Effects of Sleep-Extend on glucose metabolism in women with a history of gestational diabetes: a pilot randomized trial

Sirimon Reutrakul, Pamela Martyn-Nemeth, Lauretta Quinn, Brett Rydzon, Medha Priyadarshini, Kirstie K Danielson, Kelly G Baron, Jennifer Duffecy, Sirimon Reutrakul, Pamela Martyn-Nemeth, Lauretta Quinn, Brett Rydzon, Medha Priyadarshini, Kirstie K Danielson, Kelly G Baron, Jennifer Duffecy

Abstract

Objectives: Women with a history of gestational diabetes (GDM) are at 7-fold increase in the risk of developing diabetes. Insufficient sleep has also been shown to increase diabetes risk. This study aimed to explore the feasibility of a sleep extension in women with a history of GDM and short sleep, and effects on glucose metabolism.

Methods: Women age 18-45 years with a history of GDM and actigraphy confirmed short sleep duration (<7 h/night) on weekdays were randomized at a ratio of 1 control (heathy living information) to 2 cases (6 weeks of "Sleep-Extend" intervention: use of a Fitbit, weekly digital content, and weekly coaching to increase sleep duration). An oral glucose tolerance test (OGTT), 7-day actigraphy recording, and questionnaires were obtained at baseline and 6 weeks. Mean differences between baseline and end-of-intervention parameters were compared using independent samples t-tests.

Results: Mean (SD) sleep duration increased within the Sleep-Extend group (n=9, +26.9 (42.5) min) but decreased within the controls (n=5, - 9.1 (20.4) min), a mean difference (MD) of 35.9 min (95% confidence interval (CI) - 8.6, 80.5). Fasting glucose increased, but less in Sleep-Extend vs. control groups (1.6 (9.4) vs 10.4 (8.2) mg/dL, MD - 8.8 mg/dL (95% CI - 19.8, 2.1), while 2-h glucose levels after an OGTT did not differ. Compared to controls, Sleep-Extend had decreased fatigue score (MD - 10.6, 95%CI - 20.7, - 0.6), and increased self-report physical activity (MD 5036 MET- minutes/week, 95%CI 343, 9729. Fitbit compliance and satisfaction in Sleep-Extend group was high.

Conclusion: Sleep extension is feasible in women with a history of GDM, with benefits in fatigue and physical activity, and possibly glucose metabolism. These data support a larger study exploring benefits of sleep extension on glucose metabolism in these high-risk women.

Trial registration: ClinicalTrials.gov , NCT03638102 (8/20/2018).

Keywords: Gestational diabetes; Glucose; Short sleep; Sleep duration; Sleep extension.

Conflict of interest statement

The authors declare that they have no competing interests.

© 2022. The Author(s).

Figures

Fig. 1
Fig. 1
Flow of the study
Fig. 2
Fig. 2
Changes in fasting glucose (A) and sleep duration (B) in Sleep-Extend and healthy living control groups

