Ceftolozane/tazobactam probability of target attainment and outcomes in participants with augmented renal clearance from the randomized phase 3 ASPECT-NP trial

Andrew F Shorr, Christopher J Bruno, Zufei Zhang, Erin Jensen, Wei Gao, Hwa-Ping Feng, Jennifer A Huntington, Brian Yu, Elizabeth G Rhee, Carisa De Anda, Sumit Basu, Marin H Kollef, Andrew F Shorr, Christopher J Bruno, Zufei Zhang, Erin Jensen, Wei Gao, Hwa-Ping Feng, Jennifer A Huntington, Brian Yu, Elizabeth G Rhee, Carisa De Anda, Sumit Basu, Marin H Kollef

Abstract

Background: The randomized, double-blind, phase 3 ASPECT-NP trial evaluated the efficacy of 3 g of ceftolozane/tazobactam (C/T) versus 1 g of meropenem infused every 8 h for 8 to 14 days for treatment of adults with hospital-acquired bacterial pneumonia (HABP) or ventilator-associated bacterial pneumonia (VABP). We assessed the probability of target attainment and compared efficacy outcomes from ASPECT-NP in participants with augmented renal clearance (ARC) versus those with normal renal function.

Methods: Baseline renal function was categorized as normal renal function (creatinine clearance 80-130 mL/min) or ARC (creatinine clearance > 130 mL/min). Population pharmacokinetic models informed Monte Carlo simulations to assess probability of target attainment in plasma and pulmonary epithelial lining fluid. Outcomes included 28-day all-cause mortality and clinical cure and per-participant microbiologic cure rates at the test-of-cure visit.

Results: A > 99% and > 80% probability of target attainment was demonstrated for ceftolozane and tazobactam, respectively, in simulated plasma and epithelial lining fluid. Within treatment arms, 28-day all-cause mortality rates in participants with normal renal function (C/T, n = 131; meropenem, n = 123) and ARC (C/T, n = 96; meropenem, n = 113) were comparable (data comparisons presented as rate; treatment difference [95% CI]) (C/T: normal renal function, 17.6%; ARC, 17.7%; 0.2 [- 9.6 to 10.6]; meropenem: normal renal function, 20.3%; ARC, 17.7%; - 2.6 [- 12.6 to 7.5]). Clinical cure rates at test-of-cure were also comparable across renal function groups within treatment arms (C/T: normal renal function, 57.3%; ARC, 59.4%; - 2.1 [- 14.8 to 10.8]; meropenem: normal renal function, 59.3%; ARC, 57.5%; 1.8 [- 10.6 to 14.2]). Per-participant microbiologic cure rates at test-of-cure were consistent across renal function groups within treatment arms (C/T: normal renal function, 72.2% [n/N = 70/97]; ARC, 71.4% [n/N = 55/77]; 0.7 [- 12.4 to 14.2]; meropenem: normal renal function, 75.0% [n/N = 66/88]; ARC, 70.0% [n/N = 49/70]; 5.0 [- 8.7 to 19.0]).

Conclusions: C/T and meropenem resulted in 28-day all-cause mortality, clinical cure, and microbiologic cure rates that were comparable between participants with ARC or normal renal function. In conjunction with high probability of target attainment, these results confirm that C/T (3 g) every 8 h is appropriate in patients with HABP/VABP and ARC. Trial registration ClinicalTrials.gov identifier: NCT02070757, registered February 25, 2014; EudraCT: 2012-002862-11.

Keywords: Hospital-acquired bacterial pneumonia; Multidrug resistance; Pseudomonas aeruginosa; Ventilator-associated bacterial pneumonia.

Conflict of interest statement

AFS reports advisory board membership for Combioxin SA. CJB, ZZ, EJ, WG, H-PF, JAH, BY, EGR, SB, and CDA are employees of MSD and may own stock and/or hold stock options in Merck & Co., Inc., Kenilworth, NJ, USA. MHK reports advisory board and speaker’s bureau fees and institutional research funding from MSD.

© 2021. The Author(s).

