The Neuroprotective Effects of Astaxanthin: Therapeutic Targets and Clinical Perspective

Sajad Fakhri, Ina Yosifova Aneva, Mohammad Hosein Farzaei, Eduardo Sobarzo-Sánchez, Sajad Fakhri, Ina Yosifova Aneva, Mohammad Hosein Farzaei, Eduardo Sobarzo-Sánchez

Abstract

As the leading causes of human disability and mortality, neurological diseases affect millions of people worldwide and are on the rise. Although the general roles of several signaling pathways in the pathogenesis of neurodegenerative disorders have so far been identified, the exact pathophysiology of neuronal disorders and their effective treatments have not yet been precisely elucidated. This requires multi-target treatments, which should simultaneously attenuate neuronal inflammation, oxidative stress, and apoptosis. In this regard, astaxanthin (AST) has gained growing interest as a multi-target pharmacological agent against neurological disorders including Parkinson's disease (PD), Alzheimer's disease (AD), brain and spinal cord injuries, neuropathic pain (NP), aging, depression, and autism. The present review highlights the neuroprotective effects of AST mainly based on its anti-inflammatory, antioxidative, and anti-apoptotic properties that underlies its pharmacological mechanisms of action to tackle neurodegeneration. The need to develop novel AST delivery systems, including nanoformulations, targeted therapy, and beyond, is also considered.

Keywords: apoptosis; astaxanthin; drug delivery system; neurodegenerative diseases; neuroinflammation; neuroprotective agent; oxidative stress; pharmacology.

Conflict of interest statement

The authors declared no conflicts of interest.

Figures

Figure 1
Figure 1
Chemical structure of Astaxanthin (AST).
Figure 2
Figure 2
Neuroprotective mechanisms of AST. NR2B: N-methyl-D-aspartate (NMDA) receptor 2B, Chemokine R: Chemokine receptor, HO-1: heme oxygenase-1, GST-α1: glutathione-s-transferase-α1, NQO-1: NAD(P)H quinone oxidoreductase-1, MDA: malondialdehyde, ARE: antioxidant response elements, PI3K/AKT: phosphoinositide 3-Kinase/AKT, p-ERK/ERK: phosphorylated extracellular regulated protein kinase/extracellular regulated protein kinase ratio, MIF: macrophage migration inhibitory factor, ICAM1: Intercellular adhesion molecule 1, MMP: Matrix metallopeptidase, TNF-α: Tumor necrosis factor alpha, NOS: Nitric oxide synthase, COX: Cyclooxygenase, IL: Interlukine, Bax/Bcl2: Bax/Bcl2 ratio, and AST: astaxanthin.
Figure 3
Figure 3
Novel AST delivery systems. O/W: oil in water, W/O: water in oil, SLNs: solid lipid nanoparticles, NLCs: nanostructured lipid carriers, and AST: astaxanthin.

References

    1. Corrigan J.D., Selassie A.W., Orman J.A.L. The epidemiology of traumatic brain injury. J. Head Trauma Rehabil. 2010;25:72–80. doi: 10.1097/HTR.0b013e3181ccc8b4.
    1. Karnati H.K., Panigrahi M.K., Gutti R.K., Greig N.H., Tamargo I.A. miRNAs: Key players in neurodegenerative disorders and epilepsy. J. Alzheimer’s Dis. 2015;48:563–580. doi: 10.3233/JAD-150395.
    1. Mamik M.K., Power C. Inflammasomes in neurological diseases: Emerging pathogenic and therapeutic concepts. Brain. 2017;140:2273–2285. doi: 10.1093/brain/awx133.
    1. Fakhri S., Abbaszadeh F., Dargahi L., Jorjani M. Astaxanthin: A mechanistic review on its biological activities and health benefits. Pharmacol. Res. 2018;136:1–20. doi: 10.1016/j.phrs.2018.08.012.
    1. Shabab T., Khanabdali R., Moghadamtousi S.Z., Kadir H.A., Mohan G. Neuroinflammation pathways: A general review. Int. J. Neurosci. 2017;127:624–633. doi: 10.1080/00207454.2016.1212854.
    1. Bhat A.H., Dar K.B., Anees S., Zargar M.A., Masood A., Sofi M.A., Ganie S.A. Oxidative stress, mitochondrial dysfunction and neurodegenerative diseases; a mechanistic insight. Biomed. Pharmacother. Biomed. Pharmacother. 2015;74:101–110. doi: 10.1016/j.biopha.2015.07.025.
    1. Sasso S., Pohnert G., Lohr M., Mittag M., Hertweck C. Microalgae in the postgenomic era: A blooming reservoir for new natural products. FEMS Microbiol. Rev. 2012;36:761–785. doi: 10.1111/j.1574-6976.2011.00304.x.
    1. Varela J.C., Pereira H., Vila M., León R. Production of carotenoids by microalgae: Achievements and challenges. Photosynth. Res. 2015;125:423–436. doi: 10.1007/s11120-015-0149-2.
