A novel cardiac bio-marker: ST2: a review

Marco Matteo Ciccone, Francesca Cortese, Michele Gesualdo, Roberta Riccardi, Dalia Di Nunzio, Michele Moncelli, Massimo Iacoviello, Pietro Scicchitano, Marco Matteo Ciccone, Francesca Cortese, Michele Gesualdo, Roberta Riccardi, Dalia Di Nunzio, Michele Moncelli, Massimo Iacoviello, Pietro Scicchitano

Abstract

Cardiovascular diseases (CVD) are the major cause of death worldwide. The identification of markers able to detect the early stages of such diseases and/or their progression is fundamental in order to adopt the best actions in order to reduce the worsening of clinical condition. Brain natriuretic peptide (BNP) and NT-proBNP are the best known markers of heart failure (HF), while troponins ameliorated the diagnosis of acute and chronic coronary artery diseases. Nevertheless, many limitations reduce their accuracy. Physicians have tried to develop further detectable molecules in order to improve the detection of the early moments of CVD and prevent their development. Soluble ST2 (suppression of tumorigenicity 2) is a blood protein confirmed to act as a decoy receptor for interleukin-33. It seems to be markedly induced in mechanically overloaded cardiac myocytes. Thus, HF onset or worsening of a previous chronic HF status, myocardial infarct able to induce scars that make the myocardium unable to stretch well, etc, are all conditions that could be detected by measuring blood levels of soluble ST2. The aim of this review is to explore the possible role of ST2 derived-protein as an early marker of cardiovascular diseases, above all in heart failure and ischemic heart diseases.

References

    1. Fauci A.S., Touchette N.A., Folkers G.K. Emerging infectious diseases: A 10-year perspective from the national institute of allergy and infectious diseases. Emerg. Infect. Dis. 2005;11:519–525. doi: 10.3201/eid1104.041167.
    1. Ahern R.M., Lozano R., Naghavi M., Foreman K., Gakidou E., Murray C.J. Improving the public health utility of global cardiovascular mortality data: The rise of ischemic heart disease. Popul. Health Metr. 2011;9:8. doi: 10.1186/1478-7954-9-8.
    1. Ciccone M.M., Scicchitano P., Zito A., Agati L., Gesualdo M., Mandolesi S., Carbonara R., Ciciarello F., Fedele F. Correlation between coronary artery disease severity, left ventricular mass index and carotid intima media thickness, assessed by radio-frequency. Cardiovasc. Ultrasound. 2011;9:32. doi: 10.1186/1476-7120-9-32.
    1. Ciccone M.M., Iacoviello M., Puzzovivo A., Scicchitano P., Monitillo F., de Crescenzo F., Caragnano V., Sassara M., Quistelli G., Guida P., et al. Clinical correlates of endothelial function in chronic heart failure. Clin. Res. Cardiol. 2011;100:515–521. doi: 10.1007/s00392-010-0275-y.
    1. Ciccone M.M., Scicchitano P., Gesualdo M., Zito A., Carbonara R., Locorotondo M., Mandurino C., Masi F., Boccalini F., Lepera M.E. Serum osteoprotegerin and carotid intima-media thickness in acute/chronic coronary artery diseases. J. Cardiovasc Med. (Hagerstown). 2013;14:43–48. doi: 10.2459/JCM.0b013e3283561433.
    1. Thygesen K., Mair J., Mueller C., Huber K., Weber M., Plebani M., Hasin Y., Biasucci L.M., Giannitsis E., Lindahl B., et al. Recommendations for the use of natriuretic peptides in acute cardiac care: A position statement from the study group on biomarkers in cardiology of the ESC working group on acute cardiac care. Eur. Heart J. 2012;33:2001–2006.
