. Bremner D., Vermetten E., Kelley M.E. Cortisol, dehydroepiandrosterone, and estradiol measured over 24 hours in women with childhood sexual abuse-related posttraumatic stress disorder. J. Nerv. Ment. Dis. 2007;195:919–927. doi: 10.1097/NMD.0b013e3181594ca0.
    1. Wilson S.N., van der Kolk B., Burbridge J., Fisler R., Kradin R. Phenotype of blood lymphocytes in PTSD suggests chronic immune activation. Psychosomatics. 1999;40:222–225. doi: 10.1016/S0033-3182(99)71238-7.
    1. Altemus M., Cloitre M., Dhabhar F.S. Enhanced cellular immune response in women with PTSD related to childhood abuse. Am. J. Psychiatry. 2003;160:1705–1707. doi: 10.1176/appi.ajp.160.9.1705.
    1. Barth H., Berg P.A., Klein R. Method for the in vitro determination of an individual disposition towards Th1- or Th2-reactivity by the application of appropriate stimulatory antigens. Clin. Exp. Immunol. 2003;134:78–85. doi: 10.1046/j.1365-2249.2003.02265.x.
    1. Woods A.B., Page G.G., O’Campo P., Pugh L.C., Ford D., Campbell J.C. The mediation effect of posttraumatic stress disorder symptoms on the relationship of intimate partner violence and IFN-gamma levels. Am. J. Community Psychol. 2005;36:159–175. doi: 10.1007/s10464-005-6240-7.
    1. Lindqvist D., Wolkowitz O.M., Mellon S., Yehuda R., Flory J.D., Henn-Haase C., Bierer L.M., Abu-Amara D., Coy M., Neylan T.C., et al. Proinflammatory milieu in combat-related PTSD is independent of depression and early life stress. Brain Behav. Immun. 2014;42:81–88. doi: 10.1016/j.bbi.2014.06.003.
    1. Rosas-Ballina M., Olofsson P.S., Ochani M., Valdés-Ferrer S.I., Levine Y.A., Reardon C., Tusche M.W., Pavlov V.A., Andersson U., Chavan S., et al. Acetylcholine-synthesizing T cells relay neural signals in a vagus nerve circuit. Science. 2011;334:98–101. doi: 10.1126/science.1209985.
    1. Bremner J.D., Gurel N.Z., Jiao Y., Wittbrodt M.T., Levantsevych O.M., Huang M., Jung H., Shandhi M.H., Beckwith J., Herring I., et al. Transcutaneous vagal nerve stimulation blocks stress-induced activation of interleukin-6 and interferon-γ in posttraumatic stress disorder: A double-blind, randomized, sham-controlled trial. Brain Behav. Immun. Health. 2020 in press.
    1. Huston J.M., Gallowitsch-Puerta M., Ochani M., Ochani K., Yuan R., Rosas-Ballina M., Ashok M., Goldstein R.S., Chavan S., Pavlov V.A. Transcutaneous vagus nerve stimulation reduces serum high mobility group box 1 levels and improves survival in murine sepsis. Crit. Care Med. 2007;35:2762–2768. doi: 10.1097/.
    1. Wang X.-W., Karki A., Du D.-Y., Zhao X.-J., Xiang X.-Y., Lu Z.-Q. Plasma levels of high mobility group box 1 increase in patients with posttraumatic stress disorder after severe blunt chest trauma: A prospective cohort study. J. Surg. Res. 2015;193:308–315. doi: 10.1016/j.jss.2014.06.020.
    1. Gray S.L., Cline D.L. Stress: Physiology, Biochemistry, and Pathology. Elsevier; Amsterdam, The Netherlands: 2019. PACAP: Regulator of the stress response; pp. 279–291.
    1. Ressler K.J., Mercer K.B., Bradley B., Jovanovic T., Mahan A., Kerley K., Norrholm S.D., Kilaru V., Smith A.K., Myers A.J., et al. Post-traumatic stress disorder is associated with PACAP and the PAC1 receptor. Nature. 2011;470:492–497. doi: 10.1038/nature09856.
    1. Jovanovic T., Norrholm S.D., Davis J., Mercer K.B., Almli L., Nelson A., Cross D., Smith A., Ressler K.J., Bradley B. PAC1 receptor (ADCYAP1R1) genotype is associated with dark-enhanced startle in children. Mol. Psychiatry. 2013;18:742–743. doi: 10.1038/mp.2012.98.
    1. Kamkwalala A., Norrholm S.D., Poole J.M., Brown A., Donley S., Duncan E., Bradley B., Ressler K.J., Jovanovic T. Dark-enhanced startle responses and heart rate variability in a traumatized civilian sample: Putative sex-specific correlates of posttraumatic stress disorder. Psychosom. Med. 2012;74:153. doi: 10.1097/PSY.0b013e318240803a.
    1. Morgan C.A., Grillon C., Lubin H., Southwick S.M. Startle reflex abnormalities in women with sexual assault-related posttraumatic stress disorder. Am. J. Psychiatry. 1997;154:1076–1080.
    1. Jovanovic T., Norrholm S.D., Blanding N.Q., Phifer J.E., Weiss T., Davis M., Duncan E., Bradley B., Ressler K.J. Fear potentiation is associated with hypothalamic–pituitary–adrenal axis function in PTSD. Psychoneuroendocrinology. 2010;35:846–857. doi: 10.1016/j.psyneuen.2009.11.009.
    1. Davis M., Walker D.L., Lee Y.S. Roles of the amygdala and bed nucleus of the stria terminalis in fear and anxiety measured with the acoustic startle reflex: Possible relevance to PTSD. Ann. N. Y. Acad. Sci. 1997;821:305–331. doi: 10.1111/j.1749-6632.1997.tb48289.x.
    1. Starr E.R., Margiotta J.F. Pituitary Adenylate Cyclase Activating Polypeptide—PACAP. Springer; Berlin/Heidelberg, Germany: 2016. PACAP modulates distinct neuronal components to induce cell-specific plasticity at central and autonomic synapses; pp. 83–107.
    1. Cagampang F.R.A., Piggins H.D., Sheward W.J., Harmar A.J., Coen C.W. Circadian changes in PACAP type 1 (PAC1) receptor mRNA in the rat suprachiasmatic and supraoptic nuclei. Brain Res. 1998;813:218–222. doi: 10.1016/S0006-8993(98)01044-0.
    1. Piggins H.D., Stamp J.A., Burns J., Rusak B., Semba K. Distribution of pituitary adenylate cyclase activating polypeptide (PACAP) immunoreactivity in the hypothalamus and extended amygdala of the rat. J. Comp. Neurol. 1996;376:278–294. doi: 10.1002/(SICI)1096-9861(19961209)376:2<278::AID-CNE9>;2-0.
    1. Adair D., Truong D., Esmaeilpour Z., Gebodh N., Borges H., Ho L., Bremner J.D., Badran B.W., Napadow V., Clark V.P., et al. Electrical stimulation of cranial nerves in cognition and disease. Brain Stimul. 2020;13:713–720. doi: 10.1016/j.brs.2020.02.019.
    1. Krames E., Peckham P.H., Rezai A. Neuromodulation: Comprehensive Textbook of Principles, Technologies, and Therapies. 2nd ed. Academic Press; London, UK: 2018.
    1. Brunoni A.R., Moffa A.H., Sampaio-Junior B., Borrione L., Moreno M.L., Fernandes R.A., Veronezi B.P., Nogueira B.S., Aparicio L.V.M., Razza L.B., et al. Trial of electrical Direct-Current Therapy versus escitalopram for depression. N. Engl. J. Med. 2017;376:2523–2533. doi: 10.1056/NEJMoa1612999.
    1. Bikson M., Unal G., Brunoni A., Loo C. What psychiatrists need to know about transcranial direct current stimulation. Psychiatr. Times. 2017;34:1–3.
    1. Bikson M., Grossman P., Thomas C., Zannou A.L., Jiang J., Adnan T., Mourdoukoutas A.P., Kronberg G., Truong D., Boggio P., et al. Safety of transcranial Direct Current Stimulation: Evidence based update 2016. Brain Stimul. 2016;9:641–661. doi: 10.1016/j.brs.2016.06.004.
    1. Bikson M., Bulow P., Stiller J.W., Datta A., Battaglia F., Karnup S.V., Postolache T.T. Transcranial direct current stimulation for major depression: A general system for quantifying transcranial electrotherapy dosage. Curr. Treat. Options Neurol. 2008;10:377–385. doi: 10.1007/s11940-008-0040-y.
    1. Woods A.J., Antal A., Bikson M., Boggio P.S., Brunoni A.R., Celnik P., Cohen L.G., Fregni F., Herrmann C.S., Kappenman E.S., et al. A technical guide to tDCS, and related non-invasive brain stimulation tools. Clin. Neurophysiol. 2016;127:1031–1048. doi: 10.1016/j.clinph.2015.11.012.
