Application of an Adaptive, Digital, Game-Based Approach for Cognitive Assessment in Multiple Sclerosis: Observational Study

Wan-Yu Hsu, William Rowles, Joaquin Anguera, Chao Zhao, Annika Anderson, Amber Alexander, Simone Sacco, Roland Henry, Adam Gazzaley, Riley Bove, Wan-Yu Hsu, William Rowles, Joaquin Anguera, Chao Zhao, Annika Anderson, Amber Alexander, Simone Sacco, Roland Henry, Adam Gazzaley, Riley Bove

Abstract

Background: Cognitive impairment is one of the most debilitating manifestations of multiple sclerosis. Currently, the assessment of cognition relies on a time-consuming and extensive neuropsychological examination, which is only available in some centers.

Objective: To enable simpler, more accessible cognitive screening, we sought to determine the feasibility and potential assessment sensitivity of an unsupervised, adaptive, video game-based digital therapeutic to assess cognition in multiple sclerosis.

Methods: A total of 100 people with multiple sclerosis (33 with cognitive impairment and 67 without cognitive impairment) and 24 adults without multiple sclerosis were tested with the tablet game (EVO Monitor) and standard measures, including the Brief International Cognitive Assessment for Multiple Sclerosis (which included the Symbol Digit Modalities Test [SDMT]) and Multiple Sclerosis Functional Composite 4 (which included the Timed 25-Foot Walk test). Patients with multiple sclerosis also underwent neurological evaluations and contributed recent structural magnetic resonance imaging scans. Group differences in EVO Monitor performance and the association between EVO Monitor performance and standard measures were investigated.

Results: Participants with multiple sclerosis and cognitive impairment showed worse performance in EVO Monitor compared with participants without multiple sclerosis (P=.01) and participants with multiple sclerosis without cognitive impairment (all P<.002). Regression analyses indicated that participants with a lower SDMT score showed lower performance in EVO Monitor (r=0.52, P<.001). Further exploratory analyses revealed associations between performance in EVO Monitor and walking speed (r=-0.45, P<.001) as well as brain volumetric data (left thalamic volume: r=0.47, P<.001; right thalamic volume: r=0.39, P=.002; left rostral middle frontal volume: r=0.28, P=.03; right rostral middle frontal volume: r=0.27, P=.03).

Conclusions: These findings suggest that EVO Monitor, an unsupervised, video game-based digital program integrated with adaptive mechanics, is a clinically valuable approach to measuring cognitive performance in patients with multiple sclerosis.

Trial registration: ClinicalTrials.gov NCT03569618; https://ichgcp.net/clinical-trials-registry/NCT03569618.

Keywords: cognition; cognitive assessment; digital health; mHealth; multiple sclerosis; video game.

Conflict of interest statement

Conflicts of Interest: RB has received research support from the National Multiple Sclerosis Society, the Hilton Foundation, the California Initiative to Advance Precision Medicine, the Sherak Foundation, and Akili Interactive. RB has also received personal compensation for consulting from Alexion, Biogen, EMD Serono, Novartis, Pear Therapeutics, Roche Genentech, and Sanofi Genzyme. RH has received personal compensation for consulting from Roche, Novartis, MEDDAY, Sanofi, Atara, and QIA. AG is cofounder, shareholder, board of directors member, and advisor for Akili Interactive Labs, a company that manufactures investigational digital treatments delivered through a video game–like interface. AG has a patent for a game-based cognitive assessment on which the tool (EVO Monitor) that was used in this study was based. All other authors declare no conflicts of interest.

©Wan-Yu Hsu, William Rowles, Joaquin Anguera, Chao Zhao, Annika Anderson, Amber Alexander, Simone Sacco, Roland Henry, Adam Gazzaley, Riley Bove. Originally published in the Journal of Medical Internet Research (http://www.jmir.org), 20.01.2021.