    1. Gong M., Bassi A. Carotenoids from microalgae: A review of recent developments. Biotechnol. Adv. 2016;34:1396–1412. doi: 10.1016/j.biotechadv.2016.10.005.
    1. Chuyen H.V., Eun J.-B. Marine carotenoids: Bioactivities and potential benefits to human health. Crit. Rev. Food Sci. Nutr. 2017;57:2600–2610. doi: 10.1080/10408398.2015.1063477.
    1. Manayi A., Abdollahi M., Raman T., Nabavi S.F., Habtemariam S., Daglia M., Nabavi S.M. Lutein and cataract: From bench to bedside. Crit. Rev. Biotechnol. 2016;36:829–839. doi: 10.3109/07388551.2015.1049510.
    1. Fakhri S., Dargahi L., Abbaszadeh F., Jorjani M. Effects of astaxanthin on sensory-motor function in a compression model of spinal cord injury: Involvement of ERK and AKT signalling pathway. Eur. J. Pain. 2019;23:750–764. doi: 10.1002/ejp.1342.
    1. Fakhri S., Dargahi L., Abbaszadeh F., Jorjani M. Astaxanthin attenuates neuroinflammation contributed to the neuropathic pain and motor dysfunction following compression spinal cord injury. Brain Res. Bull. 2018;143:217–224. doi: 10.1016/j.brainresbull.2018.09.011.
    1. Zajac G., Machalska E., Kaczor A., Kessler J., Bour P., Baranska M. Structure of supramolecular astaxanthin aggregates revealed by molecular dynamics and electronic circular dichroism spectroscopy. Phys. Chem. Chem. Phys. 2018;20:18038–18046. doi: 10.1039/C8CP01742E.
    1. Kidd P. Astaxanthin, cell membrane nutrient with diverse clinical benefits and anti-aging potential. Altern. Med. Rev. A J. Clin. Ther. 2011;16:355–364.
    1. Wu H., Niu H., Shao A., Wu C., Dixon B., Zhang J., Yang S., Wang Y. Astaxanthin as a potential neuroprotective agent for neurological diseases. Mar. Drugs. 2015;13:5750–5766. doi: 10.3390/md13095750.
    1. Wu R.P., Hayashi T., Cottam H.B., Jin G., Yao S., Wu C.C., Rosenbach M.D., Corr M., Schwab R.B., Carson D.A. Nrf2 responses and the therapeutic selectivity of electrophilic compounds in chronic lymphocytic leukemia. Proc. Nat. Acad. Sci. USA. 2010;107:7479–7484. doi: 10.1073/pnas.1002890107.
    1. Barros M.P., Rodrigo M.J., Zacarias L. Dietary carotenoid roles in redox homeostasis and human health. J. Agric. Food Chem. 2018;66:5733–5740. doi: 10.1021/acs.jafc.8b00866.
    1. Kansanen E., Jyrkkänen H.-K., Levonen A.-L. Activation of stress signaling pathways by electrophilic oxidized and nitrated lipids. Free Radic. Biol. Med. 2012;52:973–982. doi: 10.1016/j.freeradbiomed.2011.11.038.
    1. Sies H., Berndt C., Jones D.P. Oxidative stress. Annu. Rev. Biochem. 2017;86:715–748. doi: 10.1146/annurev-biochem-061516-045037.
    1. Jones D.P., Sies H. The redox code. Antioxid. Redox Signal. 2015;23:734–746. doi: 10.1089/ars.2015.6247.
    1. Rodrigo R., Prieto J.C., Castillo R. Cardioprotection against ischaemia/reperfusion by vitamins C and E plus n− 3 fatty acids: molecular mechanisms and potential clinical applications. Clin. Sci. 2013;124:1–15. doi: 10.1042/CS20110663.
    1. De Roos B., Duthie G.G. Role of dietary pro-oxidants in the maintenance of health and resilience to oxidative stress. Mol. Nutr. Food Res. 2015;59:1229–1248. doi: 10.1002/mnfr.201400568.
    1. Masoudi A., Dargahi L., Abbaszadeh F., Pourgholami M.H., Asgari A., Manoochehri M., Jorjani M. Neuroprotective effects of astaxanthin in a rat model of spinal cord injury. Behav. Brain Res. 2017;329:104–110. doi: 10.1016/j.bbr.2017.04.026.
    1. Ambati R., Phang S.-M., Ravi S., Aswathanarayana R. Astaxanthin: Sources, extraction, stability, biological activities and its commercial applications—A review. Mar. Drugs. 2014;12:128–152. doi: 10.3390/md12010128.
    1. Liu X., McClements D.J., Cao Y., Xiao H. Chemical and Physical Stability of Astaxanthin-Enriched Emulsion-Based Delivery Systems. Food Biophys. 2016;11:302–310. doi: 10.1007/s11483-016-9443-6.