    1. McCann U.D., Kimbrell T.A., Morgan C.M., Anderson T., Geraci M., Benson B.E., Wassermann E.M., Willis M.W., Post R.M. Repetitive transcranial magnetic stimulation for posttraumatic stress disorder. Arch. Gen. Psychiatry. 1998;55:276–279. doi: 10.1001/archpsyc.55.3.276.
    1. Tortella G., Casati R., Aparicio L.V.M., Mantovani A., Senço N., D’Urso G., Brunelin J., Guarienti F., Lorencini Selingardi P.M., Muszkat D., et al. Transcranial direct current stimulation in psychiatric disorders. World J. Psychiatry. 2015;5:88–102. doi: 10.5498/wjp.v5.i1.88.
    1. Schachter S.C., Saper C.B. Vagus nerve stimulation. Epilepsia. 1998;39:677–686. doi: 10.1111/j.1528-1157.1998.tb01151.x.
    1. Lisanby S.H. Electroconvulsive therapy for depression. N. Engl. J. Med. 2007;357:1939–1945. doi: 10.1056/NEJMct075234.
    1. Tess A.V., Smetana G.W. Medical evaluation of patients undergoing electroconvulsive therapy. N. Engl. J. Med. 2009;360:1437–1444. doi: 10.1056/NEJMra0707755.
    1. Haq A.U., Sitzmann A.F., Goldman M.L., Maixner D.F., Mickey B.J. Response of depression to electroconvulsive therapy: A meta-analysis of clinical predictors. J. Clin. Psychiatry. 2015;76:1374–1384. doi: 10.4088/JCP.14r09528.
    1. Maier H., Helm S., Toto S., Moschny N., Sperling W., Hillemacher T., Kahl K.G., Jakubovski E., Bleich S., Frieling H., et al. S100B, homocysteine, vitamin B12, folic acid, and procalcitonin serum levels in remitters to electroconvulsive therapy: A pilot study. Dis. Markers. 2018 doi: 10.1155/2018/2358451.
    1. Scott A.I.F., Dougall N., Ross M., O’Carroll R.E., Riddle W., Ebmeier K.P., Goodwin G.M. Short-term effects of electroconvulsive treatment on the uptake of [Tc-99m] exametazine into brain in major depression shown with single photon emission tomography. J. Affect. Disord. 1994;30:27–34. doi: 10.1016/0165-0327(94)90148-1.
    1. Ben-Menachem E., Hellström K., Waldton C., Augustinsson L.E. Evaluation of refractory epilepsy treated with vagus nerve stimulation for up to 5 years. Neurology. 1999;52:1265–1267. doi: 10.1212/WNL.52.6.1265.
    1. Ben-Menachem E., Manon-Espaillat R., Ristanovic R., Wilder B.J., Stefan H., Mirza W., Tarver W.B., Wernicke J.F. Vagus nerve stimulation for treatment of partial seizures: 1. A controlled study of effect on seizures. Epilepsia. 1994;35:616–626. doi: 10.1111/j.1528-1157.1994.tb02482.x.
    1. George R., Salinsky M., Kuzniecky R., Rosenfeld W., Bergen D., Tarver W.B., Wernicke J.F. Vagus nerve stimulation for treatment of partial seizures: 3. Long-term follow-up on the first 67 patients exiting a controlled study. Epilepsia. 1994;35:637–643. doi: 10.1111/j.1528-1157.1994.tb02484.x.
    1. Handforth A., DeGiorgio C.M., Schachter S.C., Uthman B.M., Naritoku D.K., Tecoma E.S., Henry T.R., Collins S.D., Vaughn B.V., Gilmartin R.C., et al. Vagus nerve stimulation therapy for partial-onset seizures: A randomized active-control trial. Neurology. 1998;51:48–55. doi: 10.1212/WNL.51.1.48.
    1. Salinsky M.C., Uthman B.M., Ristanovic R.K., Wernicke J.F., Tarver W.B. Vagus nerve stimulation for the treatment of medically intractable seizures. Results of a 1-year open-extension trial. Arch. Neurol. 1999;53:1176–1180. doi: 10.1001/archneur.1996.00550110128021.
    1. The Vagus Nerve Stimulation Study Group A randomized controlled trial of chronic vagus nerve stimulation for treatment of medically intractable seizures. Neurology. 1995;45:224–230. doi: 10.1212/WNL.45.2.224.
    1. Berry S.M., Broglio K., Bunker M., Jayewardene A., Olin B., Rush A.J. A patient-level meta-analysis of studies evaluating vagus nerve stimulation therapy for treatment-resistant depression. Med. Devices. 2013;6:17–35.
    1. Dell-Osso B., Oldani L., Palazzo M.C., Balossi I., Ciabatti M., Altamura A.C. Vagus nerve stimulation in treatment-resistant depression: Acute and follow-up results of an Italian case series. J. ECT. 2013;29:41–44.
    1. George M.S., Rush A.J., Marangell L.B., Sackeim H.A., Brannan S.K., Davis S.M., Howland R., Kling M.A., Moreno F., Rittberg B., et al. A one-year comparison of Vagus Nerve Stimulation with treatment as usual for treatment-resistant depression. Biol. Psychiatry. 2005;58:364–373. doi: 10.1016/j.biopsych.2005.07.028.
    1. George M.S., Rush A.J., Sackeim H.A., Marangell L. Vagus Nerve Stimulation (VNS): Utility in neuropsychiatric disorders. Int. J. Neuropsychopharmacol. 2003;6:73–83. doi: 10.1017/S1461145703003250.
    1. Marangell L.B., Rush A.J., George M.S., Sackeim H.A., Johnson C.R., Husain M.M., Nahas Z., Lisanby S.H. Vagus Nerve Stimulation (VNS) for major depressive episodes: Longer-term outcome. Biol. Psychiatry. 2002;51:280–287. doi: 10.1016/S0006-3223(01)01343-9.
    1. Rush A.J., George M.S., Sackeim H.A., Marangell L.B., Husain M., Giller C., Nahas Z., Haines S., Simson R.K., Goodman R., et al. Vagus Nerve Stimulation (VNS) for treatment-resistant depression: A multicenter study. Biol. Psychiatry. 2000;47:276–286. doi: 10.1016/S0006-3223(99)00304-2.
    1. Rush A.J., Marangell L.B., Sackeim H.A., George M.S., Brannan S.K., Davis S.M., Howland R., Kling M.A., Rittberg B.R., Burke W.J., et al. Vagus Nerve Stimulation for treatment-resistant depression: A randomized, controlled acute phase trial. Biol. Psychiatry. 2005;58:347–354. doi: 10.1016/j.biopsych.2005.05.025.
    1. Rush A.J., Sackeim H.A., Marangell L.B., George M.S., Brannan S.K., Davis S.M., Lavori P., Howland R., Kling M.A., Rittberg B., et al. Effects of 12 Months of Vagus Nerve Stimulation in treatment-resistant depression: A naturalistic study. Biol. Psychiatry. 2005;58:355–363. doi: 10.1016/j.biopsych.2005.05.024.
    1. Sackeim H.A., Brannan S.K., Rush A.J., George M.S., Marangell L.B., Allen J. Durability of antidepressant response to vagus nerve stimulation (VNS) Int. J. Neuropsychopharmacol. 2007;10:817–826. doi: 10.1017/S1461145706007425.
    1. Sackeim H.A., Keilp J.G., Rush A.J., George M.S., Marangell L.B., Dormer J.S., Burt T., Lisanby S.H., Husain M., Collum M., et al. The effects of vagus nerve stimulation on cognitive performance in patients with treatment-resistant depression. Neuropsychiatry Neuropsychol. Behav. Neurol. 2001;14:53–62.
    1. Sackeim H.A., Rush A.J., George M.S., Marangell L.B., Husain M.M., Nahas Z., Johnson C.R., Seidman S., Giller C., Haines S., et al. Vagus nerve stimulation (VNS) for treatment-resistant depression: Efficacy, side effects, and predictors of outcome. Neuropsychopharmacology. 2001;25:713–728. doi: 10.1016/S0893-133X(01)00271-8.
    1. Johnson R.L., Wilson C.G. A review of vagus nerve stimulation as a therapeutic intervention. J. Inflamm. Res. 2018;11:203–211. doi: 10.2147/JIR.S163248.
    1. George M.S., Sackeim H.A., Rush A.J., Marangell L.B., Nahas Z., Husain M.M., Lissanby S.H., Burt T., Goldman J., Ballenger J.C. Vagus Nerve Stimulation: A new tool for brain research and therapy. Biol. Psychiatry. 2000;47:287–295. doi: 10.1016/S0006-3223(99)00308-X.
    1. Aaronson S.T., Sears P., Ruvuna F., Bunker M., Conway C.R., Dougherty D.D., Reimherr F.W., Schwartz T.L., Zajecka J.M. A five-year observational study of patients with treatment-resistant depression treated with VNS therapy or treatment-as-usual: Comparison of response, remission, and suicidality. Am. J. Psychiatry. 2017;174:640–648. doi: 10.1176/appi.ajp.2017.16010034.