References

    1. DeSisto CL, Kim SY, Sharma AJ. Prevalence estimates of gestational diabetes mellitus in the United States, Pregnancy Risk Assessment Monitoring System (PRAMS), 2007-2010. Prev Chronic Dis. 2014;11:E104. doi: 10.5888/pcd11.130415.
    1. Bellamy L, Casas JP, Hingorani AD, Williams D. Type 2 diabetes mellitus after gestational diabetes: a systematic review and meta-analysis. Lancet. 2009;373(9677):1773–1779. doi: 10.1016/S0140-6736(09)60731-5.
    1. Cheung NW, Byth K. Population health significance of gestational diabetes. Diabetes Care. 2003;26(7):2005–2009. doi: 10.2337/diacare.26.7.2005.
    1. American Diabetes Association. Economic Costs of Diabetes in the U.S. in 2017. Diabetes Care. 2018;41(5):917–28.
    1. Anothaisintawee T, Reutrakul S, Van Cauter E, Thakkinstian A. Sleep disturbances compared to traditional risk factors for diabetes development: Systematic review and meta-analysis. Sleep Med Rev. 2015;30:11–24. doi: 10.1016/j.smrv.2015.10.002.
    1. Spiegel K, Leproult R, Van Cauter E. Impact of sleep debt on metabolic and endocrine function. Lancet. 1999;354(9188):1435–1439. doi: 10.1016/S0140-6736(99)01376-8.
    1. Nedeltcheva AV, Kessler L, Imperial J, Penev PD. Exposure to recurrent sleep restriction in the setting of high caloric intake and physical inactivity results in increased insulin resistance and reduced glucose tolerance. J Clin Endocrinol Metab. 2009;94(9):3242–3250. doi: 10.1210/jc.2009-0483.
    1. Buxton OM, Pavlova M, Reid EW, Wang W, Simonson DC, Adler GK. Sleep restriction for 1 week reduces insulin sensitivity in healthy men. Diabetes. 2010;59(9):2126–2133. doi: 10.2337/db09-0699.
    1. Reutrakul S, Mokhlesi B. Obstructive Sleep Apnea and Diabetes: A State of the Art Review. Chest. 2017;152(5):1070–1086. doi: 10.1016/j.chest.2017.05.009.
    1. Ayas NT, White DP, Al-Delaimy WK, Manson JE, Stampfer MJ, Speizer FE, et al. A prospective study of self-reported sleep duration and incident diabetes in women. Diabetes Care. 2003;26(2):380–384. doi: 10.2337/diacare.26.2.380.
    1. Gangwisch JE, Heymsfield SB, Boden-Albala B, Buijs RM, Kreier F, Pickering TG, et al. Sleep duration as a risk factor for diabetes incidence in a large U.S. sample. Sleep. 2007;30(12):1667–1673. doi: 10.1093/sleep/30.12.1667.
    1. Holliday EG, Magee CA, Kritharides L, Banks E, Attia J. Short sleep duration is associated with risk of future diabetes but not cardiovascular disease: a prospective study and meta-analysis. PLoS One. 2013;8(11):e82305. doi: 10.1371/journal.pone.0082305.
    1. Ferrari U, Kunzel H, Trondle K, Rottenkolber M, Kohn D, Fugmann M, et al. Poor sleep quality is associated with impaired glucose tolerance in women after gestational diabetes. J Psychiatr Res. 2015;65:166–171. doi: 10.1016/j.jpsychires.2015.02.012.
    1. Amnakkittikul S, Chirakalwasan N, Wanitcharoenkul E, Charoensri S, Saetung S, Chanprasertyothin S, et al. Postpartum resolution of obstructive sleep apnea in women with gestational diabetes and the relationship with glucose metabolism. Acta Diabetol. 2018;55(7):4. doi: 10.1007/s00592-018-1127-x.
    1. Leproult R, Deliens G, Gilson M, Peigneux P. Beneficial Impact of Sleep Extension on Fasting Insulin Sensitivity in Adults with Habitual Sleep Restriction. Sleep. 2015;35(5):707–715. doi: 10.5665/sleep.4660.
    1. So-ngern A, Chirakalwasan N, Saetung S, Chanprasertyothin S, Thakkinstian A, Reutrakul S. Effects of sleep extension on glucose metabolism in chronically sleep-deprived individuals. J Clin Sleep Med. 2019;15(5):8. doi: 10.5664/jcsm.7758.
    1. Al Khatib HK, Hall WL, Creedon A, Ooi E, Masri T, McGowan L, et al. Sleep extension is a feasible lifestyle intervention in free-living adults who are habitually short sleepers: a potential strategy for decreasing intake of free sugars? A randomized controlled pilot study. Am J Clin Nutr. 2018;107(1):43–53. doi: 10.1093/ajcn/nqx030.