    1. Taksima T., Limpawattana M., Klaypradit W. Astaxanthin encapsulated in beads using ultrasonic atomizer and application in yogurt as evaluated by consumer sensory profile. LWT Food Sci. Technol. 2015;62:431–437. doi: 10.1016/j.lwt.2015.01.011.
    1. Barańska M., Kaczor A. Carotenoids: Nutrition, Analysis and Technology. Wiley; Blackwell, UK: 2016.
    1. Affandi M., Julianto T., Majeed A. Development and stability evaluation of astaxanthin nanoemulsion. Asian J. Pharm. Clin. Res. 2011;4:142–148.
    1. Ogawa M., Sato M., Suzuki K. Development of astaxanthin nano emulsion with improved shelf life and enhanced absorbability. Fuji Film Res. Dev. 2007;52:26.
    1. Strickland D., Bertoni J.M. Parkinson’s prevalence estimated by a state registry. Mov. Disord. Off. J. Mov. Disord. Soc. 2004;19:318–323. doi: 10.1002/mds.10619.
    1. Tysnes O.B., Storstein A. Epidemiology of Parkinson’s disease. J. Neural Transm. (Vienna) 2017;124:901–905. doi: 10.1007/s00702-017-1686-y.
    1. Archibald N., Miller N., Rochester L. Neurorehabilitation in Parkinson disease. Handb. Clin. Neurol. 2013;110:435–442.
    1. Shtilbans A., Henchcliffe C. Biomarkers in Parkinson’s disease: An update. Curr. Opin. Neurol. 2012;25:460–465. doi: 10.1097/WCO.0b013e3283550c0d.
    1. Stojkovska I., Wagner B.M., Morrison B.E. Parkinson’s disease and enhanced inflammatory response. Exp. Biol. Med. 2015;240:1387–1395. doi: 10.1177/1535370215576313.
    1. Jiang T., Sun Q., Chen S. Oxidative stress: A major pathogenesis and potential therapeutic target of antioxidative agents in Parkinson’s disease and Alzheimer’s disease. Prog. Neurobiol. 2016;147:1–19. doi: 10.1016/j.pneurobio.2016.07.005.
    1. Wang X.-J., Chen W., Fu X.-T., Ma J.-K., Wang M.-H., Hou Y.-J., Tian D.-C., Fu X.-Y., Fan C.-D. Reversal of homocysteine-induced neurotoxicity in rat hippocampal neurons by astaxanthin: Evidences for mitochondrial dysfunction and signaling crosstalk. Cell Death Dis. 2018;5:50. doi: 10.1038/s41420-018-0114-x.
    1. Ye Q., Zhang X., Huang B., Zhu Y., Chen X. Astaxanthin suppresses MPP+-induced oxidative damage in PC12 cells through a Sp1/NR1 signaling pathway. Mar. Drugs. 2013;11:1019–1034. doi: 10.3390/md11041019.
    1. Ye Q., Huang B., Zhang X., Zhu Y., Chen X. Astaxanthin protects against MPP+-induced oxidative stress in PC12 cells via the HO-1/NOX2 axis. BMC Neurosci. 2012;13:156. doi: 10.1186/1471-2202-13-156.
    1. Lee K.-S., Lee J.-K., Kim H.-G., Kim H.R. Differential effects of 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine on motor behavior and dopamine levels at brain regions in three different mouse strains. Korean J. Physiol. Pharmacol. 2013;17:89–97. doi: 10.4196/kjpp.2013.17.1.89.
    1. Rolland A.-S., Kareva T., Kholodilov N., Burke R.E. A quantitative evaluation of a 2.5-kb rat tyrosine hydroxylase promoter to target expression in ventral mesencephalic dopamine neurons in vivo. Neuroscience. 2017;346:126–134. doi: 10.1016/j.neuroscience.2017.01.014.
    1. Grimmig B., Daly L., Subbarayan M., Hudson C., Williamson R., Nash K., Bickford P.C. Astaxanthin is neuroprotective in an aged mouse model of Parkinson’s disease. Oncotarget. 2018;9:10388. doi: 10.18632/oncotarget.23737.
    1. Lee D.-H., Kim C.-S., Lee Y.J. Astaxanthin protects against MPTP/MPP+-induced mitochondrial dysfunction and ROS production in vivo and in vitro. Food Chem. Toxicol. 2011;49:271–280. doi: 10.1016/j.fct.2010.10.029.
    1. Liu X., Shibata T., Hisaka S., Osawa T. Astaxanthin inhibits reactive oxygen species-mediated cellular toxicity in dopaminergic SH-SY5Y cells via mitochondria-targeted protective mechanism. Brain Res. 2009;1254:18–27. doi: 10.1016/j.brainres.2008.11.076.
    1. Ikeda Y., Tsuji S., Satoh A., Ishikura M., Shirasawa T., Shimizu T. Protective effects of astaxanthin on 6-hydroxydopamine-induced apoptosis in human neuroblastoma SH-SY5Y cells. J. Neurochem. 2008;107:1730–1740. doi: 10.1111/j.1471-4159.2008.05743.x.