    1. Schmitz J., Owyang A., Oldham E., Song Y., Murphy E., McClanahan T.K., Zurawski G., Moshrefi M., Qin J., Li X., et al. IL-33, an interleukin-1- like cytokine that signals via the IL-1 receptor related protein ST2 and induces T helper type 2-associated cytokines. Immunity. 2005;23:479–490. doi: 10.1016/j.immuni.2005.09.015.
    1. Kakkar R., Lee R.T. The IL-33/ST2 pathway: Therapeutic target and novel biomarker. Nat. Rev. Drug Discov. 2008;7:827–840.
    1. Baba Y., Maeda K., Yashiro T., Inage E., Kasakura K., Suzuki R., Niyonsaba F., Hara M., Tanabe A., Ogawa H., et al. GATA2 is a critical transactivator for the human IL1RL1/ST2 promoter in mast cells/basophils: Opposing roles for GATA2 and GATA1 in human IL1RL1/ST2 gene expression. J. Biol. Chem. 2012;287:32689–32696. doi: 10.1074/jbc.M112.374876.
    1. Caporali A., Meloni M., Miller A.M., Vierlinger K., Cardinali A., Spinetti G., Nailor A., Faglia E., Losa S., Gotti A., et al. Soluble ST2 is regulated by p75 neurotrophin receptor and predicts mortality in diabetic patients with critical limb ischemia. Arterioscler. Thromb. Vasc. Biol. 2012;32:e149–e160. doi: 10.1161/ATVBAHA.112.300497.
    1. Weinberg E.O. ST2 protein in heart disease: From discovery to mechanisms and prognostic value. Biomark. Med. 2009;3:495–511. doi: 10.2217/bmm.09.56.
    1. Schmieder A., Multhoff G., Radons J. Interleukin-33 acts as a pro-inflammatory cytokine and modulates its receptor gene expression in highly metastatic human pancreatic carcinoma cells. Cytokine. 2012;60:514–521. doi: 10.1016/j.cyto.2012.06.286.
    1. Sweet M.J., Leung B.P., Kang D., Sogaard M., Schulz K., Trajkovic V., Campbell C.C., Xu D., Liew F.Y. A novel pathway regulating lipopolysaccharide-induced shock by ST2/T1 via inhibition of Toll-like receptor 4 expression. J. Immunol. 2001;166:6633–6639.
    1. Weinberg E.O., Shimpo M., de Keulenaer G.W., MacGillivray C., Tominaga S., Solomon S.D., Rouleau J.L., Lee R.T. Expression and regulation of ST2, an interleukin-1 receptor family member, in cardiomyocytes and myocardial infarction. Circulation. 2002;106:2961–2966. doi: 10.1161/01.CIR.0000038705.69871.D9.
    1. Meisel C., Bonhagen K., Löhning M., Coyle A.J., Gutierrez-Ramos J.C., Radbruch A., Kamradt T. Regulation and function of T1/ST2 expression on CD4+ T cells: Induction of type 2 cytokine production by T1/ST2 cross-linking. J. Immunol. 2001;166:3143–3150.
    1. Kakkar R., Hei H., Dobner S., Lee R.T. Interleukin 33 as a mechanically responsive cytokine secreted by living cells. J. Biol. Chem. 2012;287:6941–6948. doi: 10.1074/jbc.M111.298703.
    1. Sanada S., Hakuno D., Higgins L.J., Schreiter E.R., McKenzie A.N., Lee R.T. IL-33 and ST2 comprise a critical biomechanically induced and cardioprotective signaling system. J. Clin. Invest. 2007;117:1538–1549. doi: 10.1172/JCI30634.
    1. Ho J.E., Chen W.Y., Chen M.H., Larson M.G., McCabe E.L., Cheng S., Ghorbani A., Coglianese E., Emilsson V., Johnson A.D., et al. Common genetic variation at the IL1RL1 locus regulates IL-33/ST2 signaling. J. Clin. Invest. 2013;123:4208–4218.
