Lateral Ramus Cortical Bone Plate in Alveolar Cleft Osteoplasty with Concomitant Use of Buccal Fat Pad Derived Cells and Autogenous Bone: Phase I Clinical Trial

Arash Khojasteh, Lida Kheiri, Hossein Behnia, Azita Tehranchi, Pantea Nazeman, Nasser Nadjmi, Masoud Soleimani, Arash Khojasteh, Lida Kheiri, Hossein Behnia, Azita Tehranchi, Pantea Nazeman, Nasser Nadjmi, Masoud Soleimani

Abstract

Tissue regeneration has become a promising treatment for craniomaxillofacial bone defects such as alveolar clefts. This study sought to assess the efficacy of lateral ramus cortical plate with buccal fat pad derived mesenchymal stem cells (BFSCs) in treatment of human alveolar cleft defects. Ten patients with unilateral anterior maxillary cleft met the inclusion criteria and were assigned to three treatment groups. First group was treated with anterior iliac crest (AIC) bone and a collagen membrane (AIC group), the second group was treated with lateral ramus cortical bone plate (LRCP) with BFSCs mounted on a natural bovine bone mineral (LRCP+BFSC), and the third group was treated with AIC bone, BFSCs cultured on natural bovine bone mineral, and a collagen membrane (AIC+BFSC). The amount of regenerated bone was measured using cone beam computed tomography 6 months postoperatively. AIC group showed the least amount of new bone formation (70 ± 10.40%). LRCP+BFSC group demonstrated defect closure and higher amounts of new bone formation (75 ± 3.5%) but less than AIC+BFSC (82.5 ± 6.45%), suggesting that use of BFSCs within LRCP cage and AIC may enhance bone regeneration in alveolar cleft bone defects; however, the differences were not statistically significant. This clinical trial was registered at clinicaltrial.gov with NCT02859025 identifier.

Figures

Figure 1
Figure 1
Consort flow diagram demonstrating study protocol.
Figure 2
Figure 2
Buccal fat pad harvesting. Buccal fat pad was exposed and harvested using a vestibular incision distal to the second molar.
Figure 3
Figure 3
Light microscopic evaluation of the stellate like cells extracted from buccal fat pad.
Figure 4
Figure 4
(a) SEM evaluation views of NBBM granule (×50); (b) BFSCs laid down into the scaffold through cellular pods and attachments at ×500 and ×1000 view (c).
Figure 5
Figure 5
Lateral ramus cortical bone was harvested from lateral side of the mandible.
Figure 6
Figure 6
Preparation and placing of LRCP; LRCP was trimmed and cut to 2-3 pieces and fixed in defect region. Protected healing space was created and BFSCs were delivered to the space.
Figure 7
Figure 7
Anterior iliac crest spongy bone was filled in the alveolar defect in control group and covered with collagen membrane.
Figure 8
Figure 8
Scaffolds carrying BFSCs covered the spongy iliac bone in AIC+BFSC group.
Figure 9
Figure 9
Flow cytometeric evaluation of the human buccal fat pad derived stem cells. CD 70, 93, 44, and 105 were detected positive and CD 45 and 34 were negative.
Figure 10
Figure 10
(a) Alizarin red staining. Nodule-like structures of mineralized matrix were observed under inverted light microscope. (b) Oil red staining revealed positive result for in vitro adipogenic differentiation.
Figure 11
Figure 11
Tomography of new bone formation in LRCP+BFSC. (b) Tomography of new bone formation in AIC+BFSC group. (c) Radiographic investigation of new bone formation in control group.
Figure 12
Figure 12
(a) Bone Healing after 9 months in LRCP group. (b) Dental Implant placement in new regenerate bone. (c) Healed alveolar cleft defects in AIC+BFSCs group. (d) Dental implant placement in new regenerate bone.
Figure 13
Figure 13
Normal bone with active osteoblasts producing osteoid matrix in the presence of a fibrous type marrow (H&E ×10). (a) Hematoxylin & eosin staining ×10, (b) ×40.