Figures

Figure 1
Figure 1
Screenshot of the EVO Monitor cognitive assessment program. The participants are instructed to respond to colored target stimuli by tapping the iPad screen while navigating a character along a dynamically moving road and avoiding walls and obstacles by tilting the iPad. Copyright © 2020-2021, Akili Interactive Labs, Inc. All rights reserved.
Figure 2
Figure 2
Study task completion rate. BICAMS: Brief International Cognitive Assessment for Multiple Sclerosis; MS: multiple sclerosis; MSFC: Multiple Sclerosis Functional Composite.
Figure 3
Figure 3
Group differences in EVO Monitor performance between CI, non-CI participants with MS and non-MS participants. Error bars represent standard error of the mean. CI: cognitive impairment; MS: multiple sclerosis. *P≤.01.
Figure 4
Figure 4
Correlation between EVO Monitor performance and SDMT score. SDMT: Symbol Digit Modalities Test.
Figure 5
Figure 5
Correlation between EVO Monitor performance and T25FW. T25FW: Timed 25-Foot Walk.
Figure 6
Figure 6
Correlation between EVO Monitor performance and magnetic resonance imaging volumetric data. ICV: intracranial volume; L: left; R: right; RMF: rostral middle frontal.

References

    1. Rao SM, Leo GJ, Ellington L, Nauertz T, Bernardin L, Unverzagt F. Cognitive dysfunction in multiple sclerosis. II. Impact on employment and social functioning. Neurology. 1991 May;41(5):692–6. doi: 10.1212/wnl.41.5.692.
    1. Ruet A, Deloire M, Hamel D, Ouallet J, Petry K, Brochet B. Cognitive impairment, health-related quality of life and vocational status at early stages of multiple sclerosis: a 7-year longitudinal study. J Neurol. 2013 Mar;260(3):776–84. doi: 10.1007/s00415-012-6705-1.
    1. Amato MP, Langdon D, Montalban X, Benedict RHB, DeLuca J, Krupp LB, Thompson AJ, Comi G. Treatment of cognitive impairment in multiple sclerosis: position paper. J Neurol. 2013 Jun;260(6):1452–68. doi: 10.1007/s00415-012-6678-0.
    1. Achiron A, Barak Y. Cognitive impairment in probable multiple sclerosis. J Neurol Neurosurg Psychiatry. 2003 Apr;74(4):443–6. doi: 10.1136/jnnp.74.4.443.
    1. Rogers JM, Panegyres PK. Cognitive impairment in multiple sclerosis: evidence-based analysis and recommendations. J Clin Neurosci. 2007 Oct;14(10):919–27. doi: 10.1016/j.jocn.2007.02.006.
    1. Bobholz JA, Rao SM. Cognitive dysfunction in multiple sclerosis: a review of recent developments. Curr Opin Neurol. 2003;16(3):283–288. doi: 10.1097/00019052-200306000-00006.
    1. Langdon DW. Cognition in multiple sclerosis. Curr Opin Neurol. 2011 Jun;24(3):244–9. doi: 10.1097/WCO.0b013e328346a43b.
    1. Anguera JA, Brandes-Aitken AN, Rolle CE, Skinner SN, Desai SS, Bower JD, Martucci WE, Chung WK, Sherr EH, Marco EJ. Characterizing cognitive control abilities in children with 16p11.2 deletion using adaptive 'video game' technology: a pilot study. Transl Psychiatry. 2016 Sep 20;6(9):e893. doi: 10.1038/tp.2016.178. doi: 10.1038/tp.2016.178.
    1. Anguera JA, Brandes-Aitken AN, Antovich AD, Rolle CE, Desai SS, Marco EJ. A pilot study to determine the feasibility of enhancing cognitive abilities in children with sensory processing dysfunction. PLoS One. 2017;12(4):e0172616. doi: 10.1371/journal.pone.0172616.
    1. Anguera JA, Gunning FM, Areán Patricia A. Improving late life depression and cognitive control through the use of therapeutic video game technology: A proof-of-concept randomized trial. Depress Anxiety. 2017 Jun;34(6):508–517. doi: 10.1002/da.22588.