    1. Manzano-Fernández S., Mueller T., Pascual-Figal D., Truong Q.A., Januzzi J.L. Usefulness of soluble concentrations of interleukin family member st2 as predictor of mortality in patients with acutely decompensated heart failure relative to left ventricular ejection fraction. Am. J. Cardiol. 2011;107:259–267. doi: 10.1016/j.amjcard.2010.09.011.
    1. Ky B., French B., Levy W.C., Sweitzer N.K., Fang J.C., Wu A.H., Goldberg L.R., Jessup M., Cappola T.P. Multiple biomarkers for risk prediction in chronic heart failure. Circ. Heart Fail. 2012;5:183–190. doi: 10.1161/CIRCHEARTFAILURE.111.965020.
    1. Chen L.Q., de Lemos J.A., Das S.R., Ayers C.R., Rohatgi A. Soluble ST2 is associated with all-cause and cardiovascular mortality in a population-based cohort: The Dallas Heart Study. Clin. Chem. 2013;59:536–546. doi: 10.1373/clinchem.2012.191106.
    1. Pascual-Figal D.A., Manzano-Fernández S., Boronat M., Casas T., Garrido I.P., Bonaque J.C., Pastor-Perez F., Valdés M., Januzzi J.L. Soluble ST2, high-sensitivity troponin T- and N-terminal pro-B-type natriuretic peptide: Complementary role for risk stratification in acutely decompensated heart failure. Eur. J. Heart Fail. 2011;13:718–725. doi: 10.1093/eurjhf/hfr047.
    1. Sabatine M.S., Morrow D.A., Higgins L.J., MacGillivray C., Guo W., Bode C., Rifai N., Cannon C.P., Gerszten R.E., Lee R.T. Complementary roles for biomarkers of biomechanical strain ST2 and N-terminal prohormone B-type natriuretic peptide in patients with ST-elevation myocardial infarction. Circulation. 2008;117:1936–1944. doi: 10.1161/CIRCULATIONAHA.107.728022.
    1. McMurray J.J., Adamopoulos S., Anker S.D., Auricchio A., Böhm M., Dickstein K., Falk V., Filippatos G., Fonseca C., Gomez-Sanchez M.A., et al. ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure 2012: The task force for the diagnosis and treatment of acute and chronic heart failure 2012 of the european society of cardiology. Developed in collaboration with the heart failure association (HFA) of the ESC. Eur. Heart J. 2012;33:1787–1847. doi: 10.1093/eurheartj/ehs104.
    1. Thygesen K., Alpert J.S., Jaffe A.S., Simoons M.L., Chaitman B.R., White H.D., Katus H.A., Apple F.S., Lindahl B., Morrow D.A., et al. Third universal definition of myocardial infarction. J. Am. Coll. Cardiol. 2012;60:1581–1598. doi: 10.1016/j.jacc.2012.08.001.
    1. Januzzi J.L., Jr., Peacock W.F., Maisel A.S., Chae C.U., Jesse R.L., Baggish A.L., O’Donoghue M., Sakhuja R., Chen A.A., van Kimmenade R.R., et al. Measurement of the interleukin family member ST2 in patients with acute dyspnea: Results from the PRIDE (Pro-Brain Natriuretic Peptide Investigation of Dyspnea in the Emergency Department) study. J. Am. Coll. Cardiol. 2007;50:607–613. doi: 10.1016/j.jacc.2007.05.014.
    1. Zwaan L., Thijs A., Wagner C., Timmermans D.R. Does inappropriate selectivity in information use relate to diagnostic errors and patient harm? The diagnosis of patients with dyspnea. Soc. Sci. Med. 2013;91:32–38. doi: 10.1016/j.socscimed.2013.05.001.
    1. Januzzi J.L., Rehman S., Mueller T., van Kimmenade R.R.J., Lloyd-Jones D.M. Importance of biomarkers for long-term mortality prediction in acutely dyspneic patients. Clin. Chem. 2010;56:1814–1821. doi: 10.1373/clinchem.2010.146506.