    1. Terry R.S. Vagus Nerve Stimulation for Epilepsy. Medicine. 2014 doi: 10.5772/58332.
    1. Noble I.J., Gonzalez I.J., Meruva V.B., Callahan K.A., Belfort B.D., Ramanathan K.R., Meyers E., Kilgard M.P., Rennaker R.L., McIntyre C.K. Effects of vagus nerve stimulation on extinction of conditioned fear and post-traumatic stress disorder symptoms in rats. Transl. Psychiatry. 2017;7:1–8. doi: 10.1038/tp.2017.191.
    1. Pena D.F., Childs J.E., Willett S., Vital A., McIntyre C.K., Kroener S. Vagus nerve stimulation enhances extinction of conditioned fear and modulates plasticity in the pathway from the ventromedial prefrontal cortex to the amygdala. Front. Behav. Neurosci. 2014;8:1–8. doi: 10.3389/fnbeh.2014.00327.
    1. Schomer A.C., Nearing B.D., Schachter S.C., Verrier R.L. Vagus nerve stimulation reduces cardiac electrical instability assessed by quantitative T-wave alternans analysis in patients with drug-resistant focal epilepsy. Epilepsia. 2014;55:1996–2002. doi: 10.1111/epi.12855.
    1. Groves D.A., Brown V.J. Vagal nerve stimulation: A review of its applications and potential mechanisms that mediate its clinical effects. Neurosci. Biobehav. Rev. 2005;29:493–500. doi: 10.1016/j.neubiorev.2005.01.004.
    1. Hays S.A., Rennaker R.L., Kilgard M.P. Targeting plasticity with vagus nerve stimulation to treat neurological disease. Prog. Brain Res. 2013;207:275–299.
    1. Polak T., Markulin F., Ehlis A.-C., Langer J.B.M., Ringel T.M., Fallgatter A.J. Far field potentials from brain stem after transcutaneous vagus nerve stimulation: Optimization of stimulation and recording parameters. J. Neural Transm. 2009;116:1237–1242. doi: 10.1007/s00702-009-0282-1.
    1. Player M.J., Taylor J.L., Weickert C.S., Alonzo A., Sachdev P.S., Martin D., Mitchell P.B., Loo C.K. Increase in PAS-induced neuroplasticity after a treatment course of transcranial direct current stimulation for depression. J. Affect. Disord. 2014;167:140–147. doi: 10.1016/j.jad.2014.05.063.
    1. Zhang Y., Popovic Z.B., Bibevski S., Fakhry I., Sica D.A., Van Wagoner D.R., Mazgalev T.N. Chronic vagus nerve stimulation improves autonomic control and attenuates systemic inflammation and heart failure progression in a canine high-rate pacing model. Circ. Heart Fail. 2009;2:692–699. doi: 10.1161/CIRCHEARTFAILURE.109.873968.
    1. Peña D.F., Engineer N.D., McIntyre C.K. Rapid remission of conditioned fear expression with extinction training paired with vagus nerve stimulation. Biol. Psychiatry. 2013;73:1071–1077. doi: 10.1016/j.biopsych.2012.10.021.
    1. Souza R.R., Robertson N.M., Pruitt D.T., Gonzales P.A., Hays S.A., Rennaker R.L., Kilgard M.P., McIntyre C.K. Vagus nerve stimulation reverses the extinction impairments in a model of PTSD with prolonged and repeated trauma. Stress. 2019;22:509–520. doi: 10.1080/10253890.2019.1602604.
    1. Schacter S.C. Vagus nerve stimulation: Mood and cognitive effects. Epilepsy Behav. 2004;5:S56–S59. doi: 10.1016/j.yebeh.2003.11.007.
    1. McIntire L., McKinley A., Goodyear C. Peripheral nerve stimulation to augment human analyst performeance. IEEE. 2019 doi: 10.1109/RAPID.2019.8864297.
    1. Clark K.B., Krahl S.E., Smith D.C., Jensen R.A. Post-training unilateral vagal stimulation enhances retention performance in the rat. Neurobiol. Learn. Mem. 1995;63:213–216. doi: 10.1006/nlme.1995.1024.
    1. Clark K.B., Naritoku D.K., Smith D.C., Browning R.A., Jensen R.A. Enhanced recognition memory following vagus nerve stimulation in human subjects. Nat. Neurosci. 1999;2:94–98. doi: 10.1038/4600.
    1. Clark K.B., Smith D.C., Hassert D.L., Browning R.A., Naritoku D.K., Jensen R.A. Posttraining electrical stimulation of vagal afferents with concomitant vagal efferent inactivation enhances memory storage processes in the rat. Neurobiol. Learn. Mem. 1998;70:364–373. doi: 10.1006/nlme.1998.3863.
    1. Flood J.F., Smith G.E., Morley J.E. Modulation of memory processing by cholecystokinin: Dependence on the vagus nerve. Science. 1987;236:832–834. doi: 10.1126/science.3576201.
    1. Ghacibeh G.A., Shenker J.I., Shenal B., Uthman B.M., Heilman K.M. The influence of vagus nerve stimulation on memory. Cogn. Behav. Neurol. 2006;19:119–122. doi: 10.1097/01.wnn.0000213908.34278.7d.
    1. Ghacibeh G.A., Shenker J.I., Shenal B., Uthman B.M., Heilman K.M. Effect of vagus nerve stimulation on creativity and cognitive flexibility. Epilepsy Behav. 2006;8:720–725. doi: 10.1016/j.yebeh.2006.03.008.
    1. Jacobs H.I.L., Riphagen J.M., Razat C.M., Wiese S., Sack A.T. Transcutaneous vagus nerve stimulation boosts associative memory in older individuals. Neurobiol. Aging. 2015;36:1860–1867. doi: 10.1016/j.neurobiolaging.2015.02.023.
    1. Merrill C.A., Jonsson M.A., Minthon L., Ejnell H., Silander H.C., Blennow K., Karlsson M., Nordlund A., Rolstad S., Warkentin S., et al. Vagus nerve stimulation in patients with Alzheimer’s disease: Additional follow-up results of a pilot study through 1 year. J. Clin. Psychiatry. 2006;67:1171–1178. doi: 10.4088/JCP.v67n0801.
    1. Vonck K., Raedt R., Naulaerts J., De Vogelaere F., Thiery E., Van Roost D., Aldenkamp B., Miatton M., Boon P. Vagus nerve stimulation. 25 years later! What do we know about the effects on cognition? Neurosci. Biobehav. Rev. 2014;45:63–71. doi: 10.1016/j.neubiorev.2014.05.005.
    1. Follesa P., Biggio F., Gorini G., Caria S., Talani G., Dazzi L., Puligheddu M., Marrosu F., Biggio G. Vagus nerve stimulation increases norepinephrine concentration and the gene expression of BDNF and bFGF in the rat brain. Brain Res. 2007;1179:28–34. doi: 10.1016/j.brainres.2007.08.045.
    1. Vida G., Pena G., Kanashiro A., Thompson-Bonilla M.d.R., Palange D., Deitch E.A., Ulloa L. B2-Adrenoreceptors of regulatory lymphocytes are essential for vagal neuromodulation of the innate immune system. FASEB J. 2011;25:4476–4485. doi: 10.1096/fj.11-191007.
    1. Bansal V., Ryu S.Y., Lopez N., Allexan S., Krzyzaniak M., Eliceiri B., Baird A., Coimbra R. Vagal stimulation modulates inflammation through a ghrelin mediated mechanism in traumatic brain injury. Inflammation. 2012;35:214–220. doi: 10.1007/s10753-011-9307-7.
    1. Borovikova L.V., Ivanova S., Zhang M., Yang H., Botchkina G.I., Watkins L.R., Wang H., Abumrad N., Eaton J.W., Tracey K.J. Vagus nerve stimulation attenuates the systemic inflammatory response to endotoxin. Nature. 2000;405:458–462. doi: 10.1038/35013070.
    1. Corsi-Zuelli F.M.G., Brognara F., Quirino G.F.S., Hiroki C.H., Fais R.S., Del-Ben C.M., Ulloa L., Salgado H.C., Kanashiro A. Neuroimmune interactions in schizophrenia: Focus on vagus nerve stimulation and activation of the alpha-7 nicotinic acetylcholine receptor. Front. Immunol. 2017;8 doi: 10.3389/fimmu.2017.00618.
    1. Cunningham J.T., Mifflin S.W., Gould G.G., Frazer A. Induction of c-Fos and delta-FosB immunoreactivity in rat brain by vagal nerve stimulation. Neuropsychopharmacology. 2008;33:1884–1895. doi: 10.1038/sj.npp.1301570.