    1. Zhu B, Yin Y, Shi C, Chaiard J, Park CG, Chen X, et al. Feasibility of sleep extension and its effect on cardiometabolic parameters in free-living settings: a systematic review and meta-analysis of experimental studies. Eur J Cardiovasc Nurs. 2022;21(1):9–25. doi: 10.1093/eurjcn/zvab055.
    1. Chung F, Subramanyam R, Liao P, Sasaki E, Shapiro C, Sun Y. High STOP-Bang score indicates a high probability of obstructive sleep apnoea. Br J Anaesth. 2012;108(5):768–775. doi: 10.1093/bja/aes022.
    1. Matthews DR, Hosker JP, Rudenski AS, Naylor BA, Treacher DF, Turner RC. Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia. 1985;28(7):412–419. doi: 10.1007/BF00280883.
    1. Buysse DJ, Reynolds CF, III, Monk TH, Berman SR, Kupfer DJ. The Pittsburgh Sleep Quality Index: a new instrument for psychiatric practice and research. Psychiatry Res. 1989;28(2):193–213. doi: 10.1016/0165-1781(89)90047-4.
    1. Jordan P, Shedden-Mora MC, Lowe B. Psychometric analysis of the Generalized Anxiety Disorder scale (GAD-7) in primary care using modern item response theory. PLoS One. 2017;12(8):e0182162. doi: 10.1371/journal.pone.0182162.
    1. Cella D, Lai JS, Jensen SE, Christodoulou C, Junghaenel DU, Reeve BB, et al. PROMIS Fatigue Item Bank had Clinical Validity across Diverse Chronic Conditions. J Clin Epidemiol. 2016;73:128–134. doi: 10.1016/j.jclinepi.2015.08.037.
    1. Bull FC, Maslin TS, Armstrong T. Global physical activity questionnaire (GPAQ): nine country reliability and validity study. J Phys Act Health. 2009;6(6):790–804. doi: 10.1123/jpah.6.6.790.
    1. Radloff L. The CES-D Scale: A Self-Report Depression Scale for Research in the General Population. App Psychol Measurement. 1977;1(3):385–401. doi: 10.1177/014662167700100306.
    1. Hamill K, Jumabhoy R, Kahawage P, de Zambotti M, Walters EM, Drummond SPA. Validity, potential clinical utility and comparison of a consumer activity tracker and a research-grade activity tracker in insomnia disorder II: Outside the laboratory. J Sleep Res. 2020;29(1):e12944. doi: 10.1111/jsr.12944.
    1. Hartescu I, Stensel DJ, Thackray AE, King JA, Dorling JL, Rogers EN, et al. Sleep extension and metabolic health in male overweight/obese short sleepers: A randomised controlled trial. J Sleep Res 2021:e13469.
    1. Baron KG, Duffecy J, Reutrakul S, Levenson JC, McFarland MM, Lee S, et al. Behavioral interventions to extend sleep duration: A systematic review and meta-analysis. Sleep Med Rev. 2021;60:101532. doi: 10.1016/j.smrv.2021.101532.
    1. Reutrakul S, Zaidi N, Wroblewski K, Kay HH, Ismail M, Ehrmann DA, et al. Sleep disturbances and their relationship to glucose tolerance in pregnancy. Diabetes Care. 2011;34(11):2454–2457. doi: 10.2337/dc11-0780.
    1. Nichols GA, Hillier TA, Brown JB. Normal fasting plasma glucose and risk of type 2 diabetes diagnosis. Am J Med. 2008;121(6):519–524. doi: 10.1016/j.amjmed.2008.02.026.
    1. Tasali E, Wroblewski K, Kahn E, Kilkus J, Schoeller DA. Effect of Sleep Extension on Objectively Assessed Energy Intake Among Adults With Overweight in Real-life Settings: A Randomized Clinical Trial. JAMA Intern Med. 2022.
    1. Andersson G, Cuijpers P. Internet-based and other computerized psychological treatments for adult depression: a meta-analysis. Cogn Behav Ther. 2009;38(4):196–205. doi: 10.1080/16506070903318960.
    1. Titov N, Andrews G, Davies M, McIntyre K, Robinson E, Solley K. Internet treatment for depression: a randomized controlled trial comparing clinician vs. technician assistance. PloS one 2010;5(6):e10939.
    1. Mohr DC, Cuijpers P, Lehman K. Supportive accountability: a model for providing human support to enhance adherence to eHealth interventions. J Med Internet Res. 2011;13(1):e30. doi: 10.2196/jmir.1602.
    1. Lerner JS, Tetlock PE. Accounting for the effects of accountability. Psychol Bull. 1999;125(2):255–275. doi: 10.1037/0033-2909.125.2.255.
    1. Leproult R, Holmback U, Van Cauter E. Circadian misalignment augments markers of insulin resistance and inflammation, independently of sleep loss. Diabetes. 2014;63(6):1860–1869. doi: 10.2337/db13-1546.

Source: PubMed

3
Suscribir