Figures

Fig. 1
Fig. 1
PTA for ceftolozane and tazobactam in simulated patients with vHABP/VABP by renal function. Panels A and B represent PTA for ceftolozane at a target of 50% fT > MIC. Panels C and D represent PTA for tazobactam at a target of 35% fT > CT. Left panels represent PTA in plasma and right panels represent PTA in ELF. Solid horizontal line on plots represents 90% PTA; vertical line in panels A and B represents an MIC of 4 μg/mL; vertical line in panels C and D represents a CT of 1 μg/mL. CrCl creatinine clearance, CT threshold concentration, ELF epithelial lining fluid, fT > CT time period that the free drug concentration remained above the threshold concentration, fT > MIC time period that the free drug concentration exceeded the MIC value, MIC minimum inhibitory concentration, PD pharmacodynamic, PK pharmacokinetic, PTA probability of target attainment, vHABP/VABP ventilated hospital-acquired bacterial pneumonia/ventilator-associated bacterial pneumonia
Fig. 2
Fig. 2
28-day ACM in ceftolozane/tazobactam- or meropenem-treated patients by renal function. ACM all-cause mortality, ARC augmented renal clearance, ITT intention-to-treat, mITT microbiologic intention-to-treat
Fig. 3
Fig. 3
Clinical cure at the test-of-cure visit in ceftolozane/tazobactam- or meropenem-treated patients by renal function. ARC augmented renal clearance, CE clinically evaluable, ITT intention-to-treat
Fig. 4
Fig. 4
Per-patient microbiologic cure at the test-of-cure visit in ceftolozane/tazobactam- or meropenem-treated patients by renal function. ARC augmented renal clearance, mITT microbiologic intention-to-treat