    1. Anguera JA, Jordan JT, Castaneda D, Gazzaley A, Areán PA. Conducting a fully mobile and randomised clinical trial for depression: access, engagement and expense. BMJ Innov. 2016 Jan;2(1):14–21. doi: 10.1136/bmjinnov-2015-000098.
    1. Arean PA, Hallgren KA, Jordan JT, Gazzaley A, Atkins DC, Heagerty PJ, Anguera JA. The Use and Effectiveness of Mobile Apps for Depression: Results From a Fully Remote Clinical Trial. J Med Internet Res. 2016 Dec 20;18(12):e330. doi: 10.2196/jmir.6482.
    1. Areàn PA, Hoa Ly K, Andersson G. Mobile technology for mental health assessment. Dialogues Clin Neurosci. 2016 Jun;18(2):163–9.
    1. Charvet LE, Yang J, Shaw MT, Sherman K, Haider L, Xu J, Krupp LB. Cognitive function in multiple sclerosis improves with telerehabilitation: Results from a randomized controlled trial. PLoS One. 2017;12(5):e0177177. doi: 10.1371/journal.pone.0177177.
    1. Davis NO, Bower J, Kollins SH. Proof-of-concept study of an at-home, engaging, digital intervention for pediatric ADHD. PLoS One. 2018;13(1):e0189749. doi: 10.1371/journal.pone.0189749.
    1. Flynn RM, Colón-Acosta N, Zhou J, Bower J. A Game-Based Repeated Assessment for Cognitive Monitoring: Initial Usability and Adherence Study in a Summer Camp Setting. J Autism Dev Disord. 2019 May;49(5):2003–2014. doi: 10.1007/s10803-019-03881-w.
    1. Bove R, Rowles W, Zhao C, Anderson A, Friedman S, Langdon D, Alexander A, Sacco S, Henry R, Gazzaley A, Feinstein A, Anguera JA. A novel in-home digital treatment to improve processing speed in people with multiple sclerosis: A pilot study. Mult Scler. 2020 Jun 25;:1352458520930371. doi: 10.1177/1352458520930371.
    1. Bove RM, Rush G, Zhao C, Rowles W, Garcha P, Morrissey J, Schembri A, Alailima T, Langdon D, Possin K, Gazzaley A, Feinstein A, Anguera J. A Videogame-Based Digital Therapeutic to Improve Processing Speed in People with Multiple Sclerosis: A Feasibility Study. Neurol Ther. 2019 Jun;8(1):135–145. doi: 10.1007/s40120-018-0121-0.
    1. Lee G. Effects of training using video games on the muscle strength, muscle tone, and activities of daily living of chronic stroke patients. J Phys Ther Sci. 2013 May;25(5):595–7. doi: 10.1589/jpts.25.595.
    1. Webster D, Celik O. Systematic review of Kinect applications in elderly care and stroke rehabilitation. J Neuroeng Rehabil. 2014;11:108. doi: 10.1186/1743-0003-11-108.
    1. Trapp W, Landgrebe M, Hoesl K, Lautenbacher S, Gallhofer B, Günther W, Hajak G. Cognitive remediation improves cognition and good cognitive performance increases time to relapse – results of a 5 year catamnestic study in schizophrenia patients. BMC Psychiatry. 2013 Jul 9;13(1):184. doi: 10.1186/1471-244x-13-184.
    1. Kollins SH, Bower J, Findling RL, Keefe R, Epstein J, Cutler AJ, White R, Aberle L, DeLoss D, Faraone SV. 2.40 A Multicenter, Randomized, Active-Control Registration Trial of Software Treatment for Actively Reducing Severity of ADHD (Stars-Adhd) to Assess the Efficacy and Safety of a Novel, Home-Based, Digital Treatment for Pediatric ADHD. J Am Acad Child Adolesc Psychiatry. 2018 Oct;57(10):S172. doi: 10.1016/j.jaac.2018.09.128.
    1. Kollins S, DeLoss D, Cañadas E, Lutz J, Findling R, Keefe R, Epstein JN, Cutler AJ, Faraone SV. A novel digital intervention for actively reducing severity of paediatric ADHD (STARS-ADHD): a randomised controlled trial. Lancet Digital Health. 2020 Apr;2(4):e168–e178. doi: 10.1016/s2589-7500(20)30017-0.