    1. De Herdt V., Bogaert S., Bracke K.R., Raedt R., De Vos M., Vonck K., Boon P. Effects of vagus nerve stimulation on pro- and anti-inflammatory cytokine induction in patients with refractory epilepsy. J. Neuroimmunol. 2009;214:104–108. doi: 10.1016/j.jneuroim.2009.06.008.
    1. Li W., Olshansky B. Inflammatory cytokines and nitric oxide in heart failure and potential modulation by vagus nerve stimulation. Heart Fail. Rev. 2011;16:137–145. doi: 10.1007/s10741-010-9184-4.
    1. Majoie H.J.M., Rijkers K., Berfelo M.W., Hulsman J.A.R.J., Myint A., Schwarz M., Vles J.S.H. Vagus nerve stimulation in refractory epilepsy: Effects on pro-and anti-inflammatory cytokines in peripheral blood. Neuroimmunomodulation. 2011;18:52–56. doi: 10.1159/000315530.
    1. Elzinga B.M., Bremner J.D. Are the neural substrates of memory the final common pathway in posttraumatic stress disorder (PTSD)? J. Affect. Disord. 2002;70:1–17. doi: 10.1016/S0165-0327(01)00351-2.
    1. Chen S.-P., Ayd I., de Moraisa A.L., Qina T., Zhenga Y., Sadeghiana H., Okaa F., Simon B., Eikermann-Haertera K., Ayataa C. Vagus nerve stimulation inhibits cortical spreading depression. Cephalagia. 2015;35:219–221. doi: 10.1097/j.pain.0000000000000437.
    1. Ben-Menachem E., Hamberger A., Hedner T., Hammond E.J., Uthman B.M., Slater J., Treig T., Stefan H., Ramsay R.E., Wernicke J.F., et al. Effects of vagus nerve stimulation on amino acids and other metabolites in the CSF of patients with partial seizures. Epilepsy Res. 1995;20:221–227. doi: 10.1016/0920-1211(94)00083-9.
    1. Roosevelt R.W., Smith D.C., Clough R.W., Jensen R.A., Browning R.A. Increased extracellular concentrations of norepinephrine in cortex and hippocampus following vagus nerve stimulation in the rat. Brain. 2006;1119:124–132. doi: 10.1016/j.brainres.2006.08.048.
    1. Oshinsky M.L., Murphy A.L., Hekierski H., Cooper M., Simon B.J. Noninvasive vagus nerve stimulation as treatment for trigeminal allodynia. Pain. 2014;155:1042–2037. doi: 10.1016/j.pain.2014.02.009.
    1. Hays S.A., Khodaparast N., Hulsey D.R., Ruiz A., Sloan A.M., Rennaker R.L., Kilgard M.P. Vagus nerve stimulation during rehabilitative training improves functional recovery after intracerebral hemorrhage. Stroke. 2014;45:3097–3100. doi: 10.1161/STROKEAHA.114.006654.
    1. Engineer C.T., Engineer N.D., Riley J.R., Seale J.D., Kilgard M.P. Pairing speech sounds with vagus nerve stimulation drives stimulus-specific cortical plasticity. Brain Stimul. 2015;8:637–644. doi: 10.1016/j.brs.2015.01.408.
    1. Engineer N.D., Riley J.R., Seale J.D., Vrana W.A., Shetake J.A., Sudanagunta S.P., Borland M.S., Kilgard M.P. Reversing pathological neural activity using targeted plasticity. Nature. 2011;470:101–104. doi: 10.1038/nature09656.
    1. Kim H.J., Shim H.-J., Kwak M.Y., An Y.-H., Kim D.H., Kim Y.J. Feasibility and safety of transcutaneous vagus nerve stimulation paired with notched music therapy for the treatment of chronic tinnitus. J. Audiol. Otol. 2015;18:159–167.
    1. Li T.-T., Wang Z.-J., Yang S.-B., Zhu J.-H., Zhang S.-Z., Cai S.-J., Ma W.-H., Zhang D.-Q., Mei A.-G. Transcutaneous electrical stimulation at auricular acupoints innervated by auricular branch of vagus nerve pairing tone for tinnitus: Study protocol for a randomized controlled clinical trial. Trials. 2015;16:1–9. doi: 10.1186/s13063-015-0630-4.
    1. Liu A., Zhao F.-B., Wang J., Lu Y.F., Tian J., Zhao Y., Gao Y., Hu X.-J., Liu X.-Y., Tan J., et al. Effects of vagus nerve stimulation on cognitive functioning in rats with cerebral ischemia reperfusion. J. Transl. Med. 2016;14:101. doi: 10.1186/s12967-016-0858-0.
    1. Hays S.A. Enhancing rehabilitative therapies with vagus nerve stimulation. Neurotherapeutics. 2016;13:382–394. doi: 10.1007/s13311-015-0417-z.
    1. Hays S.A., Ruiz A., Bethea T., Khodaparast N., Carmel J.B., Rennaker R.L., Kilgard M.P. Vagus nerve stimulation during rehabilitative training enhances recovery of forelimb function after ischemic stroke in aged rats. Neurobiol. Aging. 2016;43:111–118. doi: 10.1016/j.neurobiolaging.2016.03.030.
    1. Khodaparast N., Kilgard M.P., Casavant R., Ruiz A., Qureshi I., Ganzer P.D., Rennaker R.L., Hays S.A. Vagus nerve stimulation during rehabilitative training improves forelimb recovery after chronic ischemic stroke in rats. Neurorehabil. Neural Repair. 2015;30:676–684. doi: 10.1177/1545968315616494.
    1. Pruitt D.T., Schmid A.N., Kim L.L., Abe C.M., Trieu J.L., Choua C. Vagus nerve stimulation delivered with motor training enhances recovery of function after traumatic brain injury. J. Neurotrauma. 2016;33:871–879. doi: 10.1089/neu.2015.3972.
    1. Suthana N., Fried I. Deep brain stimulation for enhancement of learning and memory. Neuroimage. 2014;85:996–1002. doi: 10.1016/j.neuroimage.2013.07.066.
    1. Zuo Y., Smith D.C., Jensen R.A. Vagus nerve stimulation potentiates hippocampal LTP in freely-moving rats. Physiol. Behav. 2007;90:583–589. doi: 10.1016/j.physbeh.2006.11.009.
    1. McLaughlin K.A., Alves S., Sheridan M.A. Vagal regulation and internalizing psychopathology among adolescents exposed to childhood adversity. Dev. Psychobiol. 2014;56:1036–1051. doi: 10.1002/dev.21187.
    1. Li M., Zheng C., Sato T., Kawada T., Sugimachi M., Sunagawa K. Vagal nerve stimulation markedly improves long-term survival after chronic heart failure in rats. Circulation. 2004;109:120–124. doi: 10.1161/01.CIR.0000105721.71640.DA.
    1. Meyers R., Pearlman A., Hyman R. Beneficial effects of vagal stimulation and bradycardia during experimental acute myocardial ischemia. Circulation. 1974;49:943–947. doi: 10.1161/01.CIR.49.5.943.
    1. Kent K.M., Smith E.R., Redwood D.R., Epstein S.E. Electrical stability of acutely ischemic myocardium: Influences to heart rate and vagal stimulation. Circulation. 1973;47:291–298. doi: 10.1161/01.CIR.47.2.291.
    1. Bohning D.E., Lomarev M.P., Denslow S., Nahas Z., Shastri A., George M.S. Vagus Nerve Stimulation (VNS) synchronized BOLD-fMRI. Radiology. 2001;36:470–479.
    1. Chae J.H., Nahas Z., Lomarev M., Denslow S., Lorberbaum J.P., Bohning D.E., George M.S. A review of functional neuroimaging studies of Vagus Nerve Stimulation (VNS) J. Psychiatr. Res. 2003;37:443–455. doi: 10.1016/S0022-3956(03)00074-8.
    1. Smith M.A., Makino S., Kvetnansky R., Post R.M. Stress and glucocorticoids affect the expression of brain-derived neurotrophic factor and neurotrophin-3 mRNA in the hippocampus. J. Neurosci. 1995;15:1768–1777. doi: 10.1523/JNEUROSCI.15-03-01768.1995.
    1. Diamond D.M., Fleshner M., Ingersoll N., Rose G.M. Psychological stress impairs spatial working memory: Relevance to electrophysiological studies of hippocampal function. Behav. Neurosci. 1996;110:661–672. doi: 10.1037/0735-7044.110.4.661.
    1. Sapolsky R.M., Krey L., McEwen B. Prolonged glucocorticoid exposure reduces hippocampal neuron number: Implications for aging. J. Neurosci. 1985;5:1221–1226. doi: 10.1523/JNEUROSCI.05-05-01222.1985.
    1. Woolley C.S., Gould E., McEwen B.S. Exposure to excess glucocorticoids alters dendritic morphology of adult hippocampal pyramidal neurons. Brain Res. 1990;531:225–231. doi: 10.1016/0006-8993(90)90778-A.