    1. Perluigi M., Sultana R., Cenini G., Di Domenico F., Memo M., Pierce W.M., Coccia R., Butterfield D.A. Redox proteomics identification of 4-hydroxynonenal-modified brain proteins in Alzheimer’s disease: Role of lipid peroxidation in Alzheimer’s disease pathogenesis. Proteom. Clin. Appl. 2009;3:682–693. doi: 10.1002/prca.200800161.
    1. Burns A. Alzheimer’s disease: On the verges of treatment and prevention. Lancet Neurol. 2009;8:4–5. doi: 10.1016/S1474-4422(08)70271-0.
    1. Sadigh-Eteghad S., Sabermarouf B., Majdi A., Talebi M., Farhoudi M., Mahmoudi J. Amyloid-beta: A crucial factor in Alzheimer’s disease. Med. Prin. Prac. 2015;24:1–10. doi: 10.1159/000369101.
    1. Kim H.A., Miller A.A., Drummond G.R., Thrift A.G., Arumugam T.V., Phan T.G., Srikanth V.K., Sobey C.G. Vascular cognitive impairment and Alzheimer’s disease: Role of cerebral hypoperfusion and oxidative stress. Naunyn-Schmiedeberg’s Arch. Pharmacol. 2012;385:953–959. doi: 10.1007/s00210-012-0790-7.
    1. Padurariu M., Ciobica A., Lefter R., Lacramioara Serban I., Stefanescu C., Chirita R. The oxidative stress hypothesis in Alzheimer’s disease. Psychiatr. Danub. 2013;25:401–409.
    1. Wang H.-Q., Sun X.-B., Xu Y.-X., Zhao H., Zhu Q.-Y., Zhu C.-Q. Astaxanthin upregulates heme oxygenase-1 expression through ERK1/2 pathway and its protective effect against beta-amyloid-induced cytotoxicity in SH-SY5Y cells. Brain Res. 2010;1360:159–167. doi: 10.1016/j.brainres.2010.08.100.
    1. Wen X., Huang A., Hu J., Zhong Z., Liu Y., Li Z., Pan X., Liu Z. Neuroprotective effect of astaxanthin against glutamate-induced cytotoxicity in HT22 cells: Involvement of the Akt/GSK-3β pathway. Neuroscience. 2015;303:558–568. doi: 10.1016/j.neuroscience.2015.07.034.
    1. Kim G.H., Kim J.E., Rhie S.J., Yoon S. The role of oxidative stress in neurodegenerative diseases. Exp. Neurobiol. 2015;24:325–340. doi: 10.5607/en.2015.24.4.325.
    1. Zhang Y., Wang W., Hao C., Mao X., Zhang L. Astaxanthin protects PC12 cells from glutamate-induced neurotoxicity through multiple signaling pathways. J. Funct. Foods. 2015;16:137–151. doi: 10.1016/j.jff.2015.04.008.
    1. Che H., Li Q., Zhang T., Wang D., Yang L., Xu J., Yanagita T., Xue C., Chang Y., Wang Y. Effects of Astaxanthin and Docosahexaenoic-Acid-Acylated Astaxanthin on Alzheimer’s Disease in APP/PS1 Double-Transgenic Mice. J. Agric. Food Chem. 2018;66:4948–4957. doi: 10.1021/acs.jafc.8b00988.
    1. Komaki A., Karimi S.A., Salehi I., Sarihi A., Shahidi S., Zarei M. The treatment combination of vitamins E and C and astaxanthin prevents high-fat diet induced memory deficits in rats. Pharmacol. Biochem. Behav. 2015;131:98–103. doi: 10.1016/j.pbb.2015.02.008.
    1. Thapa A., Carroll N. Dietary modulation of oxidative stress in Alzheimer’s disease. Int. J. Mol. Sci. 2017;18:1583. doi: 10.3390/ijms18071583.
    1. Hussein G., Sankawa U., Goto H., Matsumoto K., Watanabe H. Astaxanthin, a carotenoid with potential in human health and nutrition. J. Nat. Prod. 2006;69:443–449. doi: 10.1021/np050354+.
    1. Thomas J., Thomas C.J., Radcliffe J., Itsiopoulos C. Omega-3 Fatty Acids in Early Prevention of Inflammatory Neurodegenerative Disease: A Focus on Alzheimer’s Disease. Biomed Res. Int. 2015;2015:172801. doi: 10.1155/2015/172801.
    1. Echeverria F., Valenzuela R., Catalina Hernandez-Rodas M., Valenzuela A. Docosahexaenoic acid (DHA), a fundamental fatty acid for the brain: New dietary sources. Prostaglandins Leukot. Essent. Fat. Acids. 2017;124:1–10. doi: 10.1016/j.plefa.2017.08.001.