References

    1. Kalil AC, Metersky ML, Klompas M, Muscedere J, Sweeney DA, Palmer LB, et al. Management of adults with hospital-acquired and ventilator-associated pneumonia: 2016 clinical practice guidelines by the Infectious Diseases Society of America and the American Thoracic Society. Clin Infect Dis. 2016;63:e61–111. doi: 10.1093/cid/ciw353.
    1. Magill SS, Edwards JR, Bamberg W, Beldavs ZG, Dumyati G, Kainer MA, et al. Multistate point-prevalence survey of health care-associated infections. N Engl J Med. 2014;370:1198–1208. doi: 10.1056/NEJMoa1306801.
    1. Peleg AY, Hooper DC. Hospital-acquired infections due to gram-negative bacteria. N Engl J Med. 2010;362:1804–1813. doi: 10.1056/NEJMra0904124.
    1. Micek ST, Kollef MH, Torres A, Chen C, Rello J, Chastre J, et al. Pseudomonas aeruginosa nosocomial pneumonia: impact of pneumonia classification. Infect Control Hosp Epidemiol. 2015;36:1190–1197. doi: 10.1017/ice.2015.167.
    1. Micek ST, Wunderink RG, Kollef MH, Chen C, Rello J, Chastre J, et al. An international multicenter retrospective study of Pseudomonas aeruginosa nosocomial pneumonia: impact of multidrug resistance. Crit Care. 2015;19:219. doi: 10.1186/s13054-015-0926-5.
    1. Paramythiotou E, Routsi C. Association between infections caused by multidrug-resistant gram-negative bacteria and mortality in critically ill patients. World J Crit Care Med. 2016;5:111–120. doi: 10.5492/wjccm.v5.i2.111.
    1. De Waele JJ, Dumoulin A, Janssen A, Hoste EA. Epidemiology of augmented renal clearance in mixed ICU patients. Minerva Anestesiol. 2015;81:1079–1085.
    1. Mahmoud SH, Shen C. Augmented renal clearance in critical illness: an important consideration in drug dosing. Pharmaceutics. 2017;9:36. doi: 10.3390/pharmaceutics9030036.
    1. Udy AA, Baptista JP, Lim NL, Joynt GM, Jarrett P, Wockner L, et al. Augmented renal clearance in the ICU: results of a multicenter observational study of renal function in critically ill patients with normal plasma creatinine concentrations*. Crit Care Med. 2014;42:520–527. doi: 10.1097/CCM.0000000000000029.
    1. ZERBAXA® (ceftolozane and tazobactam). Summary of product characteristics. MSD B.V.; 2019.
    1. ZERBAXA® (ceftolozane and tazobactam). US Prescribing information. Merck Sharpe & Dohme Corp; 2019.
    1. Xiao AJ, Caro L, Popejoy MW, Huntington JA, Kullar R. PK/PD target attainment with ceftolozane/tazobactam using Monte Carlo simulation in patients with various degrees of renal function, including augmented renal clearance and end-stage renal disease. Infect Dis Ther. 2017;6:137–148. doi: 10.1007/s40121-016-0143-9.
    1. Udy AA, Roberts JA, Shorr AF, Boots RJ, Lipman J. Augmented renal clearance in septic and traumatized patients with normal plasma creatinine concentrations: identifying at-risk patients. Crit Care. 2013;17:R35. doi: 10.1186/cc12544.
    1. Kollef MH, Nováček M, Kivistik Ü, Réa-Neto Á, Shime N, Martin-Loeches I, et al. Ceftolozane-tazobactam versus meropenem for treatment of nosocomial pneumonia (ASPECT-NP): a randomised, controlled, double-blind, phase 3, non-inferiority trial. Lancet Infect Dis. 2019;19:1299–1311. doi: 10.1016/S1473-3099(19)30403-7.
    1. Cockcroft DW, Gault MH. Prediction of creatinine clearance from serum creatinine. Nephron. 1976;16:31–41. doi: 10.1159/000180580.
    1. Zhang Z, Patel YT, Fiedler-Kelly J, Feng HW, Bruno CJ, Gao W. Population pharmacokinetic analysis for plasma and ELF ceftolozane/tazobactam concentration in patients with ventilated nosocomial pneumonia. J Clin Pharmacol. 2021;61:254–268. doi: 10.1002/jcph.1733.
    1. Chandorkar G, Xiao A, Mouksassi MS, Hershberger E, Krishna G. Population pharmacokinetics of ceftolozane/tazobactam in healthy volunteers, subjects with varying degrees of renal function and patients with bacterial infections. J Clin Pharmacol. 2015;55:230–239. doi: 10.1002/jcph.395.
    1. Caro L, Nicolau DP, De Waele JJ, Kuti JL, Larson KB, Gadzicki E, et al. Lung penetration, bronchopulmonary pharmacokinetic/pharmacodynamic profile and safety of 3 g of ceftolozane/tazobactam administered to ventilated, critically ill patients with pneumonia. J Antimicrob Chemother. 2020;75:1546–1553. doi: 10.1093/jac/dkaa049.
    1. Craig WA, Andes DR. In vivo activities of ceftolozane, a new cephalosporin, with and without tazobactam against Pseudomonas aeruginosa and Enterobacteriaceae, including strains with extended-spectrum β-lactamases, in the thighs of neutropenic mice. Antimicrob Agents Chemother. 2013;57:1577–1582. doi: 10.1128/AAC.01590-12.
    1. Melchers MJ, Mavridou E, van Mil AC, Lagarde C, Mouton JW. Pharmacodynamics of ceftolozane combined with tazobactam against Enterobacteriaceae in a neutropenic mouse thigh model. Antimicrob Agents Chemother. 2016;60:7272–7279. doi: 10.1128/AAC.01580-16.