References

    1. Silvera Q. A., Ishii K., Arai T., et al. Long-term results of the two-stage palatoplasty/Hotz' plate approach for complete bilateral cleft lip, alveolus and palate patients. Journal of Cranio-Maxillo-Facial Surgery. 2003;31(4):215–227.
    1. Yoshioka M., Tanimoto K., Tanne Y., et al. Bone regeneration in artificial jaw cleft by use of carbonated hydroxyapatite particles and mesenchymal stem cells derived from iliac bone. International Journal of Dentistry. 2012;2012:8. doi: 10.1155/2012/352510.352510
    1. Pradel W., Tausche E., Gollogly J., Lauer G. Spontaneous tooth eruption after alveolar cleft osteoplasty using tissue-engineered bone: a case report. Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology, and Endodontology. 2008;105(4):440–444. doi: 10.1016/j.tripleo.2007.07.042.
    1. Vecchiatini R., Mobilio N., Raimondi F., Catapano S., Calura G. Implant-prosthetic rehabilitation for a patient with monolateral cleft lip and palate: A clinical report. Quintessence International. 2009;40(6):445–447.
    1. Luaces-Rey R., Arenaz-Búa J., López-Cedrún-Cembranos J.-L., et al. Is PRP useful in alveolar cleft reconstruction? Platelet-rich plasma in secondary alveoloplasty. Medicina Oral Patología Oral y Cirugía Bucal. 2010;15(4):e619–e623. doi: 10.4317/medoral.15.e619.
    1. Behnia H., Khojasteh A., Soleimani M., Tehranchi A., Atashi A. Repair of alveolar cleft defect with mesenchymal stem cells and platelet derived growth factors: a preliminary report. Journal of Cranio-Maxillo-Facial Surgery. 2012;40(1):2–7. doi: 10.1016/j.jcms.2011.02.003.
    1. Chetpakdeechit W., Hallberg U., Hagberg C., Mohlin B. Social life aspects of young adults with cleft lip and palate: Grounded theory approach. Acta Odontologica Scandinavica. 2009;67(2):122–128. doi: 10.1080/00016350902720888.
    1. Khojasteh A., Esmaeelinejad M., Aghdashi F. A Textbook of Advanced Oral and Maxillofacial Surgery Volume 2. InTech; 2015. Regenerative techniques in oral and maxillofacial bone grafting.
    1. Khojasteh A., Behnia H., Shayesteh Y. S., Morad G., Alikhasi M. Localized bone augmentation with cortical bone blocks tented over different particulate bone substitutes: a retrospective study. The International Journal of Oral & Maxillofacial Implants. 2012;27(6):1481–1493.
    1. Khojasteh A., Nazeman P., Tolstunov L. Tuberosity-alveolar block as a donor site for localised augmentation of the maxilla: a retrospective clinical study. British Journal of Oral and Maxillofacial Surgery. 2016;54(8):950–955. doi: 10.1016/j.bjoms.2016.06.018.
    1. Misch C. M. Use of the mandibular ramus as a donor site for onlay bone grafting. Journal of Oral Implantology. 2000;26(1):42–49. doi: 10.1563/1548-1336(2000)026<0042:UOTMRA>;2.
    1. Gimbel M., Ashley R. K., Sisodia M., et al. Repair of alveolar cleft defects: reduced morbidity with bone marrow stem cells in a resorbable matrix. The Journal of Craniofacial Surgery. 2007;18(4):895–901. doi: 10.1097/scs.0b013e3180a771af.
    1. Behnia H., Khojasteh A., Soleimani M., et al. Secondary repair of alveolar clefts using human mesenchymal stem cells. Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology, and Endodontology. 2009;108(2):e1–e6. doi: 10.1016/j.tripleo.2009.03.040.
    1. Morad G., Kheiri L., Khojasteh A. Dental pulp stem cells for in vivo bone regeneration: a systematic review of literature. Archives of Oral Biolog. 2013;58(12):1818–1827. doi: 10.1016/j.archoralbio.2013.08.011.