    1. Barros M., Poppe S., Bondan E. Neuroprotective properties of the marine carotenoid astaxanthin and omega-3 fatty acids, and perspectives for the natural combination of both in krill oil. Nutrients. 2014;6:1293–1317. doi: 10.3390/nu6031293.
    1. Finnerup N.B., Haroutounian S., Kamerman P., Baron R., Bennett D.L., Bouhassira D., Cruccu G., Freeman R., Hansson P., Nurmikko T., et al. Neuropathic pain: An updated grading system for research and clinical practice. Pain. 2016;157:1599–1606. doi: 10.1097/j.pain.0000000000000492.
    1. Forner S., Martini A., De Andrade E., Rae G. Neuropathic pain induced by spinal cord injury: Role of endothelin ETA and ETB receptors. Neurosci. Lett. 2016;617:14–21. doi: 10.1016/j.neulet.2016.02.005.
    1. Kramer J.L., Minhas N.K., Jutzeler C.R., Erskine E.L., Liu L.J., Ramer M.S. Neuropathic pain following traumatic spinal cord injury: Models, measurement, and mechanisms. J. Neurosci. Res. 2017;95:1295–1306. doi: 10.1002/jnr.23881.
    1. Lampert A., Hains B.C., Waxman S.G. Upregulation of persistent and ramp sodium current in dorsal horn neurons after spinal cord injury. Exp. Brain Res. 2006;174:660–666. doi: 10.1007/s00221-006-0511-x.
    1. Naseri K., Saghaei E., Abbaszadeh F., Afhami M., Haeri A., Rahimi F., Jorjani M. Role of microglia and astrocyte in central pain syndrome following electrolytic lesion at the spinothalamic tract in rats. J. Mol. Neurosci. 2013;49:470–479. doi: 10.1007/s12031-012-9840-3.
    1. D’Angelo R., Morreale A., Donadio V., Boriani S., Maraldi N., Plazzi G., Liguori R. Neuropathic pain following spinal cord injury: What we know about mechanisms, assessment and management. Eur. Rev. Med. Pharmacol. Sci. 2013;17:3257–3261.
    1. Finnerup N.B., Otto M., McQuay H., Jensen T.S., Sindrup S.H. Algorithm for neuropathic pain treatment: An evidence based proposal. Pain. 2005;118:289–305. doi: 10.1016/j.pain.2005.08.013.
    1. Sharma K., Sharma D., Sharma M., Sharma N., Bidve P., Prajapati N., Kalia K., Tiwari V. Astaxanthin ameliorates behavioral and biochemical alterations in in-vitro and in-vivo model of neuropathic pain. Neurosci. Lett. 2018;674:162–170. doi: 10.1016/j.neulet.2018.03.030.
    1. Jiang X., Yan Q., Liu F., Jing C., Ding L., Zhang L., Pang C. Chronic trans-astaxanthin treatment exerts antihyperalgesic effect and corrects co-morbid depressive like behaviors in mice with chronic pain. Neurosci. Lett. 2018;662:36–43. doi: 10.1016/j.neulet.2017.09.064.
    1. Kuedo Z., Sangsuriyawong A., Klaypradit W., Tipmanee V., Chonpathompikunlert P. Effects of astaxanthin from Litopenaeus vannamei on carrageenan-induced edema and pain behavior in mice. Molecules. 2016;21:382. doi: 10.3390/molecules21030382.
    1. Haenisch B., Bönisch H. Depression and antidepressants: Insights from knockout of dopamine, serotonin or noradrenaline re-uptake transporters. Pharmacol. Ther. 2011;129:352–368. doi: 10.1016/j.pharmthera.2010.12.002.
    1. Kroning M., Kroning K. Teen depression and suicide: A silent crisis. J. Christ. Nurs. 2016;33:78–86. doi: 10.1097/CNJ.0000000000000254.
    1. Berton O., Nestler E.J. New approaches to antidepressant drug discovery: Beyond monoamines. Nat. Rev. Neurosci. 2006;7:137–151. doi: 10.1038/nrn1846.
    1. Gabriel M., Sharma V. Antidepressant discontinuation syndrome. CMAJ Can. Med. Assoc. J. J. l’Assoc. Med. Can. 2017;189:E747. doi: 10.1503/cmaj.160991.
    1. Riediger C., Schuster T., Barlinn K., Maier S., Weitz J., Siepmann T. Adverse Effects of Antidepressants for Chronic Pain: A Systematic Review and Meta-analysis. Front. Neurol. 2017;8:307. doi: 10.3389/fneur.2017.00307.
    1. Miller A.H., Raison C.L. The role of inflammation in depression: From evolutionary imperative to modern treatment target. Nat. Rev. Immunol. 2016;16:22–34. doi: 10.1038/nri.2015.5.
    1. Krogh J., Benros M.E., Jørgensen M.B., Vesterager L., Elfving B., Nordentoft M. The association between depressive symptoms, cognitive function, and inflammation in major depression. Brain Behav. Immun. 2014;35:70–76. doi: 10.1016/j.bbi.2013.08.014.