    1. Yerys BE, Bertollo JR, Kenworthy L, Dawson G, Marco EJ, Schultz RT, Sikich L. Brief Report: Pilot Study of a Novel Interactive Digital Treatment to Improve Cognitive Control in Children with Autism Spectrum Disorder and Co-occurring ADHD Symptoms. J Autism Dev Disord. 2019 Apr;49(4):1727–1737. doi: 10.1007/s10803-018-3856-7.
    1. Finkelstein J, Lapshin O, Castro H, Cha E, Provance PG. Home-based physical telerehabilitation in patients with multiple sclerosis: a pilot study. J Rehabil Res Dev. 2008;45(9):1361–73.
    1. Hatzakis M, Haselkorn J, Williams R, Turner A, Nichol P. Telemedicine and the delivery of health services to veterans with multiple sclerosis. J Rehabil Res Dev. 2003;40(3):265–82.
    1. Kane RL, Bever CT, Ehrmantraut M, Forte A, Culpepper WJ, Wallin MT. Teleneurology in patients with multiple sclerosis: EDSS ratings derived remotely and from hands-on examination. J Telemed Telecare. 2008;14(4):190–4. doi: 10.1258/jtt.2008.070904.
    1. Anguera JA, Boccanfuso J, Rintoul JL, Al-Hashimi O, Faraji F, Janowich J, Kong E, Larraburo Y, Rolle C, Johnston E, Gazzaley A. Video game training enhances cognitive control in older adults. Nature. 2013 Sep 5;501(7465):97–101. doi: 10.1038/nature12486.
    1. Benedict RH, DeLuca J, Phillips G, LaRocca N, Hudson LD, Rudick R, Multiple Sclerosis Outcome Assessments Consortium Validity of the Symbol Digit Modalities Test as a cognition performance outcome measure for multiple sclerosis. Mult Scler. 2017 Apr;23(5):721–733. doi: 10.1177/1352458517690821.
    1. Parmenter BA, Weinstock-Guttman B, Garg N, Munschauer F, Benedict RHB. Screening for cognitive impairment in multiple sclerosis using the Symbol digit Modalities Test. Mult Scler. 2007 Jan;13(1):52–7. doi: 10.1177/1352458506070750.
    1. Sandroff BM, Hillman CH, Motl RW. Aerobic fitness is associated with inhibitory control in persons with multiple sclerosis. Arch Clin Neuropsychol. 2015 Jun;30(4):329–40. doi: 10.1093/arclin/acv022.
    1. Sandroff BM, Pilutti LA, Benedict RHB, Motl RW. Association between physical fitness and cognitive function in multiple sclerosis: does disability status matter? Neurorehabil Neural Repair. 2015;29(3):214–23. doi: 10.1177/1545968314541331.
    1. Rocca MA, Amato MP, De Stefano N, Enzinger C, Geurts JJ, Penner I, Rovira A, Sumowski JF, Valsasina P, Filippi M, MAGNIMS Study Group Clinical and imaging assessment of cognitive dysfunction in multiple sclerosis. Lancet Neurol. 2015 Mar;14(3):302–17. doi: 10.1016/S1474-4422(14)70250-9.
    1. Rocca MA, Riccitelli GC, Meani A, Pagani E, Del Sette P, Martinelli V, Comi G, Falini A, Filippi M. Cognitive reserve, cognition, and regional brain damage in MS: A 2 -year longitudinal study. Mult Scler. 2019 Mar;25(3):372–381. doi: 10.1177/1352458517750767.
    1. Polman CH, Reingold SC, Banwell B, Clanet M, Cohen JA, Filippi M, Fujihara K, Havrdova E, Hutchinson M, Kappos L, Lublin FD, Montalban X, O'Connor P, Sandberg-Wollheim M, Thompson AJ, Waubant E, Weinshenker B, Wolinsky JS. Diagnostic criteria for multiple sclerosis: 2010 revisions to the McDonald criteria. Ann Neurol. 2011 Feb;69(2):292–302. doi: 10.1002/ana.22366.
    1. Corfield F, Langdon D. A Systematic Review and Meta-Analysis of the Brief Cognitive Assessment for Multiple Sclerosis (BICAMS) Neurol Ther. 2018 Dec;7(2):287–306. doi: 10.1007/s40120-018-0102-3.
    1. Langdon D, Amato M, Boringa J, Brochet B, Foley F, Fredrikson S, Hämäläinen P, Hartung H, Krupp L, Penner I, Reder A, Benedict R. Recommendations for a Brief International Cognitive Assessment for Multiple Sclerosis (BICAMS) Mult Scler. 2012 Jun;18(6):891–8. doi: 10.1177/1352458511431076.