    1. Elzinga B.M., Bermond B., van Dyck R. The relationship between dissociative proneness and alexithymia. Psychother. Psychosom. 2002;71:104–111. doi: 10.1159/000049353.
    1. Bremner J.D., Vermetten E. The hippocampus and post-traumatic stress disorders. In: Bartsch T., editor. The Clinical Neurobiology of the Hippocampus: An Integrative View. Oxford University Press; Oxford, UK: 2012. pp. 262–272.
    1. Bremner J.D. Structural changes in the brain in depression and relationship to symptom recurrence. CNS Spectr. 2002;7:129–139. doi: 10.1017/S1092852900017442.
    1. Bremner J.D. Alterations in brain structure and function associated with posttraumatic stress disorder. Semin. Clin. Neuropsychiatry. 1999;4:249–255.
    1. Sheline Y.I., Wang P., Gado M., Csernansky J., Vannier M. Hippocampal atrophy in recurrent major depression. Proc. Natl. Acad. Sci. USA. 1996;93:3908–3913. doi: 10.1073/pnas.93.9.3908.
    1. LeDoux J.E. The Emotional Brain: The Mysterious Underpinnings of Emotional Life. Simon & Schuster; New York, NY, USA: 1996.
    1. Quirk G.J. Memory for extinction of conditioned fear is long-lasting and persists following spontaneous recovery. Learn. Mem. 2002;9:402–407. doi: 10.1101/lm.49602.
    1. Bremner J.D., Staib L., Kaloupek D., Southwick S.M., Soufer R., Charney D.S. Neural correlates of exposure to traumatic pictures and sound in Vietnam combat veterans with and without posttraumatic stress disorder: A positron emission tomography study. Biol. Psychiatry. 1999;45:806–816. doi: 10.1016/S0006-3223(98)00297-2.
    1. Britton J.C., Phan K.L., Taylor S.F., Fig L.M., Liberzon I. Corticolimbic blood flow in posttraumatic stress disorder during script-driven imagery. Biol. Psychiatry. 2005;57:832–840. doi: 10.1016/j.biopsych.2004.12.025.
    1. Shin L.M., McNally R.J., Kosslyn S.M., Thompson W.L., Rauch S.L., Alpert N.M., Metzger L.J., Lasko N.B., Orr S.P., Pitman R.K. Regional cerebral blood flow during script-driven imagery in childhood sexual abuse-related PTSD: A PET investigation. Am. J. Psychiatry. 1999;156:575–584.
    1. Shin L.M., Kosslyn S.M., McNally R.J., Alpert N.M., Thompson W.L., Rauch S.L., Macklin M.L., Pitman R.K. Visual imagery and perception in posttraumatic stress disorder: A positron emission tomographic investigation. Arch. Gen. Psychiatry. 1997;54:233–237. doi: 10.1001/archpsyc.1997.01830150057010.
    1. Shin L.M., Orr S.P., Carson M.A., Rauch S.L., Macklin M.L., Lasko N.B., Peters P.M., Metzger L.J., Dougherty D.D., Cannistraro P.A., et al. Regional cerebral blood flow in the amygdala and medial prefrontal cortex during traumatic imagery in male and female Vietnam veterans with PTSD. Arch. Gen. Psychiatry. 2004;61:168–176. doi: 10.1001/archpsyc.61.2.168.
    1. Fonzo G.A., Simmons A.N., Thorp S.R., Norman S.B., Paulus M.P., Stein M.B. Blood oxygenation level-dependent response to threat-related emotional faces in women with intimate-partner violence posttraumatic stress disorder. Biol. Psychiatry. 2010;68:433–441. doi: 10.1016/j.biopsych.2010.04.028.
    1. Phan K.L., Britton J.C., Taylor S.F., Fig L.M., Liberzon I. Corticolimbic blood flow during nontraumatic emotional processing in posttraumatic stress disorder. Arch. Gen. Psychiatry. 2006;63:184–192. doi: 10.1001/archpsyc.63.2.184.
    1. Yang P., Wu M.T., Hsu C.C., Ker J.H. Evidence of early neurobiological alternations in adolescents with posttraumatic stress disorder: A functional MRI study. Neurosci. Lett. 2004;370:13–18. doi: 10.1016/j.neulet.2004.07.033.
    1. Shin L.M., Whalen P.J., Pitman R.K., Bush G., Macklin M.L., Lasko N.B., Orr S.P., McInerney S.C., Rauch S.L. An fMRI study of anterior cingulate function in posttraumatic stress disorder. Biol. Psychiatry. 2001;50:932–942. doi: 10.1016/S0006-3223(01)01215-X.
    1. Hopper J.W., Frewen P.A., van der Kolk B.A., Lanius R.A. Neural correlates of reexperiencing, avoidance, and dissociation in PTSD: Symptom dimensions and emotion dysregulation in responses to script-driven trauma imagery. J. Trauma. Stress. 2007;20:713–725. doi: 10.1002/jts.20284.
    1. Hou C., Liu J., Wang K., Li L., Liang M., He Z., Liu Y., Zhang Y., Li W., Jiang T. Brain responses to symptom provocation and trauma-related short-term memory recall in coal mining accident survivors with acute severe PTSD. Brain Res. 2007;1144:165–174. doi: 10.1016/j.brainres.2007.01.089.
    1. Lanius R.A., Williamson P.C., Hopper J., Densmore M., Boksman K., Gupta M.A., Neufeld R.W., Gati J.S., Menon R.S. Recall of emotional states in posttraumatic stress disorder: An fMRI investigation. Biol. Psychiatry. 2003;53:204–210. doi: 10.1016/S0006-3223(02)01466-X.
    1. Lanius R.A., Williamson P.C., Densmore M., Boksman K., Gupta M.A., Neufeld R.W., Gati J.S., Menon R.S. Neural correlates of traumatic memories in posttraumatic stress disorder: A functional MRI investigation. Am. J. Psychiatry. 2001;158:1920–1922. doi: 10.1176/appi.ajp.158.11.1920.
    1. Liberzon I., Taylor S.F., Amdur R., Jung T.D., Chamberlain K.R., Minoshima S., Koeppe R.A., Fig L.M. Brain activation in PTSD in response to trauma-related stimuli. Biol. Psychiatry. 1999;45:817–826. doi: 10.1016/S0006-3223(98)00246-7.
    1. Liberzon I., Britton J.C., Phan K.L. Neural correlates of traumatic recall in posttraumatic stress disorder. Stress. 2003;6:151–156. doi: 10.1080/1025389031000136242.
    1. Shin L.M., Wright C.I., Cannistraro P.A., Wedig M.M., McMullin K., Martis B., Macklin M.L., Lasko N.B., Cavanagh S.R., Krangel T.S., et al. A functional magnetic resonance imaging study of amygdala and medial prefrontal cortex responses to overtly presented fearful faces in posttraumatic stress disorder. Arch. Gen. Psychiatry. 2005;62:273–281. doi: 10.1001/archpsyc.62.3.273.
    1. Mayberg H.S., Liotti M., Brannan S.K., McGinnis S., Mahurin R.K., Jerabek P.A., Silva J.A., Tekell J.L., Martin C.C., Lancaster J.L., et al. Reciprocal limbic-cortical function and negative mood: Converging PET findings in depression and normal sadness. Am. J. Psychiatry. 1999;156:675–682.
    1. Sheline Y.I., Barcha D.M., Price J.L., Rundleb M.M., Vaishnavib S.N., Snyderb A.Z., Mintun M.A., Wanga S., Coalson R.S., Raichle M.E. The default mode network and self-referential processes in depression. Proc. Natl. Acad. Sci. USA. 2009;106:1942–1947. doi: 10.1073/pnas.0812686106.
    1. Drevets W.C., Price J.L., Simpson J.R.J., Todd R.D., Reich T., Vannier M., Raichle M.E. Subgenual prefrontal cortex abnormalities in mood disorders. Nature. 1997;386:824–827. doi: 10.1038/386824a0.
    1. Simmons A.N., Paulus M.P., Thorp S.R., Matthews S.C., Norman S.B., Stein M.B. Functional activation and neural networks in women with posttraumatic stress disorder related to intimate partner violence. Biol. Psychiatry. 2008;64:681–690. doi: 10.1016/j.biopsych.2008.05.027.
    1. Rauch S.L., van der Kolk B.A., Fisler R.E., Alpert N.M., Orr S.P., Savage C.R., Fischman A.J., Jenike M.A., Pitman R.K. A symptom provocation study of posttraumatic stress disorder using positron emission tomography and script-driven imagery. Arch. Gen. Psychiatry. 1996;53:380–387. doi: 10.1001/archpsyc.1996.01830050014003.
    1. Admon R., Lubin G., Stern O., Rosenberg K., Sela L., Ben-Ami H., Hendler T. Human vulnerability to stress depends on amygdala’s predisposition and hippocampal plasticity. Proc. Natl. Acad. Sci. USA. 2009;106:14120–14125. doi: 10.1073/pnas.0903183106.