    1. Hibi H., Yamada Y., Ueda M., Endo Y. Alveolar cleft osteoplasty using tissue-engineered osteogenic material. International Journal of Oral and Maxillofacial Surgery. 2006;35(6):551–555. doi: 10.1016/j.ijom.2005.12.007.
    1. de Ugarte D. A., Morizono K., Elbarbary A., et al. Comparison of multi-lineage cells from human adipose tissue and bone marrow. Cells Tissues Organs. 2003;174(3):101–109. doi: 10.1159/000071150.
    1. Kern S., Eichler H., Stoeve J., Klüter H., Bieback K. Comparative analysis of mesenchymal stem cells from bone marrow, umbilical cord blood, or adipose tissue. Stem Cells. 2006;24(5):1294–1301. doi: 10.1634/stemcells.2005-0342.
    1. Puissant B., Barreau C., Bourin P., et al. Immunomodulatory effect of human adipose tissue-derived adult stem cells: comparison with bone marrow mesenchymal stem cells. British Journal of Haematology. 2005;129(1):118–129. doi: 10.1111/j.1365-2141.2005.05409.x.
    1. Farre-Guasch E., Martí-Pagès C., Hernández-Alfaro F., Klein-Nulend J., Casals N. Buccal fat pad, an oral access source of human adipose stem cells with potential for osteochondral tissue engineering: An in vitro study. Tissue Engineering - Part C: Methods. 2010;16(5):1083–1094. doi: 10.1089/ten.tec.2009.0487.
    1. Khojasteh A., Sadeghi N. Application of buccal fat pad-derived stem cells in combination with autogenous iliac bone graft in the treatment of maxillomandibular atrophy: A preliminary human study. International Journal of Oral and Maxillofacial Surgery. 2016;45(7):864–871. doi: 10.1016/j.ijom.2016.01.003.
    1. Herford A. S., Boyne P. J., Rawson R., Williams R. P. Bone morphogenetic protein-induced repair of the premaxillary cleft. Journal of Oral and Maxillofacial Surgery. 2007;65(11):2136–2141. doi: 10.1016/j.joms.2007.06.670.
    1. Khojasteh A., Behnia H., Dashti S. G., Stevens M. Current trends in mesenchymal stem cell application in bone augmentation: A review of the literature. Journal of Oral and Maxillofacial Surgery. 2012;70(4):972–982. doi: 10.1016/j.joms.2011.02.133.
    1. Tai C.-C. E., Sutherland I. S., McFadden L. Prospective analysis of secondary alveolar bone grafting using computed tomography. Journal of Oral and Maxillofacial Surgery. 2000;58(11):1241–1249. doi: 10.1053/joms.2000.16623.
    1. Shayesteh Y. S., Khojasteh A., Soleimani M., Alikhasi M., Khoshzaban A., Ahmadbeigi N. Sinus augmentation using human mesenchymal stem cells loaded into a β-tricalcium phosphate/hydroxyapatite scaffold. Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology, and Endodontology. 2008;106(2):203–209. doi: 10.1016/j.tripleo.2007.12.001.
    1. Morad G., Khojasteh A. Cortical tenting technique versus onlay layered technique for vertical augmentation of atrophic posterior mandibles: A split-mouth pilot study. Implant Dentistry. 2013;22(6):566–571. doi: 10.1097/.
    1. Jafarian M., Eslaminejad M. B., Khojasteh A., et al. Marrow-derived mesenchymal stem cells-directed bone regeneration in the dog mandible: a comparison between biphasic calcium phosphate and natural bone mineral. Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology, and Endodontology. 2008;105(5):e14–e24. doi: 10.1016/j.tripleo.2008.01.010.
    1. Khojasteh A., Eslaminejad M. B., Nazarian H., et al. Vertical bone augmentation with simultaneous implant placement using particulate mineralized bone and mesenchymal stem cells: a preliminary study in rabbit. Journal of Oral Implantology. 2013;39(1):3–13. doi: 10.1563/aaid-joi-d-10-00206.