    1. Socrates T., de Filippi C., Reichlin T., Twerenbold R., Breidhardt T., Noveanu M., Potocki M., Reiter M., Arenja N., Heinisch C., et al. Interleukin family member ST2 and mortality in acute dyspnoea. J. Intern. Med. 2010;268:493–500. doi: 10.1111/j.1365-2796.2010.02263.x.
    1. Shah K.B., Kop W.J., Christenson R.H., Diercks D.B., Henderson S., Hanson K., Li S.Y., deFilippi C.R. Prognostic utility of ST2 in patients with acute dyspnea and preserved left ventricular ejection fraction. Clin. Chem. 2011;57:874–882. doi: 10.1373/clinchem.2010.159277.
    1. Januzzi J.L., Jr., Camargo C.A., Anwaruddin S., Baggish A.L., Chen A.A., Krauser D.G., Tung R., Cameron R., Nagurney J.T., Chae C.U., et al. The N-terminal pro-BNP investigation of dyspnea in the emergency department (PRIDE) study. Am. J. Cardiol. 2005;95:948–954. doi: 10.1016/j.amjcard.2004.12.032.
    1. Januzzi J.L., Jr., Sakhuja R., O’donoghue M., Baggish A.L., Anwaruddin S., Chae C.U., Cameron R., Krauser D.G., Tung R., Camargo C.A., Jr., et al. Utility of aminoterminal pro-brain natriuretic peptide testing for prediction of 1-year mortality in patients with dyspnea treated in the emergency department. Arch. Intern. Med. 2006;166:315–320. doi: 10.1001/archinte.166.3.315.
    1. Dieplinger B., Gegenhuber A., Kaar G., Poelz W., Haltmayer M., Mueller T. Prognostic value of established and novel biomarkers in patients with shortness of breath attending an emergency department. Clin. Biochem. 2010;43:714–719. doi: 10.1016/j.clinbiochem.2010.02.002.
    1. Shah R.V., Chen-Tournoux A.A., Picard M.H., van Kimmenade R.R., Januzzi J.L. Serum levels of the interleukin-1 receptor family member ST2, Cardiac structure and function, and long-term mortality in patients with acute dyspnea. Circ. Heart Fail. 2009;2:311–319. doi: 10.1161/CIRCHEARTFAILURE.108.833707.
    1. Boisot S., Beede J., Isakson S., Chiu A., Clopton P., Januzzi J., Maisel A.S., Fitzgerald R.L. Serial sampling of ST2 predicts 90-day mortality following destabilized HF. J. Card. Fail. 2008;14:732–738. doi: 10.1016/j.cardfail.2008.06.415.
    1. Bayes-Genis A., Pascual-Figal D., Januzzi J.L., Maisel A., Casas T., Valdés-Chávarri M., Ordóñez-Llanos J. SST2monitoring provides additional risk stratification for outpatients with decompensated HF. Rev. Esp. Cardiol. 2010;63:1171–1178. doi: 10.1016/S0300-8932(10)70249-9.
    1. Mueller T., Dieplinger B., Gegenhuber A., Poelz W., Pacher R., Haltmayer M. Increased plasma concentrations of sST2are predictive for 1-year mortality in patients with acute destabilized heart failure. Clin. Chem. 2008;54:752–756. doi: 10.1373/clinchem.2007.096560.
    1. Rehman S.U., Mueller T., Januzzi J.L., Jr. Characteristics of the novel interleukin family biomarker ST2 in patients with acute HF. J. Am. Coll. Cardiol. 2008;52:1458–1465. doi: 10.1016/j.jacc.2008.07.042.
    1. Diez J. Serum soluble ST2 as a biochemical marker of acute heart failure. J. Am. Coll. Cardiol. 2008;52:1466–1467. doi: 10.1016/j.jacc.2008.07.045.
