Maternal filaggrin mutations increase the risk of atopic dermatitis in children: an effect independent of mutation inheritance

Jorge Esparza-Gordillo, Anja Matanovic, Ingo Marenholz, Anja Bauerfeind, Klaus Rohde, Katja Nemat, Min-Ae Lee-Kirsch, Magnus Nordenskjöld, Marten C G Winge, Thomas Keil, Renate Krüger, Susanne Lau, Kirsten Beyer, Birgit Kalb, Bodo Niggemann, Norbert Hübner, Heather J Cordell, Maria Bradley, Young-Ae Lee, Jorge Esparza-Gordillo, Anja Matanovic, Ingo Marenholz, Anja Bauerfeind, Klaus Rohde, Katja Nemat, Min-Ae Lee-Kirsch, Magnus Nordenskjöld, Marten C G Winge, Thomas Keil, Renate Krüger, Susanne Lau, Kirsten Beyer, Birgit Kalb, Bodo Niggemann, Norbert Hübner, Heather J Cordell, Maria Bradley, Young-Ae Lee

Abstract

Epidemiological studies suggest that allergy risk is preferentially transmitted through mothers. This can be due to genomic imprinting, where the phenotype effect of an allele depends on its parental origin, or due to maternal effects reflecting the maternal genome's influence on the child during prenatal development. Loss-of-function mutations in the filaggrin gene (FLG) cause skin barrier deficiency and strongly predispose to atopic dermatitis (AD). We investigated the 4 most prevalent European FLG mutations (c.2282del4, p.R501X, p.R2447X, and p.S3247X) in two samples including 759 and 450 AD families. We used the multinomial and maximum-likelihood approach implemented in the PREMIM/EMIM tool to model parent-of-origin effects. Beyond the known role of FLG inheritance in AD (R1meta-analysis = 2.4, P = 1.0 x 10-36), we observed a strong maternal FLG genotype effect that was consistent in both independent family sets and for all 4 mutations analysed. Overall, children of FLG-carrier mothers had a 1.5-fold increased AD risk (S1 = 1.50, Pmeta-analysis = 8.4 x 10-8). Our data point to two independent and additive effects of FLG mutations: i) carrying a mutation and ii) having a mutation carrier mother. The maternal genotype effect was independent of mutation inheritance and can be seen as a non-genetic transmission of a genetic effect. The FLG maternal effect was observed only when mothers had allergic sensitization (elevated allergen-specific IgE antibody plasma levels), suggesting that FLG mutation-induced systemic immune responses in the mother may influence AD risk in the child. Notably, the maternal effect reported here was stronger than most common genetic risk factors for AD recently identified through genome-wide association studies (GWAS). Our study highlights the power of family-based studies in the identification of new etiological mechanisms and reveals, for the first time, a direct influence of the maternal genotype on the offspring's susceptibility to a common human disease.

Conflict of interest statement

The authors have declared that no competing interests exist.

Figures

Fig 1. Frequency of FLG mutations in…
Fig 1. Frequency of FLG mutations in fathers, mothers, individuals with atopic dermatitis and controls.
Allele and genotype frequencies of the combined FLG-mutations in fathers and mothers were calculated using all available parents. AD refers to the frequency in the AD-affected children including the families and the unrelated AD-cases (available only in the Central European study). Frequency in controls corresponds to population-based individuals with unknown disease status. Results of the Central and Northern European populations are shown in panels A and B, respectively.