    1. Bremner J.D., Vermetten E., Schmahl C., Vaccarino V., Vythilingam M., Afzal N., Grillon C., Charney D.S. Positron emission tomographic imaging of neural correlates of a fear acquisition and extinction paradigm in women with childhood sexual abuse-related posttraumatic stress disorder. Psychol. Med. 2005;35:791–806. doi: 10.1017/S0033291704003290.
    1. Rauch S.L., Shin L.M., Wright C.I. Neuroimaging studies of amygdala function in anxiety disorders. Ann. N. Y. Acad. Sci. 2003;985:389–410. doi: 10.1111/j.1749-6632.2003.tb07096.x.
    1. Protopopescu X., Pan H., Tuescher O., Cloitre M., Goldstein M., Engelien W., Epstein J., Yang Y., Gorman J., LeDoux J., et al. Differential time courses and specificity of amygdala activity in posttraumatic stress disorder subjects and normal control subjects. Biol. Psychiatry. 2005;57:464–473. doi: 10.1016/j.biopsych.2004.12.026.
    1. Chung Y.A., Kim S.H., Chung S.K., Chae J.H., Yang D.W., Sohn H.S., Jeong J. Alterations in cerebral perfusion in posttraumatic stress disorder patients without re-exposure to accident-related stimuli. Clin. Neurophysiol. 2006;117:637–642. doi: 10.1016/j.clinph.2005.10.020.
    1. Felmingham K.L., Williams L.M., Kemp A.H., Rennie C., Gordon E., Bryant R.A. Anterior cingulate activity to salient stimuli is modulated by autonomic arousal in posttraumatic stress disorder. Psychiatry Res. 2009;173:59–62. doi: 10.1016/j.pscychresns.2008.12.005.
    1. Semple W.E., Goyer P., McCormick R., Donovan B., Muzic R.F., Rugle L., McCutcheon K., Lewis C., Liebling D., Kowaliw S., et al. Higher brain blood flow at amygdala and lower frontal cortex blood flow in PTSD patients with comorbid cocaine and alcohol abuse compared to controls. Psychiatry. 2000;63:65–74. doi: 10.1080/00332747.2000.11024895.
    1. Bryant R.A., Felmingham K.L., Kemp A.H., Barton M., Peduto A.S., Rennie C., Gordon E., Williams L.M. Neural networks of information processing in posttraumatic stress disorder: A functional magnetic resonance imaging study. Biol. Psychiatry. 2005;58:111–118. doi: 10.1016/j.biopsych.2005.03.021.
    1. Armony J.L., Corbo V., Clement M.H., Brunet A. Amygdala response in patients with acute PTSD to masked and unmasked emotional facial expressions. Am. J. Psychiatry. 2005;162:1961–1963. doi: 10.1176/appi.ajp.162.10.1961.
    1. Bryant R.A., Kemp A.H., Felmingham K.L., Liddell B., Olivieri G., Peduto A., Gordon E., Williams L.M. Enhanced amygdala and medial prefrontal activation during nonconscious processing of fear in posttraumatic stress disorder: An fMRI study. Hum. Brain Mapp. 2008;29:517–523. doi: 10.1002/hbm.20415.
    1. Kemp A.H., Felmingham K., Das P., Hughes G., Peduto A.S., Bryant R.A., Williams L.M. Influence of comorbid depression on fear in posttraumatic stress disorder: An fMRI study. Psychiatry Res. 2007;155:265–269. doi: 10.1016/j.pscychresns.2007.01.010.
    1. Kemp A.H., Felmingham K.L., Falconer E., Liddell B.J., Bryant R.A., Williams L.M. Heterogeneity of non-conscious fear perception in posttraumatic stress disorder as a function of physiological arousal: An fMRI study. Psychiatry Res. 2009;174:158–161. doi: 10.1016/j.pscychresns.2009.04.012.
    1. Rauch S.L., Whalen P.J., Shin L.M., McInerney S.C., Macklin M.L., Lasko N.B., Orr S.P., Pitman R.K. Exaggerated amygdala response to masked facial stimuli in posttraumatic stress disorder: A functional MRI study. Biol. Psychiatry. 2000;47:769–776. doi: 10.1016/S0006-3223(00)00828-3.
    1. Brohawn K.H., Offringa R., Pfaff D.L., Hughes K.C., Shin L.M. The neural correlates of emotional memory in posttraumatic stress disorder. Biol. Psychiatry. 2010;68:1023–1030. doi: 10.1016/j.biopsych.2010.07.018.
    1. Brunetti M., Sepede G., Mingoia G., Catani C., Ferretti A., Merla A., Del Gratta C., Romani G.L., Babiloni C. Elevated response of human amygdala to neutral stimuli in mild post traumatic stress disorder: Neural correlates of generalized emotional response. Neuroscience. 2010;168:670–679. doi: 10.1016/j.neuroscience.2010.04.024.
    1. Pissiota A., Frans O., Fernandez M., Von Knorring L., Fischer H., Fredrikson M. Neurofunctional correlates of posttraumatic stress disorder: A PET symptom provocation study. Eur. Arch. Psychiatry Clin. Neurosci. 2002;252:68–75. doi: 10.1007/s004060200014.
    1. Milad M.R., Pitman R.K., Ellis C.B., Gold A.L., Shin L.M., Lasko N.B., Zeidan M.A., Handwerger K., Orr S.P., Rauch S.L. Neurobiological basis of failure to recall extinction memory in posttraumatic stress disorder. Biol. Psychiatry. 2009;66:1075–1082. doi: 10.1016/j.biopsych.2009.06.026.
    1. Drevets W.C., Raichle M.E. Neuroanatomical circuits in depression: Implications for treatment mechanisms. Psychopharmacol. Bull. 1992;28:261–274.
    1. Drevets W.C., Price J.L., Bardgett M.E., Reich T., Todd R.D., Raichle M.E. Glucose metabolism in the amygdala in depression: Relationship to diagnostic subtype and plasma cortisol levels. Pharmacol. Biochem. Behav. 2002;71:431–447. doi: 10.1016/S0091-3057(01)00687-6.
    1. Saxena S., Brody A.L., Ho M.L., Zohrabi N., Maidment K.M., Baxter L.R. Differential brain metabolic predictors of response to paroxetine in obsessive-compulsive disorder versus major depression. Am. J. Psychiatry. 2003;160:522–532. doi: 10.1176/appi.ajp.160.3.522.
    1. Sheline Y.I., Barch D.M., Donnelly J.M., Ollinger J.M., Snyder A.Z., Mintun M.A. Increased amygdala response to masked emotional faces in depressed subjects resolves with antidepressant treatment: An fMRI study. Biol. Psychiatry. 2001;50:651–658. doi: 10.1016/S0006-3223(01)01263-X.
    1. Bremner J.D., Campanella C. Effects of psychotherapy for psychological trauma on PTSD symptoms and the brain. In: Bremner J.D., editor. Posttraumatic Stress Disorder: From Neurobiology to Treatment. John Wiley & Sons; Hoboken, NJ, USA: 2016. pp. 413–420.
    1. Vermetten E., Vythilingam M., Southwick S.M., Charney D.S., Bremner J.D. Long-term treatment with paroxetine increases verbal declarative memory and hippocampal volume in posttraumatic stress disorder. Biol. Psychiatry. 2003;54:693–702. doi: 10.1016/S0006-3223(03)00634-6.
    1. Letizia B., Andrea F., Paolo C. Neuroanatomical changes after eye movement desensitization and reprocessing (EMDR) treatment in posttraumatic stress disorder. J. Neuropsychiatry Clin. Neurosci. 2007;19:475–476. doi: 10.1176/jnp.2007.19.4.475.
    1. Bremner J.D., Mletzko T., Welter S., Quinn S., Williams C., Brummer M., Siddiq S., Reed L., Heim C.M., Nemeroff C.B. Effects of phenytoin on memory, cognition and brain structure in posttraumatic stress disorder: A pilot study. J. Psychopharmacol. 2005;19:159–165. doi: 10.1177/0269881105048996.
    1. Fani N., Kitayama N., Ashraf A., Reed L., Afzal N., Jawed F., Bremner J.D. Neuropsychological functioning in patients with posttraumatic stress disorder following short-term paroxetine treatment. Psychopharmacol. Bull. 2009;42:53–68.
    1. Fani N., Ashraf A., Afzal N., Jawed F., Kitayama N., Reed L., Bremner J.D. Increased neural response to trauma scripts in posttraumatic stress disorder following paroxetine treatment: A pilot study. Neurosci. Lett. 2011;491:196–201. doi: 10.1016/j.neulet.2011.01.037.