    1. Bakunina N., Pariante C.M., Zunszain P.A. Immune mechanisms linked to depression via oxidative stress and neuroprogression. Immunology. 2015;144:365–373. doi: 10.1111/imm.12443.
    1. Zhou X.-Y., Zhang F., Hu X.-T., Chen J., Tang R.-X., Zheng K.-Y., Song Y.-J. Depression can be prevented by astaxanthin through inhibition of hippocampal inflammation in diabetic mice. Brain Res. 2017;1657:262–268. doi: 10.1016/j.brainres.2016.12.018.
    1. Jiang X., Chen L., Shen L., Chen Z., Xu L., Zhang J., Yu X. Trans-astaxanthin attenuates lipopolysaccharide-induced neuroinflammation and depressive-like behavior in mice. Brain Res. 2016;1649:30–37. doi: 10.1016/j.brainres.2016.08.029.
    1. Jiang X., Zhu K., Xu Q., Wang G., Zhang J., Cao R., Ye J., Yu X. The antidepressant-like effect of trans-astaxanthin involves the serotonergic system. Oncotarget. 2017;8:25552. doi: 10.18632/oncotarget.16069.
    1. Abadie-Guedes R., Santos S.D., Cahú T.B., Guedes R.C.A., de Souza Bezerra R. Dose-dependent effects of astaxanthin on cortical spreading depression in chronically ethanol-treated adult rats. Alcohol. Clin. Exp. Res. 2008;32:1417–1421. doi: 10.1111/j.1530-0277.2008.00710.x.
    1. Abadie-Guedes R., Guedes R.C., Bezerra R.S. The Impairing Effect of Acute Ethanol on Spreading Depression is Antagonized by Astaxanthin in Rats of 2 Young-Adult Ages. Alcohol. Clin. Exp. Res. 2012;36:1563–1567. doi: 10.1111/j.1530-0277.2012.01766.x.
    1. Qiao J., Rong L., Wang Z., Zhang M. Involvement of Akt/GSK3β/CREB signaling pathway on chronic omethoate induced depressive-like behavior and improvement effects of combined lithium chloride and astaxanthin treatment. Neurosci. Lett. 2017;649:55–61. doi: 10.1016/j.neulet.2017.03.048.
    1. Rubiano A.M., Carney N., Chesnut R., Puyana J.C. Global neurotrauma research challenges and opportunities. Nature. 2015;527:193–197. doi: 10.1038/nature16035.
    1. Thuret S., Moon L.D., Gage F.H. Therapeutic interventions after spinal cord injury. Nat. Rev. Neurosci. 2006;7:628. doi: 10.1038/nrn1955.
    1. Galgano M., Toshkezi G., Qiu X., Russell T., Chin L., Zhao L.-R. Traumatic brain injury: Current treatment strategies and future endeavors. Cell Transplantat. 2017;26:1118–1130. doi: 10.1177/0963689717714102.
    1. David B.T., Ratnayake A., Amarante M.A., Reddy N.P., Dong W., Sampath S., Heary R.F., Elkabes S. A toll-like receptor 9 antagonist reduces pain hypersensitivity and the inflammatory response in spinal cord injury. Neurobiol. Dis. 2013;54:194–205. doi: 10.1016/j.nbd.2012.12.012.
    1. Zhang X.-S., Zhang X., Zhou M.-L., Zhou X.-M., Li N., Li W., Cong Z.-X., Sun Q., Zhuang Z., Wang C.-X. Amelioration of oxidative stress and protection against early brain injury by astaxanthin after experimental subarachnoid hemorrhage. J. Neurosurg. 2014;121:42–54. doi: 10.3171/2014.2.JNS13730.
    1. Lu Y.-P., Liu S.-Y., Sun H., Wu X.-M., Li J.-J., Zhu L. Neuroprotective effect of astaxanthin on H2O2-induced neurotoxicity in vitro and on focal cerebral ischemia in vivo. Brain Res. 2010;1360:40–48. doi: 10.1016/j.brainres.2010.09.016.
    1. Lee D.-H., Lee Y.J., Kwon K.H. Neuroprotective effects of astaxanthin in oxygen-glucose deprivation in SH-SY5Y cells and global cerebral ischemia in rat. J. Clin. Biochem. Nutr. 2010;47:121–129. doi: 10.3164/jcbn.10-29.
    1. Wu Q., Zhang X.-S., Wang H.-D., Zhang X., Yu Q., Li W., Zhou M.-L., Wang X.-L. Astaxanthin activates nuclear factor erythroid-related factor 2 and the antioxidant responsive element (Nrf2-ARE) pathway in the brain after subarachnoid hemorrhage in rats and attenuates early brain injury. Mar. Drugs. 2014;12:6125–6141. doi: 10.3390/md12126125.