    1. He H., Yu J., Cao J. Biocompatibility and osteogenic capacity of periodontal ligament stem cells on nHAC/PLA and HA/TCP scaffolds. Journal of Biomaterials Science, Polymer Edition. 2011;22(1–3):179–194. doi: 10.1163/092050609x12587018007767.
    1. Khojasteh A., Behnia H., Hosseini F. S., Dehghan M. M., Abbasnia P., Abbas F. M. The effect of PCL-TCP scaffold loaded with mesenchymal stem cells on vertical bone augmentation in dog mandible: a preliminary report. Journal of Biomedical Materials Research Part B: Applied Biomaterials. 2013;101(5):848–854. doi: 10.1002/jbm.b.32889.
    1. Kaigler D., Avila-Ortiz G., Travan S., et al. Bone Engineering of Maxillary Sinus Bone Deficiencies Using Enriched CD90+ Stem Cell Therapy: A Randomized Clinical Trial. Journal of Bone and Mineral Research. 2015;30(7):1206–1216. doi: 10.1002/jbmr.2464.
    1. Khojasteh A., Kheiri L., Motamedian S. R., Nadjmi N. Regenerative medicine in the treatment of alveolar cleft defect: A systematic review of the literature. Journal of Cranio-Maxillo-Facial Surgery. 2015;43(8):1608–1613. doi: 10.1016/j.jcms.2015.06.041.
    1. Strem B. M., Hicok K. C., Zhu M., et al. Multipotential differentiation of adipose tissue-derived stem cells. The Keio Journal of Medicine. 2005;54(3):132–141. doi: 10.2302/kjm.54.132.
    1. Baer P. C., Geiger H. Adipose-derived mesenchymal stromal/stem cells: tissue localization, characterization, and heterogeneity. Stem Cells International. 2012;2012:11. doi: 10.1155/2012/812693.812693
    1. Fraser J. K., Wulur I., Alfonso Z., Hedrick M. H. Fat tissue: an underappreciated source of stem cells for biotechnology. Trends in Biotechnology. 2006;24(4):150–154. doi: 10.1016/j.tibtech.2006.01.010.
    1. Murata D., Tokunaga S., Tamura T., et al. A preliminary study of osteochondral regeneration using a scaffold-free three-dimensional construct of porcine adipose tissue-derived mesenchymal stem cells. Journal of Orthopaedic Surgery and Research. 2015;10, article 35 doi: 10.1186/s13018-015-0173-0.
    1. Justesen J., Pedersen S. B., Stenderup K., Kassem M. Subcutaneous adipocytes can differentiate into bone-forming cells in vitro and in vivo. Tissue Engineering Part A. 2004;10(3-4):381–391. doi: 10.1089/107632704323061744.
    1. Jakob M., Saxer F., Scotti C., et al. Perspective on the evolution of cell-based bone tissue engineering strategies. European Surgical Research. 2012;49(1):1–7. doi: 10.1159/000338362.
    1. Brocher J., Janicki P., Voltz P., et al. Inferior ectopic bone formation of mesenchymal stromal cells from adipose tissue compared to bone marrow: rescue by chondrogenic pre-induction. Stem Cell Research. 2013;11(3):1393–1406. doi: 10.1016/j.scr.2013.07.008.
    1. Vilalta M., Dégano I. R., Bagó J., et al. Biodistribution, long-term survival, and safety of human adipose tissue-derived mesenchymal stem cells transplanted in nude mice by high sensitivity non-invasive bioluminescence imaging. Stem Cells and Development. 2008;17(5):993–1003. doi: 10.1089/scd.2007.0201.
    1. Ardeshirylajimi A., Mossahebi-Mohammadi M., Vakilian S., et al. Comparison of osteogenic differentiation potential of human adult stem cells loaded on bioceramic-coated electrospun poly (L-lactide) nanofibres. Cell Proliferation. 2015;48(1):47–58. doi: 10.1111/cpr.12156.