    1. Brody A.L., Saxena S., Stoessel P., Gillies L.A., Fairbanks L.A., Alborzian S., Phelps M.E., Huang S.C., Wu H.M., Ho M.L., et al. Regional brain metabolic changes in patients with major depression treated with either paroxetine or interpersonal therapy: Preliminary findings. Arch. Gen. Psychiatry. 2001;58:631–640. doi: 10.1001/archpsyc.58.7.631.
    1. Bremner J.D., Vythilingam M., Vermetten E., Charney D.S. Effects of antidepressant treatment on neural correlates of emotional and neutral declarative verbal memory in depression. J. Affect. Disord. 2007;101:99–111. doi: 10.1016/j.jad.2006.10.028.
    1. Drevets W.C., Bogers W., Raichle M.E. Functional anatomical correlates of antidepressant drug treatment assessed using PET measures of regional glucose metabolism. Eur. Neuropsychopharmacol. 2002;12:527–544. doi: 10.1016/S0924-977X(02)00102-5.
    1. Kennedy S.H., Evans K.R., Kruger S., Mayberg H.S., Meyer J.H., McCann S., Arifuzzman A.I., Houle S., Vaccarino F.J. Changes in regional brain glucose metabolism measured with positron emission tomography after paroxetine treatment of major depression. Am. J. Psychiatry. 2001;158:899–905. doi: 10.1176/appi.ajp.158.6.899.
    1. Vythilingam M., Vermetten E., Anderson G.M., Luckenbaugh D., Anderson E.R., Snow J., Staib L.H., Charney D.S., Bremner J.D. Hippocampal volume, memory and cortisol status in major depressive disorder: Effects of treatment. Biol. Psychiatry. 2004;56:101–112. doi: 10.1016/j.biopsych.2004.04.002.
    1. Henry T.R. Therapeutic mechanisms of vagus nerve stimulation. Neurology. 2002;59:S3–S14. doi: 10.1212/WNL.59.6_suppl_4.S3.
    1. Henry T.R., Bakay R.A., Votaw J.R., Pennell P.B., Epstein C.M., Faber T.L., Grafton S.T., Hoffman J.M. Brain blood flow alterations induced by therapeutic vagus nerve stimulation in partial epilepsy: I. Acute effects at high and low levels of stimulation. Epilepsia. 1998;39:983–990. doi: 10.1111/j.1528-1157.1998.tb01448.x.
    1. Conway C.R., Sheline Y.I., Chibnall J.T., Bucholz R.D., Price J.L., Gangwani S., Mintun M.A. Brain blood-flow change with acute vagus nerve stimulation in treatment-refractory major depressive disorder. Brain Stimul. 2012;5:163–171. doi: 10.1016/j.brs.2011.03.001.
    1. Fang J., Egorova N., Rong P., Liu J., Hong Y., Fan Y., Wang X., Wang H., Yu Y., Ma Y., et al. Early cortical biomarkers of longitudinal transcutaneous vagus nerve stimulation treatment success in depression. Neuroimage Clin. 2017;14:105–111. doi: 10.1016/j.nicl.2016.12.016.
    1. Liu J., Fang J., Wang Z., Rong P., Hong Y., Fan Y., Wang X., Park J., Jin Y., Liu C., et al. Transcutaneous vagus nerve stimulation modulates amygdala functional connectivity in patients with depression. J. Affect. Disord. 2016;205:319–326. doi: 10.1016/j.jad.2016.08.003.
    1. Lomarev M., Denslow S., Nahas Z., Chae J.-H., George M.S., Bohning D.E. Vagus nerve stimulation (VNS): Synchronized BOLD fMRI suggests that VNS in depressed adults has frequency and/or dose dependent effects at rest and during a simple task. J. Psychiatr. Res. 2002;36:219–227. doi: 10.1016/S0022-3956(02)00013-4.
    1. Van Laere K., Vonck K., Boon P., Versijpt J., Dierckx R. Perfusion SPECT changes after acute and chronic vagus nerve stimulation in relation to prestimulus condition and long-term efficacy. J. Nucl. Med. 2002;43:733–744.
    1. Bremner J.D., Wittbrodt M.T., Gurel N.Z., Nye J., Alam A., Vaccarino V., Ladd S.L., Shallenberger L.H., Huang M., Ko Y.-Y., et al. Brain correlates of non-invasive Vagal Nerve Stimulation in stress; Proceedings of the NYC Neuromodulation/NANS Conference; New York, NY, USA. 24–26 August 2018; p. 14.
    1. Bremner J.D., Rapaport M.H. Vagus Nerve Stimulation: Back to the future. Am. J. Psychiatry. 2017;174:609–610. doi: 10.1176/appi.ajp.2017.17040422.
    1. Yakunina N., Kim S.S., Nam E.-C. Optimization of transcutaneous vagus nerve stimulation using functional MRI. Neuromodulation. 2017;20:290–300. doi: 10.1111/ner.12541.
    1. Redgrave J., Day D., Leung H., Ali A., Lindert R., Majid A. Safety and tolerability of transcutaneous vagus nerve stimulation in humans: A systematic review. Brain Stimul. 2018;11:1225–1238. doi: 10.1016/j.brs.2018.08.010.
    1. Ben-Menachem E., Revesz D., Simon B.J., Silberstein S. Surgically implanted and non-invasive vagus nerve stimulation: A review of efficacy, safety and tolerability. Eur. J. Neurol. 2015;22:1260–1268. doi: 10.1111/ene.12629.
    1. Nonis R., D’Ostilio K., Schoenen J., Magis D. Evidence of activation of vagal afferents by non-invasive vagus nerve stimulation: An electrophysiological study in healthy volunteers. Cephalagia. 2017;37:1285–1293. doi: 10.1177/0333102417717470.
    1. Usami K., Kawai K., Sonoo M., Saito N. Scalp-recorded evoked potentials as a marker for afferent nerve impulse in clinical vagus nerve stimulation. Brain Stimul. 2013;6:615–623. doi: 10.1016/j.brs.2012.09.007.
    1. Yoo P.B., Lubock N.B., Hincapie J.G., Ruble S.B., Hamann J.J., Grill W.M. High-resolution measurement of electrically-evoked vagus nerve activity in the anesthetized dog. J. Neural Eng. 2013;10 doi: 10.1088/1741-2560/10/2/026003.
    1. Fallgatter A.J., Neuhauser B., Herrmann M.J., Ehlis A.-C., Wagener A., Scheuerpflug P., Reiners K., Riederer P. Far field potentials from the brain stem after transcutaneous vagus nerve stimulation. J. Neural Transm. 2003;110:1437–1443. doi: 10.1007/s00702-003-0087-6.
    1. Frangos E., Ellrich E., Komisaruk B.R. Non-invasive access to the vagus nerve central projections via electrical stimulation of the external ear: fMRI evidence in humans. Brain Stimul. 2015;8:624–636. doi: 10.1016/j.brs.2014.11.018.
    1. Badran B.W., Dowdle L.T., Mithoefer O.J., LaBate N.T., Coatsworth J., Brown J.C., DeVries W.H., Austelle C.W., McTeague L.M., George M.S. Neurophysiologic effects of transcutaneous auricular vagus nerve stimulation (taVNS) via electrical stimulation of the tragus: A concurrent taVNS/fMRI study and review. Brain Stimul. 2018;11:492–500. doi: 10.1016/j.brs.2017.12.009.
    1. Frangos E., Komisaruk B.R. Access to vagal projections via cutaneous electrical stimulation of the neck: fMRI evidence in healthy humans. Brain Stimul. 2017;10:19–27. doi: 10.1016/j.brs.2016.10.008.
    1. Clancy J.A., Mary D.A., Witte K.K., Greenwood J.P., Deuchars S.A., Deuchars J. Non-invasive vagus nerve stimulation in healthy humans reduces sympathetic nerve activity. Brain Stimul. 2014;7:871–877. doi: 10.1016/j.brs.2014.07.031.
    1. Badran B.W., Mithoefer O.J., Summer C.E., LaBate N.T., Glusman C.E., Badran A.W., DeVries W.H., Summers P.M., Austelle C.W., McTeague L.M., et al. Short trains of transcutaneous auricular vagus nerve stimulation (taVNS) have parameter-specific effects on heart rate. Brain Stimul. 2018;11:699–708. doi: 10.1016/j.brs.2018.04.004.
    1. Warren C.M., Tona K.D., Ouwerkerk L., van Paridon J., Poletiek F., van Steenbergen H., Bosch J.A., Nieuwenhuis S. The neuromodulatory and hormonal effects of transcutaneous vagus nerve stimulation as evidenced by salivary alpha amylase, salivary cortisol, pupil diameter, and the P3 event-related potential. Brain Stimul. 2019;12:635–642. doi: 10.1016/j.brs.2018.12.224.
    1. Burger A.M., Verkuil B., Fenlon H., Thijs L., Cools H.C., Miller I., Vervliet B., Van Diest I. Mixed evidence for the potential of non-invasive transcutaneous vagal nerve stimulation to improve the extinction and retention of fear. Behav. Res. Ther. 2017;97:64–74. doi: 10.1016/j.brat.2017.07.005.