References

    1. Brown SJ, McLean WH (2012) One remarkable molecule: filaggrin. J Invest Dermatol 132: 751–762. 10.1038/jid.2011.393
    1. Smith FJ, Irvine AD, Terron-Kwiatkowski A, Sandilands A, Campbell LE et al. (2006) Loss-of-function mutations in the gene encoding filaggrin cause ichthyosis vulgaris. Nat Genet 38: 337–342.
    1. Palmer CN, Irvine AD, Terron-Kwiatkowski A, Zhao Y, Liao H et al. (2006) Common loss-of-function variants of the epidermal barrier protein filaggrin are a major predisposing factor for atopic dermatitis. Nat Genet 38: 441–446.
    1. Sandilands A, Terron-Kwiatkowski A, Hull PR, O'Regan GM, Clayton TH et al. (2007) Comprehensive analysis of the gene encoding filaggrin uncovers prevalent and rare mutations in ichthyosis vulgaris and atopic eczema. Nat Genet 39: 650–654.
    1. Brown SJ, Asai Y, Cordell HJ, Campbell LE, Zhao Y et al. (2011) Loss-of-function variants in the filaggrin gene are a significant risk factor for peanut allergy. J Allergy Clin Immunol 127: 661–667. 10.1016/j.jaci.2011.01.031
    1. Fallon PG, Sasaki T, Sandilands A, Campbell LE, Saunders SP et al. (2009) A homozygous frameshift mutation in the mouse Flg gene facilitates enhanced percutaneous allergen priming. Nat Genet 41: 602–608. 10.1038/ng.358
    1. Kawasaki H, Nagao K, Kubo A, Hata T, Shimizu A et al. (2012) Altered stratum corneum barrier and enhanced percutaneous immune responses in filaggrin-null mice. J Allergy Clin Immunol 129: 1538–1546. 10.1016/j.jaci.2012.01.068
    1. Lim RH, Kobzik L, Dahl M (2010) Risk for asthma in offspring of asthmatic mothers versus fathers: a meta-analysis. PLoS One 5: e10134 10.1371/journal.pone.0010134
    1. Goldberg M, Eisenberg E, Elizur A, Rajuan N, Rachmiel M et al. (2013) Role of parental atopy in cow's milk allergy: a population-based study. Ann Allergy Asthma Immunol 110: 279–283. 10.1016/j.anai.2013.01.017
    1. Bisgaard H, Halkjaer LB, Hinge R, Giwercman C, Palmer C et al. (2009) Risk analysis of early childhood eczema. J Allergy Clin Immunol 123: 1355–1360. 10.1016/j.jaci.2009.03.046
    1. Wadonda-Kabondo N, Sterne JA, Golding J, Kennedy CT, Archer CB et al. (2004) Association of parental eczema, hayfever, and asthma with atopic dermatitis in infancy: birth cohort study. Arch Dis Child 89: 917–921.
    1. Kong A, Steinthorsdottir V, Masson G, Thorleifsson G, Sulem P et al. (2009) Parental origin of sequence variants associated with complex diseases. Nature 462: 868–874. 10.1038/nature08625
    1. Lawson HA, Cheverud JM, Wolf JB (2013) Genomic imprinting and parent-of-origin effects on complex traits. Nat Rev Genet 14: 609–617. 10.1038/nrg3543
    1. Hager R, Cheverud JM, Wolf JB (2008) Maternal effects as the cause of parent-of-origin effects that mimic genomic imprinting. Genetics 178: 1755–1762. 10.1534/genetics.107.080697
    1. Exome Aggregation Consortium (ExAC), Cambridge, MA (URL: ) [date (December, 2014) accessed].
    1. Marenholz I, Nickel R, Ruschendorf F, Schulz F, Esparza-Gordillo J et al. (2006) Filaggrin loss-of-function mutations predispose to phenotypes involved in the atopic march. J Allergy Clin Immunol 118: 866–871.
    1. Ekelund E, Lieden A, Link J, Lee SP, d'Amato M et al. (2008) Loss-of-function variants of the filaggrin gene are associated with atopic eczema and associated phenotypes in Swedish families. Acta Derm Venereol 88: 15–19. 10.2340/00015555-0383
    1. Howey R, Cordell HJ (2012) PREMIM and EMIM: tools for estimation of maternal, imprinting and interaction effects using multinomial modelling. BMC Bioinformatics 13: 149 10.1186/1471-2105-13-149
    1. Ainsworth HF, Unwin J, Jamison DL, Cordell HJ (2011) Investigation of maternal effects, maternal-fetal interactions and parent-of-origin effects (imprinting), using mothers and their offspring. Genet Epidemiol 35: 19–45. 10.1002/gepi.20547
    1. Lee YA, Wahn U, Kehrt R, Tarani L, Businco L et al. (2000) A major susceptibility locus for atopic dermatitis maps to chromosome 3q21. Nat Genet 26: 470–473.
    1. Muller S, Marenholz I, Lee YA, Sengler C, Zitnik SE et al. (2009) Association of Filaggrin loss-of-function-mutations with atopic dermatitis and asthma in the Early Treatment of the Atopic Child (ETAC) population. Pediatr Allergy Immunol 20: 358–361. 10.1111/j.1399-3038.2008.00808.x
    1. Ballardini N, Kull I, Soderhall C, Lilja G, Wickman M et al. (2013) Eczema severity in preadolescent children and its relation to sex, filaggrin mutations, asthma, rhinitis, aggravating factors and topical treatment: a report from the BAMSE birth cohort. Br J Dermatol 168: 588–594. 10.1111/bjd.12196
    1. Willer CJ, Li Y, Abecasis GR (2010) METAL: fast and efficient meta-analysis of genomewide association scans. Bioinformatics 26: 2190–2191. 10.1093/bioinformatics/btq340
    1. Case A, Paxson C (2001) Mothers and others: who invests in children's health? J Health Econ 20: 301–328.
    1. Su AI, Wiltshire T, Batalov S, Lapp H, Ching KA et al. (2004) A gene atlas of the mouse and human protein-encoding transcriptomes. Proc Natl Acad Sci U S A 101: 6062–6067.