    1. Weinberg E.O., Shimpo M., Hurwitz S., Tominaga S., Rouleau J.L., Lee R.T. Identification of serum soluble ST2 receptor as a novel heart failure biomarker. Circulation. 2003;107:721–726. doi: 10.1161/01.CIR.0000047274.66749.FE.
    1. Ky B., French B., McCloskey K., Rame J.E., McIntosh E., Shahi P., Dries D.L., Tang W., Wu A.H.B., Fang J.C., et al. Sensitivity ST2 for prediction of adverse outcomes in chronic heart failure. Circ. Heart Fail. 2011;4:180–187. doi: 10.1161/CIRCHEARTFAILURE.110.958223.
    1. Bartunek J., Delrue L., van Durme F., Muller O., Casselman F., de Wiest B., Croes R., Verstreken S., Goethals M., de Raedt H., et al. Nonmyocardial production of ST2 protein in human hypertrophy and failure is related to diastolic load. J. Am. Coll. Cardiol. 2008;52:2166–2174. doi: 10.1016/j.jacc.2008.09.027.
    1. Shah R.V., Januzzi J.L., Jr. ST2: A novel remodeling biomarker in acute and chronic heart failure. Curr. Heart Fail. Rep. 2010;7:9–14. doi: 10.1007/s11897-010-0005-9.
    1. Bhardwaj A., Januzzi J.L., Jr. ST2: A novel biomarker for heart failure. Expert Rev. Mol. Diagn. 2010;10:459–464. doi: 10.1586/erm.10.25.
    1. Xanthakis V., Larson M.G., Wollert K.C., Aragam J., Cheng S., Ho J., Coglianese E., Levy D., Colucci W.S., Michael Felker G., et al. Association of novel biomarkers of cardiovascular stress with left ventricular hypertrophy and dysfunction: Implications for screening. J. Am. Heart Assoc. 2013;2:e000399.
    1. Seki K., Sanada S., Kudinova A.Y., Steinhauser M.L., Handa V., Gannon J., Lee R.T. Interleukin-33 prevents apoptosis and improves survival after experimental myocardial infarction through ST2 signaling. Circ. Heart Fail. 2009;2:684–691. doi: 10.1161/CIRCHEARTFAILURE.109.873240.
    1. Baidya S.G., Zeng Q.T. Helper T cells and atherosclerosis: The cytokine web. Postgrad. Med. J. 2005;81:746–752. doi: 10.1136/pgmj.2004.029827.
    1. Shah P.K., Falk E., Badimon J.J., Fernandez-Ortiz A., Mailhac A., Villareal-Levy G., Fallon J.T., Regnstrom J., Fuster V. Human monocyte-derived macrophages induce collagen breakdown in fibrous caps of atherosclerotic plaques. Potential role of matrix-degrading metalloproteinases and implications for plaque rupture. Circulation. 1995;92:1565–1569.
    1. Dollery C.M., McEwan J.R., Henney A.M. Matrix metalloproteinases and cardiovascular disease. Circ. Res. 1995;77:863–868. doi: 10.1161/01.RES.77.5.863.
    1. Dominguez-Rodriguez A., Abreu-Gonzalez P. Clinical implications of elevated serum interleukin-6, Soluble CD40 ligand, metalloproteinase-9, and tissue inhibitor of metalloproteinase-1 in patients with acute ST-segment elevation myocardial infarction. Clin. Cardiol. 2009;32:288. doi: 10.1002/clc.20464.
    1. Inokubo Y., Hanada H., Ishizaka H., Fukushi T., Kamada T., Okumura K. Plasma levels of matrix metalloproteinase-9 and tissue inhibitor of metalloproteinase-1 are increased in the coronary circulation in patients with acute coronary syndrome. Am. Heart J. 2001;141:211–217. doi: 10.1067/mhj.2001.112238.