    1. Delis D, Kramer J, Kaplan E, Ober B. California verbal learning test-II. 2nd ed. San Antonio, TX: The Psychological Corporation; 2000.
    1. Benedict RH. Brief visuospatial memory test - revised: professional manual. Lutz, FL: Psychological Assessment Resources Inc; 1997.
    1. Benedict RHB, Duquin JA, Jurgensen S, Rudick RA, Feitcher J, Munschauer FE, Panzara MA, Weinstock-Guttman B. Repeated assessment of neuropsychological deficits in multiple sclerosis using the Symbol Digit Modalities Test and the MS Neuropsychological Screening Questionnaire. Mult Scler. 2008 Aug;14(7):940–6. doi: 10.1177/1352458508090923.
    1. Cohen JA, Reingold SC, Polman CH, Wolinsky JS. Disability outcome measures in multiple sclerosis clinical trials: current status and future prospects. The Lancet Neurology. 2012 May;11(5):467–476. doi: 10.1016/S1474-4422(12)70059-5.
    1. Gronwall DM. Paced auditory serial-addition task: a measure of recovery from concussion. Percept Mot Skills. 1977 Apr;44(2):367–73. doi: 10.2466/pms.1977.44.2.367.
    1. García-Pérez MA. Adaptive psychophysical methods for nonmonotonic psychometric functions. Atten Percept Psychophys. 2014 Feb;76(2):621–41. doi: 10.3758/s13414-013-0574-2.
    1. King-Smith PE, Rose D. Principles of an adaptive method for measuring the slope of the psychometric function. Vision Res. 1997 Jun;37(12):1595–604. doi: 10.1016/s0042-6989(96)00310-0.
    1. Leek MR. Adaptive procedures in psychophysical research. Percept Psychophys. 2001 Nov;63(8):1279–92. doi: 10.3758/bf03194543.
    1. Klein SA. Measuring, estimating, and understanding the psychometric function: a commentary. Percept Psychophys. 2001 Nov;63(8):1421–55. doi: 10.3758/bf03194552.
    1. Mishra J, Anguera JA, Gazzaley A. Video Games for Neuro-Cognitive Optimization. Neuron. 2016 Dec 20;90(2):214–8. doi: 10.1016/j.neuron.2016.04.010.
    1. Tustison NJ, Cook PA, Klein A, Song G, Das SR, Duda JT, Kandel BM, van Strien N, Stone JR, Gee JC, Avants BB. Large-scale evaluation of ANTs and FreeSurfer cortical thickness measurements. Neuroimage. 2014 Oct 01;99:166–79. doi: 10.1016/j.neuroimage.2014.05.044.
    1. Klein A, Ghosh SS, Bao FS, Giard J, Häme Y, Stavsky E, Lee N, Rossa B, Reuter M, Chaibub Neto E, Keshavan A. Mindboggling morphometry of human brains. PLoS Comput Biol. 2017 Feb;13(2):e1005350. doi: 10.1371/journal.pcbi.1005350.
    1. Whitwell JL, Crum WR, Watt HC, Fox NC. Normalization of cerebral volumes by use of intracranial volume: implications for longitudinal quantitative MR imaging. AJNR Am J Neuroradiol. 2001 Sep;22(8):1483–9.
    1. Kiely KM, Butterworth P, Watson N, Wooden M. The Symbol Digit Modalities Test: Normative data from a large nationally representative sample of Australians. Arch Clin Neuropsychol. 2014 Dec;29(8):767–75. doi: 10.1093/arclin/acu055.
    1. Hoang P, Schoene D, Gandevia S, Smith S, Lord SR. Effects of a home-based step training programme on balance, stepping, cognition and functional performance in people with multiple sclerosis--a randomized controlled trial. Mult Scler. 2016 Jan;22(1):94–103. doi: 10.1177/1352458515579442.
    1. Amato MP, Ponziani G, Siracusa G, Sorbi S. Cognitive dysfunction in early-onset multiple sclerosis: a reappraisal after 10 years. Arch Neurol. 2001 Oct;58(10):1602–6. doi: 10.1001/archneur.58.10.1602.