    1. Wu C, Orozco C, Boyer J, Leglise M, Goodale J et al. (2009) BioGPS: an extensible and customizable portal for querying and organizing gene annotation resources. Genome Biol 10: R130 10.1186/gb-2009-10-11-r130
    1. GTEx Consortium. (2013) The Genotype-Tissue Expression (GTEx) project. Nat Genet 45: 580–585. 10.1038/ng.2653
    1. van den Oord RA, Sheikh A (2009) Filaggrin gene defects and risk of developing allergic sensitisation and allergic disorders: systematic review and meta-analysis. BMJ 339: b2433 10.1136/bmj.b2433
    1. Liu FT, Goodarzi H, Chen HY (2011) IgE, mast cells, and eosinophils in atopic dermatitis. Clin Rev Allergy Immunol 41: 298–310. 10.1007/s12016-011-8252-4
    1. Hamada K, Suzaki Y, Goldman A, Ning YY, Goldsmith C et al. (2003) Allergen-independent maternal transmission of asthma susceptibility. J Immunol 170: 1683–1689.
    1. Fedulov AV, Kobzik L (2011) Allergy risk is mediated by dendritic cells with congenital epigenetic changes. Am J Respir Cell Mol Biol 44: 285–292. 10.1165/rcmb.2009-0400OC
    1. Straubinger K, Paul S, Prazeres da CO, Ritter M, Buch T et al. (2014) Maternal immune response to helminth infection during pregnancy determines offspring susceptibility to allergic airway inflammation. J Allergy Clin Immunol.
    1. von ME, Vercelli D (2010) Farm living: effects on childhood asthma and allergy. Nat Rev Immunol 10: 861–868. 10.1038/nri2871
    1. Brand S, Teich R, Dicke T, Harb H, Yildirim AO et al. (2011) Epigenetic regulation in murine offspring as a novel mechanism for transmaternal asthma protection induced by microbes. J Allergy Clin Immunol 128: 618–625. 10.1016/j.jaci.2011.04.035
    1. Mott R, Yuan W, Kaisaki P, Gan X, Cleak J et al. (2014) The architecture of parent-of-origin effects in mice. Cell 156: 332–342. 10.1016/j.cell.2013.11.043
    1. Shirakawa T, Li A, Dubowitz M, Dekker JW, Shaw AE et al. (1994) Association between atopy and variants of the beta subunit of the high- affinity immunoglobulin E receptor. Nat Genet 7: 125–129.
    1. Walley AJ, Chavanas S, Moffatt MF, Esnouf RM, Ubhi B et al. (2001) Gene polymorphism in Netherton and common atopic disease. Nat Genet 29: 175–178.
    1. Soderhall C, Marenholz I, Kerscher T, Ruschendorf F, Esparza-Gordillo J et al. (2007) Variants in a novel epidermal collagen gene (COL29A1) are associated with atopic dermatitis. PLoS Biol 5: e242
    1. Gleason G, Liu B, Bruening S, Zupan B, Auerbach A et al. (2010) The serotonin1A receptor gene as a genetic and prenatal maternal environmental factor in anxiety. Proc Natl Acad Sci U S A 107: 7592–7597. 10.1073/pnas.0914805107
    1. Yan L, Zhao L, Long Y, Zou P, Ji G et al. (2012) Association of the maternal MTHFR C677T polymorphism with susceptibility to neural tube defects in offsprings: evidence from 25 case-control studies. PLoS One 7: e41689 10.1371/journal.pone.0041689
    1. Gordeeva LA, Voronina EN, Sokolova EA, Ermolenko NA, Gareeva JV et al. (2013) Association GSTT1, GSTM1 and GSTP1 (Ile105Val) genetic polymorphisms in mothers with risk of congenital malformations in their children in Western Siberia: a case-control study. Prenat Diagn 1–7.
    1. Hanifin JM, Rajka G (1980) Diagnostic Features of Atopic Dermatitis. Acta Derm (Stockholm) 92 (Suppl.): 44–47.
    1. Esparza-Gordillo J, Weidinger S, Folster-Holst R, Bauerfeind A, Ruschendorf F et al. (2009) A common variant on chromosome 11q13 is associated with atopic dermatitis. Nat Genet 41: 596–601. 10.1038/ng.347
    1. Lau S, Illi S, Sommerfeld C, Niggemann B, Bergmann R et al. (2000) Early exposure to house-dust mite and cat allergens and development of childhood asthma: a cohort study. Multicentre Allergy Study Group. Lancet 356: 1392–1397.
    1. Warner JO (2001) A double-blinded, randomized, placebo-controlled trial of cetirizine in preventing the onset of asthma in children with atopic dermatitis: 18 months' treatment and 18 months' posttreatment follow-up. J Allergy Clin Immunol 108: 929–937.
    1. Williams HC, Burney PG, Hay RJ, Archer CB, Shipley MJ et al. (1994) The U.K. Working Party's Diagnostic Criteria for Atopic Dermatitis. I. Derivation of a minimum set of discriminators for atopic dermatitis. Br J Dermatol 131: 383–396.
    1. Weidinger S, O'Sullivan M, Illig T, Baurecht H, Depner M et al. (2008) Filaggrin mutations, atopic eczema, hay fever, and asthma in children. J Allergy Clin Immunol 121: 1203–1209. 10.1016/j.jaci.2008.02.014
    1. Den Dunnen JT, Antonarakis SE (2001) Nomenclature for the description of human sequence variations. Hum Genet 109: 121–124.
    1. Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MA et al. (2007) PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet 81: 559–575.
    1. Herold C, Becker T (2009) Genetic association analysis with FAMHAP: a major program update. Bioinformatics 25: 134–136. 10.1093/bioinformatics/btn581

Source: PubMed

3
Suscribir