    1. Zhang X.-S., Zhang X., Wu Q., Li W., Zhang Q.-R., Wang C.-X., Zhou X.-M., Li H., Shi J.-X., Zhou M.-L. Astaxanthin alleviates early brain injury following subarachnoid hemorrhage in rats: Possible involvement of Akt/bad signaling. Mar. Drugs. 2014;12:4291–4310. doi: 10.3390/md12084291.
    1. Wang Y., Liu Y., Li Y., Liu B., Wu P., Xu S., Shi H. Protective effects of astaxanthin on subarachnoid hemorrhage-induced early brain injury: Reduction of cerebral vasospasm and improvement of neuron survival and mitochondrial function. Acta Histochem. 2019;121:56–63. doi: 10.1016/j.acthis.2018.10.014.
    1. Zhang X., Lu Y., Wu Q., Dai H., Li W., Lv S., Zhou X., Zhang X., Hang C., Wang J. Astaxanthin mitigates subarachnoid hemorrhage injury primarily by increasing sirtuin 1 and inhibiting the Toll-like receptor 4 signaling pathway. FASEB J. 2018;33:722–737. doi: 10.1096/fj.201800642RR.
    1. Zhang X.-S., Zhang X., Zhang Q.-R., Wu Q., Li W., Jiang T.-W., Hang C.-H. Astaxanthin reduces matrix metalloproteinase-9 expression and activity in the brain after experimental subarachnoid hemorrhage in rats. Brain Res. 2015;1624:113–124. doi: 10.1016/j.brainres.2015.07.020.
    1. Zhang M., Cui Z., Cui H., Cao Y., Wang Y., Zhong C. Astaxanthin alleviates cerebral edema by modulating NKCC1 and AQP4 expression after traumatic brain injury in mice. BMC Neurosci. 2016;17:60. doi: 10.1186/s12868-016-0295-2.
    1. Zhang M., Cui Z., Cui H., Wang Y., Zhong C. Astaxanthin protects astrocytes against trauma-induced apoptosis through inhibition of NKCC1 expression via the NF-κB signaling pathway. BMC Neurosci. 2017;18:42. doi: 10.1186/s12868-017-0358-z.
    1. Bonomini F., Rodella L.F., Rezzani R. Metabolic syndrome, aging and involvement of oxidative stress. Aging Dis. 2015;6:109–120. doi: 10.14336/AD.2014.0305.
    1. Liguori I., Russo G., Curcio F., Bulli G., Aran L., Della-Morte D., Gargiulo G., Testa G., Cacciatore F., Bonaduce D., et al. Oxidative stress, aging, and diseases. Clin. Interv. Aging. 2018;13:757–772. doi: 10.2147/CIA.S158513.
    1. Pereira A.C., Gray J.D., Kogan J.F., Davidson R.L., Rubin T.G., Okamoto M., Morrison J.H., McEwen B.S. Age and Alzheimer’s disease gene expression profiles reversed by the glutamate modulator riluzole. Mol. Psychiatry. 2017;22:296–305. doi: 10.1038/mp.2016.33.
    1. Al-Amin M.M., Akhter S., Hasan A.T., Alam T., Hasan S.N., Saifullah A., Shohel M. The antioxidant effect of astaxanthin is higher in young mice than aged: A region specific study on brain. Metab. Brain Dis. 2015;30:1237–1246. doi: 10.1007/s11011-015-9699-4.
    1. Al-Amin M.M., Rahman M.M., Khan F.R., Zaman F., Reza H.M. Astaxanthin improves behavioral disorder and oxidative stress in prenatal valproic acid-induced mice model of autism. Behav. Brain Res. 2015;286:112–121. doi: 10.1016/j.bbr.2015.02.041.
    1. Balietti M., Giannubilo S.R., Giorgetti B., Solazzi M., Turi A., Casoli T., Ciavattini A., Fattorettia P. The effect of astaxanthin on the aging rat brain: Gender-related differences in modulating inflammation. J. Sci. Food Agric. 2016;96:615–618. doi: 10.1002/jsfa.7131.
    1. Eren B., Tuncay Tanrıverdi S., Aydın Köse F., Özer Ö. Antioxidant properties evaluation of topical astaxanthin formulations as anti-aging products. J. Cosmet. Dermatol. 2019;18:242–250. doi: 10.1111/jocd.12665.
    1. Higuera-Ciapara I., Felix-Valenzuela L., Goycoolea F. Astaxanthin: A review of its chemistry and applications. Crit. Rev. Food Sci. Nutr. 2006;46:185–196. doi: 10.1080/10408690590957188.
    1. Wu W., Wang X., Xiang Q., Meng X., Peng Y., Du N., Liu Z., Sun Q., Wang C., Liu X. Astaxanthin alleviates brain aging in rats by attenuating oxidative stress and increasing BDNF levels. Food Funct. 2014;5:158–166. doi: 10.1039/C3FO60400D.
    1. Seki T., Sueki H., Kohno H., Suganuma K., Yamashita E. Effects of astaxanthin from haematococcus pluvialis on human skin. Fr. J. 2001;12:98–103.