    1. Carotenuto A, Moccia M, Costabile T, Signoriello E, Paolicelli D, Simone M, Lus G, Brescia Morra V, Lanzillo R, Cogniped study group Associations between cognitive impairment at onset and disability accrual in young people with multiple sclerosis. Sci Rep. 2019 Dec 02;9(1):18074. doi: 10.1038/s41598-019-54153-7. doi: 10.1038/s41598-019-54153-7.
    1. Batista S, Teter B, Sequeira K, Josyula S, Hoogs M, Ramanathan M, Benedict RHB, Weinstock-Guttman B. Cognitive impairment is associated with reduced bone mass in multiple sclerosis. Mult Scler. 2012 Oct;18(10):1459–65. doi: 10.1177/1352458512440206.
    1. Sandroff BM, Motl RW. Fitness and cognitive processing speed in persons with multiple sclerosis: a cross-sectional investigation. J Clin Exp Neuropsychol. 2012;34(10):1041–52. doi: 10.1080/13803395.2012.715144.
    1. Benedict RHB, Holtzer R, Motl RW, Foley FW, Kaur S, Hojnacki D, Weinstock-Guttman B. Upper and lower extremity motor function and cognitive impairment in multiple sclerosis. J Int Neuropsychol Soc. 2011 Jul;17(4):643–53. doi: 10.1017/S1355617711000403.
    1. Rosano C, Aizenstein HJ, Wu M, Newman AB, Becker JT, Lopez OL, Kuller LH. Focal atrophy and cerebrovascular disease increase dementia risk among cognitively normal older adults. J Neuroimaging. 2007 Apr;17(2):148–55. doi: 10.1111/j.1552-6569.2007.00093.x.
    1. Whitman GT, Tang Y, Lin A, Baloh RW, Tang T. A prospective study of cerebral white matter abnormalities in older people with gait dysfunction. Neurology. 2001 Sep 25;57(6):990–4. doi: 10.1212/wnl.57.6.990.
    1. Alvarez JA, Emory E. Executive function and the frontal lobes: a meta-analytic review. Neuropsychol Rev. 2006 Mar;16(1):17–42. doi: 10.1007/s11065-006-9002-x.
    1. Ortuño F, Ojeda N, Arbizu J, López P, Martí-Climent JM, Peñuelas I, Cervera S. Sustained attention in a counting task: normal performance and functional neuroanatomy. Neuroimage. 2002 Sep;17(1):411–20. doi: 10.1006/nimg.2002.1168.
    1. Hadland KA, Rushworth MF, Passingham RE, Jahanshahi M, Rothwell JC. Interference with performance of a response selection task that has no working memory component: an rTMS comparison of the dorsolateral prefrontal and medial frontal cortex. J Cogn Neurosci. 2001 Nov 15;13(8):1097–108. doi: 10.1162/089892901753294392.
    1. Hoppenbrouwers SS, De Jesus DR, Stirpe T, Fitzgerald PB, Voineskos AN, Schutter DJLG, Daskalakis ZJ. Inhibitory deficits in the dorsolateral prefrontal cortex in psychopathic offenders. Cortex. 2013 May;49(5):1377–85. doi: 10.1016/j.cortex.2012.06.003.
    1. Van der Werf YD, Witter MP, Groenewegen HJ. The intralaminar and midline nuclei of the thalamus. Anatomical and functional evidence for participation in processes of arousal and awareness. Brain Res Brain Res Rev. 2002 Sep;39(2-3):107–40. doi: 10.1016/s0165-0173(02)00181-9.
    1. Batista S, Zivadinov R, Hoogs M, Bergsland N, Heininen-Brown M, Dwyer MG, Weinstock-Guttman B, Benedict RHB. Basal ganglia, thalamus and neocortical atrophy predicting slowed cognitive processing in multiple sclerosis. J Neurol. 2012 Jan;259(1):139–46. doi: 10.1007/s00415-011-6147-1.
    1. Benedict RHB, Bruce JM, Dwyer MG, Abdelrahman N, Hussein S, Weinstock-Guttman B, Garg N, Munschauer F, Zivadinov R. Neocortical atrophy, third ventricular width, and cognitive dysfunction in multiple sclerosis. Arch Neurol. 2006 Sep;63(9):1301–6. doi: 10.1001/archneur.63.9.1301.
    1. Malhotra P, Coulthard EJ, Husain M. Role of right posterior parietal cortex in maintaining attention to spatial locations over time. Brain. 2009 Mar;132(Pt 3):645–60. doi: 10.1093/brain/awn350.

Source: PubMed

3
Suscribir