    1. Vanscoy B, Mendes RE, McCauley J, Bhavnani SM, Bulik CC, Okusanya OO, et al. Pharmacological basis of β-lactamase inhibitor therapeutics: tazobactam in combination with ceftolozane. Antimicrob Agents Chemother. 2013;57:5924–5930. doi: 10.1128/AAC.00656-13.
    1. Xiao AJ, Miller BW, Huntington JA, Nicolau DP. Ceftolozane/tazobactam pharmacokinetic/pharmacodynamic-derived dose justification for phase 3 studies in patients with nosocomial pneumonia. J Clin Pharmacol. 2016;56:56–66. doi: 10.1002/jcph.566.
    1. Sime FB, Lassig-Smith M, Starr T, Stuart J, Pandey S, Parker SL, et al. Population pharmacokinetics of unbound ceftolozane and tazobactam in critically ill patients without renal dysfunction. Antimicrob Agents Chemother. 2019;63:e01265–e1319. doi: 10.1128/AAC.01265-19.
    1. Bart SM, Rubin D, Kim P, Farley JJ, Nambiar S. Trends in hospital-acquired and ventilator-associated bacterial pneumonia trials. Clin Infect Dis. 2021;73:e602–e608. doi: 10.1093/cid/ciaa1712.
    1. Chu Y, Luo Y, Qu L, Zhao C, Jiang M. Application of vancomycin in patients with varying renal function, especially those with augmented renal clearance. Pharm Biol. 2016;54:2802–2806. doi: 10.1080/13880209.2016.1183684.
    1. Kollef MH, Chastre J, Clavel M, Restrepo MI, Michiels B, Kaniga K, et al. A randomized trial of 7-day doripenem versus 10-day imipenem-cilastatin for ventilator-associated pneumonia. Crit Care. 2012;16:R218. doi: 10.1186/cc11862.
    1. Claus BO, Hoste EA, Colpaert K, Robays H, Decruyenaere J, De Waele JJ. Augmented renal clearance is a common finding with worse clinical outcome in critically ill patients receiving antimicrobial therapy. J Crit Care. 2013;28:695–700. doi: 10.1016/j.jcrc.2013.03.003.
    1. Udy AA, Dulhunty JM, Roberts JA, Davis JS, Webb SAR, Bellomo R, et al. Association between augmented renal clearance and clinical outcomes in patients receiving β-lactam antibiotic therapy by continuous or intermittent infusion: a nested cohort study of the BLING-II randomised, placebo-controlled, clinical trial. Int J Antimicrob Agents. 2017;49:624–630. doi: 10.1016/j.ijantimicag.2016.12.022.
    1. Awad SS, Rodriguez AH, Chuang YC, Marjanek Z, Pareigis AJ, Reis G, et al. A phase 3 randomized double-blind comparison of ceftobiprole medocaril versus ceftazidime plus linezolid for the treatment of hospital-acquired pneumonia. Clin Infect Dis. 2014;59:51–61. doi: 10.1093/cid/ciu219.
    1. Freire AT, Melnyk V, Kim MJ, Datsenko O, Dzyublik O, Glumcher F, et al. Comparison of tigecycline with imipenem/cilastatin for the treatment of hospital-acquired pneumonia. Diagn Microbiol Infect Dis. 2010;68:140–151. doi: 10.1016/j.diagmicrobio.2010.05.012.
    1. Tang HJ, Lai CC. Doripenem for treating nosocomial pneumonia and ventilator-associated pneumonia. Lancet Infect Dis. 2020;20:20. doi: 10.1016/S1473-3099(19)30693-0.
    1. TYGACIL® (tigecycline). Prescribing information. Wyeth Pharmaceuticals Inc; 2019.
    1. ZEVTERA® (ceftobiprole medocaril powder for injection). Product monograph. AVIR Pharma Inc; 2019.
    1. Udy AA, Varghese JM, Altukroni M, Briscoe S, McWhinney BC, Ungerer JP, et al. Subtherapeutic initial β-lactam concentrations in select critically ill patients: association between augmented renal clearance and low trough drug concentrations. Chest. 2012;142:30–39. doi: 10.1378/chest.11-1671.
    1. Carlier M, Carrette S, Roberts JA, Stove V, Verstraete A, Hoste E, et al. Meropenem and piperacillin/tazobactam prescribing in critically ill patients: does augmented renal clearance affect pharmacokinetic/pharmacodynamic target attainment when extended infusions are used? Crit Care. 2013;17:R84. doi: 10.1186/cc12705.
    1. Udy AA, Roberts JA, De Waele JJ, Paterson DL, Lipman J. What's behind the failure of emerging antibiotics in the critically ill? Understanding the impact of altered pharmacokinetics and augmented renal clearance. Int J Antimicrob Agents. 2012;39:455–457. doi: 10.1016/j.ijantimicag.2012.02.010.
    1. Nicolau DP, De Waele J, Kuti JL, Caro L, Larson KB, Yu B, et al. Pharmacokinetics and pharmacodynamics of ceftolozane/tazobactam in critically ill patients with augmented renal clearance. Int J Antimicrob Agents. 2021;57:106299. doi: 10.1016/j.ijantimicag.2021.106299.
    1. Frippiat F, Musuamba FT, Seidel L, Albert A, Denooz R, Charlier C, et al. Modelled target attainment after meropenem infusion in patients with severe nosocomial pneumonia: the PROMESSE study. J Antimicrob Chemother. 2015;70:207–216. doi: 10.1093/jac/dku354.
    1. Demirovic JA, Pai AB, Pai MP. Estimation of creatinine clearance in morbidly obese patients. Am J Health Syst Pharm. 2009;66:642–648. doi: 10.2146/ajhp080200.

Source: PubMed

3
Suscribir