    1. Kaden J.J., Dempfle C.E., Sueselbeck T., Brueckmann M., Poerner T.C., Haghi D., Haase K.K., Borggrefe M. Time-dependent changes in the plasma concentration of matrix metalloproteinase 9 after acute myocardial infarction. Cardiology. 2003;99:140–144. doi: 10.1159/000070670.
    1. Higo S., Uematsu M., Yamagishi M., Ishibashi-Ueda H., Awata M., Morozumi T., Ohara T., Nanto S., Nagata S. Elevation of plasma matrix metalloproteinase-9 in the culprit coronary artery in patients with acute myocardial infarction: Clinical evidence from distal protection. Circ. J. 2005;69:1180–1185. doi: 10.1253/circj.69.1180.
    1. Guzel S., Serin O., Guzel E.C., Buyuk B., Yılmaz G., Güvenen G. Interleukin-33, Matrix metalloproteinase-9, and tissue inhibitor of matrix metalloproteinase-1 in myocardial infarction. Korean J. Intern. Med. 2013;28:165–173. doi: 10.3904/kjim.2013.28.2.165.
    1. Shimpo M., Morrow D.A., Weinberg E.O., Sabatine M.S., Murphy S.A., Antman E.M., Lee R.T. Serum levels of the interleukin-1 receptor family member ST2 predict mortality and clinical outcome in acute myocardial infarction. Circulation. 2004;109:2186–2190. doi: 10.1161/01.CIR.0000127958.21003.5A.
    1. Eggers K.M., Armstrong P.W., Califf R.M., Simoons M.L., Venge P., Wallentin L., James S.K. ST2 and mortality in non-ST-segment elevation acute coronary syndrome. Am. Heart J. 2010;159:788–794. doi: 10.1016/j.ahj.2010.02.022.
    1. Kohli P., Bonaca M.P., Kakkar R., Kudinova A.Y., Scirica B.M., Sabatine M.S., Murphy S.A., Braunwald E., Lee R.T., Morrow D.A. Role of ST2 in non-ST-elevation acute coronary syndrome in the MERLIN-TIMI 36 trial. Clin. Chem. 2012;58:257–266. doi: 10.1373/clinchem.2011.173369.
    1. Dhillon O.S., Narayan H.K., Quinn P.A., Squire I.B., Davies J.E., Ng L.L. Interleukin 33 and ST2 in non-ST-elevation myocardial infarction: Comparison with global registry of acute coronary events risk scoring and NT-proBNP. Am. Heart J. 2011;161:1163–1170. doi: 10.1016/j.ahj.2011.03.025.
    1. Weir R.A., Miller A.M., Murphy G.E., Clements S., Steedman T., Connell J.M., McInnes I.B., Dargie H.J., McMurray J.J. Serum soluble ST2: A potential novel mediator in left ventricular and infarct remodeling after acute myocardial infarction. J. Am. Coll. Cardiol. 2010;55:243–250. doi: 10.1016/j.jacc.2009.08.047.
    1. Daniels L.B., Clopton P., Iqbal N., Tran K., Maisel A.S. Association of ST2 levels with cardiac structure and function and mortality in outpatients. Am. Heart J. 2010;160:721–728. doi: 10.1016/j.ahj.2010.06.033.
    1. Coglianese E.E., Larson M.G., Vasan R.S., Ho J.E., Ghorbani A., McCabe E.L., Cheng S., Fradley M.G., Kretschman D., Gao W., et al. Distribution and clinical correlates of the interleukin receptor family member sST2in the framingham heart study. Clin. Chem. 2012;58:1673–1681. doi: 10.1373/clinchem.2012.192153.
    1. Brown A.M., Wu A.H., Clopton P., Robey J.L., Hollander J.E. ST2 in emergency department chest pain patients with potential acute coronary syndromes. Ann. Emerg. Med. 2007;50:153–158. doi: 10.1016/j.annemergmed.2007.02.015.

Source: PubMed

3
Suscribir