    1. Verkuil B., Burger A.M. Transcutaneous vagus nerve stimulation does not affect attention to fearful faces in high worriers. Behav. Res. Ther. 2019;113:25–31. doi: 10.1016/j.brat.2018.12.009.
    1. Gurel N.Z., Huang M., Wittbrodt M.T., Jung H., Ladd S.L., Shandhi M.H., Ko Y.-A., Shallenberger L., Nye J.A., Pearce B., et al. Quantifying acute physiological biomarkers of transcutaneous cervical vagal nerve stimulation in the context of psychological stress. Brain Stimul. 2020;13:47–59. doi: 10.1016/j.brs.2019.08.002.
    1. Gurel N.Z., Gazi A.H., Scott K.L., Wittbrodt M.T., Shah A.J., Vaccarino V., Bremner J.D., Inan O.T. Timing considerations for noninvasive Vagal Nerve Stimulation in clinical studies. AMIA Annu. Symp. Proc. 2020;2019:1061–1070.
    1. Gurel N.Z., Wittbrodt W.T., Jung H., Ladd S.L., Shah A.J., Vaccarino V., Bremner J.D., Inan O.T. Automatic detection of target engagement in transcutaneous cervical Vagal Nerve Stimulation for traumatic stress triggers. IEEE J. Biomed. Health Inform. 2020;24:1917–1925. doi: 10.1109/JBHI.2020.2981116.
    1. Brock C., Brock B., Aziz Q., Møller H.J., Pfeiffer Jensen M., Drewes A.M., Farmer A.D. Transcutaneous cervical vagal nerve stimulation modulates cardiac vagal tone and tumor necrosis factor-alpha. Neurogastroenterol. Motil. 2017;29:e12999. doi: 10.1111/nmo.12999.
    1. Lerman I., Hauger R., Sorkin L., Proudfoot J., Davis B., Huang A., Lam K., Simon B., Baker D.G. Noninvasive transcutaneous vagus nerve stimulation decreases whole blood culture-derived cytokines and chemokines: A randomized, blinded, healthy control pilot trial. Neuromodulation. 2016;19:283–290. doi: 10.1111/ner.12398.
    1. Tarn J., Legg S., Mitchell S., Simon B., Ng W.-F. The effects of noninvasive vagus nerve stimulation on fatigue and immune responses in patients with primary Sjögren’s Syndrome. Neuromodulation. 2019;22:580–585. doi: 10.1111/ner.12879.
    1. Milev R.V., Giacobbe P., Kennedy S.H., Blumberger D.M., Daskalakis Z.J., Downar J., Modirrousta M., Patry S., Vila-Rodriguez F., Lam R.W., et al. Canadian Network for Mood and Anxiety Treatments (CANMAT) 2016 clinical guidelines for the management of adults with major depressive disorder: Section 4. Neurostimulation Treatments. Can. J. Psychiatry. 2016;61:561–575. doi: 10.1177/0706743716660033.
    1. Feldman R.L., Dunner D.L., Muller J.S., Stone D.A. Medicare patient experience with vagus nerve stimulation for treatment-resistant depression. J. Med. Econ. 2013;16:63–74. doi: 10.3111/13696998.2012.724745.
    1. Hasan A., Wolff-Menzler C., Pfeiffer S., Falkai P., Weidinger E., Jobst A., Hoell I., Malchow B., Yeganeh-Doost P., Strube W., et al. Transcutaneous noninvasive vagus nerve stimulation (tVNS) in the treatment of schizophrenia: A bicentric randomized controlled pilot study. Eur. Arch. Psychiatry Clin. Neurosci. 2015;256:589–600. doi: 10.1007/s00406-015-0618-9.
    1. D’Urso G., Brunoni A.R., Mazzaferro M.P., Anastasia A., de Bartolomeis A., Mantovani A. Transcranial direct current stimulation for obsessive-compulsive disorder: A randomized, controlled, partial crossover trial. Depress. Anxiety. 2016;33:1132–1140. doi: 10.1002/da.22578.
    1. Rong P., Liu J., Wang L., Liu R., Fang J., Zhao J., Zhao Y., Wang H., Vangel M., Sun S., et al. Effect of transcutaneous auricular vagus nerve stimulation on major depressive disorder: A nonrandomized controlled pilot study. J. Affect. Disord. 2016;195:172–179. doi: 10.1016/j.jad.2016.02.031.
    1. Lamb D.G., Porges E.C., Lewis G.F., Williamson J.B. Non-invasive Vagal Nerve Stimulation effects on hyperarousal and autonomic state in patients with posttraumatic stress disorder and history of mild traumatic brain injury: Preliminary evidence. Front. Med. 2017;4:124. doi: 10.3389/fmed.2017.00124.
    1. George M.S., Ward H.E., Ninan P.T., Pollack M., Nahas Z., Anderson B., Kose S., Howland R.H., Goodman W.K., Ballenger J.C. A pilot study of vagus nerve stimulation (VNS) for treatment-resistant anxiety disorders. Brain Stimul. 2008;1:112–121. doi: 10.1016/j.brs.2008.02.001.
    1. Barbanti P., Grazzi L., Egeo G., Padovan A., Liebler E., Bussone G. Non-invasive vagus nerve stimulation for acute treatment of high-frequency and chronic migraine: An open-label study. J. Headache Pain. 2015;16:61. doi: 10.1186/s10194-015-0542-4.
    1. Nesbitt A.D., Marin J.C.A., Tomkins E., Ruttledge M.H., Goadsby P.J. Non-invasive vagus nerve stimulation for the treatment of cluster headache: A case series. J. Headache Pain. 2013;14 doi: 10.1186/1129-2377-14-S1-P231.
    1. Gaul C., Magis D., Liebler E.J., Straube A. Effects of non-invasive vagus nerve stimulation on attack frequency over time and expanded response rates in patients with chronic cluster headache: A post hoc analysis of the randomized, controlled PREVA Study. J. Headache Pain. 2017;18:22. doi: 10.1186/s10194-017-0731-4.
    1. Rosell J., Colominas J., Riu P., Pallas-Areny R., Webster J.G. Skin impedance from 1 Hz to 1 MHz. IEEE Trans. Biomed. Eng. 1988;35:649–651. doi: 10.1109/10.4599.
    1. Gazi A.H., Gurel N.Z., Richardson J.L.S., Wittbrodt M.T., Shah A.J., Vaccarino V., Bremner J.D., Inan O.T. Investigating digital cardiovascular biomarker responses to transcutaneous cervical vagus nerve stimulation: State-space modeling, prediction, and simulation. JMIR hHealth uHealth. 2020 doi: 10.2196/20488.
    1. Wittbrodt M.T., Gurel N.Z., Nye J.A., Ladd S., Shandhi M.M.H., Huang M., Shah A.J., Pearce B.D., Alam Z.S., Rapaport M.H., et al. Non-invasive vagal nerve stimulation decreases brain activity during trauma scripts. Brain Stimul. 2020;13:1333–1348. doi: 10.1016/j.brs.2020.07.002.
    1. Pimple P., Lima B.B., Hammadah M., Wilmot K., Ramadan R., Levantsevych O., Sullivan S., Kim J.H., Kaseer B., Shah A.J., et al. Psychological distress and subsequent cardiovascular events in individuals with coronary artery disease. J. Am. Hear. Assoc. 2019;8:e011866. doi: 10.1161/JAHA.118.011866.
    1. Lima B.B., Hammadah M., Pearce B.D., Shah A., Moazzami K., Kim J.H., Sullivan S., Levantsevych O., Lewis T.T., Weng L., et al. Association of posttraumatic stress disorder with mental stress-induced myocardial ischemia in adults after myocardial infarction. JAMA Netw. Open. 2020;3:e202734. doi: 10.1001/jamanetworkopen.2020.2734.
    1. Pimple P., Shah A., Rooks C., Bremner J.D., Nye J., Ibeanu I., Murrah N., Shallenberger L., Kelley M., Raggi P., et al. Association between anger and mental stress-induced myocardial ischemia. Am. Heart J. 2015;169:115–121. doi: 10.1016/j.ahj.2014.07.031.
    1. Gurel N.Z., Mobashir H.S., Bremner J.D., Vaccarino V., Ladd S.L., Shah A., Inan O.T. Toward closed-loop transcutaneous vagus nerve stimulation using peripheral cardiovascular physiological biomarkers: A proof-of-concept study. IEEE Body Sens. Netw. 2018 doi: 10.1109/BSN.2018.8329663.
    1. Szeska C., Richter J., Wendt J., Weymar M., Hamm A.O. Promoting long-term inhibition of human fear responses by non-invasive transcutaneous vagus nerve stimulation during extinction training. Sci. Rep. 2020;10:1529. doi: 10.1038/s41598-020-58412-w.

Source: PubMed

3
Suscribir