    1. Shiraishi T., Sumita Y., Wakamastu Y., Nagai K., Asahina I. Formation of engineered bone with adipose stromal cells from buccal fat pad. Journal of Dental Research. 2012;91(6):592–597. doi: 10.1177/0022034512445633.
    1. Broccaioli E., Niada S., Rasperini G., et al. Mesenchymal Stem Cells from Bichat's Fat Pad: BioResearch Open Access. 2013;2(2):107–117. doi: 10.1089/biores.2012.0291.
    1. Lin H. The stem-cell niche theory: lessons from flies. Nature Reviews Genetics. 2002;3(12):931–940. doi: 10.1038/nrg952.
    1. Rychlik D., Wójcicki P. Bone graft healing in alveolar osteoplasty in patients with unilateral lip, alveolar process, and palate clefts. The Journal of Craniofacial Surgery. 2012;23(1):118–123. doi: 10.1097/SCS.0b013e318240faa0.
    1. Alonso N., Tanikawa D. Y. S., Freitas R. D. S., Canan L., Jr., Ozawa T. O., Rocha D. L. Evaluation of maxillary alveolar reconstruction using a resorbable collagen sponge with recombinant human bone morphogenetic protein-2 in cleft lip and palate patients. Tissue Engineering - Part C: Methods. 2010;16(5):1183–1189. doi: 10.1089/ten.tec.2009.0824.
    1. Dickinson B. P., Ashley R. K., Wasson K. L., et al. Reduced morbidity and improved healing with bone morphogenic protein-2 in older patients with alveolar cleft defects. Plastic and Reconstructive Surgery. 2008;121(1):209–217. doi: 10.1097/01.prs.0000293870.64781.12.
    1. Khojasteh A., Dashti S. G., Dehghan M. M., Behnia H., Abbasnia P., Morad G. The osteoregenerative effects of platelet-derived growth factor BB cotransplanted with mesenchymal stem cells, loaded on freeze-dried mineral bone block: A pilot study in dog mandible. Journal of Biomedical Materials Research Part B: Applied Biomaterials. 2014;102(8):1771–1778. doi: 10.1002/jbm.b.33156.
    1. Motamedian S. R., Tabatabaei F. S., Akhlaghi F., Torshabi M., Gholamin P., Khojasteh A. Response of dental pulp stem cells to synthetic, allograft, and xenograft bone scaffolds. International Journal of Periodontics and Restorative Dentistry. 2016;37(1):48–59. doi: 10.11607/prd.2121.
    1. Hassani A., Khojasteh A., Alikhasi M. Anterior palate of the maxilla as a donor site for oral and maxillofacial reconstructive proceduresn. Journal of Oral and Maxillofacial Surgery, Medicine, and Pathology. 2008;20(3):135–138. doi: 10.1016/S0915-6992(08)80034-9.
    1. Sbordone C., Toti P., Guidetti F., Califano L., Santoro A., Sbordone L. Volume changes of iliac crest autogenous bone grafts after vertical and horizontal alveolar ridge augmentation of atrophic maxillas and mandibles: A 6-year computerized tomographic follow-up. Journal of Oral and Maxillofacial Surgery. 2012;70(11):2559–2565. doi: 10.1016/j.joms.2012.07.040.
    1. Bastami F., Paknejad Z., Jafari M., Salehi M., Rezai Rad M., Khojasteh A. Fabrication of a three-dimensional β-tricalcium-phosphate/gelatin containing chitosan-based nanoparticles for sustained release of bone morphogenetic protein-2: Implication for bone tissue engineering. Materials Science and Engineering C: Materials for Biological Applications. 2017;72:481–491. doi: 10.1016/j.msec.2016.10.084.
    1. Bastami F., Nazeman P., Moslemi H., Rezai Rad M., Sharifi K., Khojasteh A. Induced pluripotent stem cells as a new getaway for bone tissue engineering: A systematic review. Cell Proliferation. 2017;50(2) doi: 10.1111/cpr.12321.e12321

Source: PubMed

3
Suscribir