    1. Yamashita E. Cosmetic benefit of the combination of astaxanthin and tocotrienol on human skin. Food Style 21. 2002;6:112–118.
    1. Yamashita E. Let astaxanthin be thy medicine. PharmaNutrition. 2015;3:115–122. doi: 10.1016/j.phanu.2015.09.001.
    1. Edition F. Diagnostic and Statistical Manual of Mental Disorders. American Psychiatric Association; West Virginia, WV, USA: 2013.
    1. Boyle C.A., Boulet S., Schieve L.A., Cohen R.A., Blumberg S.J., Yeargin-Allsopp M., Visser S., Kogan M.D. Trends in the prevalence of developmental disabilities in US children, 1997–2008. Pediatrics. 2011;127:1034–1042. doi: 10.1542/peds.2010-2989.
    1. Kern J.K., Geier D.A., Sykes L.K., Geier M.R. Evidence of neurodegeneration in autism spectrum disorder. Transl. Neurodegener. 2013;2:17. doi: 10.1186/2047-9158-2-17.
    1. Bailey A., Luthert P., Dean A., Harding B., Janota I., Montgomery M., Rutter M., Lantos P. A clinicopathological study of autism. Brain A J. Neurol. 1998;121:889–905. doi: 10.1093/brain/121.5.889.
    1. Schumann C.M., Amaral D.G. Stereological analysis of amygdala neuron number in autism. J. Neurosci. 2006;26:7674–7679. doi: 10.1523/JNEUROSCI.1285-06.2006.
    1. Courchesne E., Pierce K., Schumann C.M., Redcay E., Buckwalter J.A., Kennedy D.P., Morgan J. Mapping early brain development in autism. Neuron. 2007;56:399–413. doi: 10.1016/j.neuron.2007.10.016.
    1. Kemper T.L., Bauman M. Neuropathology of infantile autism. J. Neuropathol. Exp. Neurol. 1998;57:645–652. doi: 10.1097/00005072-199807000-00001.
    1. Lee M., Martin-Ruiz C., Graham A., Court J., Jaros E., Perry R., Iversen P., Bauman M., Perry E. Nicotinic receptor abnormalities in the cerebellar cortex in autism. Brain. 2002;125:1483–1495. doi: 10.1093/brain/awf160.
    1. Palmen S.J., van Engeland H., Hof P.R., Schmitz C. Neuropathological findings in autism. Brain. 2004;127:2572–2583. doi: 10.1093/brain/awh287.
    1. Vargas D.L., Nascimbene C., Krishnan C., Zimmerman A.W., Pardo C.A. Neuroglial activation and neuroinflammation in the brain of patients with autism. Ann. Neurol. Off. J. Am. Neurol. Assoc. Child Neurol. Soc. 2005;57:67–81. doi: 10.1002/ana.20315.
    1. Li X., Chauhan A., Sheikh A.M., Patil S., Chauhan V., Li X.-M., Ji L., Brown T., Malik M. Elevated immune response in the brain of autistic patients. J. Neuroimmunol. 2009;207:111–116. doi: 10.1016/j.jneuroim.2008.12.002.
    1. Chez M.G., Dowling T., Patel P.B., Khanna P., Kominsky M. Elevation of tumor necrosis factor-alpha in cerebrospinal fluid of autistic children. Pediatr. Neurol. 2007;36:361–365. doi: 10.1016/j.pediatrneurol.2007.01.012.
    1. Granot E., Kohen R. Oxidative stress in childhood—In health and disease states. Clin. Nutr. 2004;23:3–11. doi: 10.1016/S0261-5614(03)00097-9.
    1. Evans T.A., Siedlak S., Lu L., Fu X., Wang Z., McGinnis W., Fakhoury E., Castellani R., Hazen S., Walsh W. The autistic phenotype exhibits a remarkably localized modification of brain protein by products of free radical-induced lipid oxidation. Am. J. Biochem. Biotechnol. 2008;4:61–72. doi: 10.3844/ajbbsp.2008.61.72.
    1. Sajdel-Sulkowska E., Lipinski B., Windom H., Audhya T., McGinnis W. Oxidative stress in autism: Elevated cerebellar 3-nitrotyrosine levels. Am. J. Biochem. Biotechnol. 2008;4:73–84.
    1. Sajdel-Sulkowska E.M., Xu M., McGinnis W., Koibuchi N. Brain region-specific changes in oxidative stress and neurotrophin levels in autism spectrum disorders (ASD) Cerebellum. 2011;10:43–48. doi: 10.1007/s12311-010-0223-4.
    1. Ornoy A., Weinstein-Fudim L., Ergaz Z. Prevention or Amelioration of Autism-Like Symptoms in Animal Models: Will it Bring Us Closer to Treating Human ASD? Int. J. Mol. Sci. 2019;20:1074. doi: 10.3390/ijms20051074.
    1. Krajcovicova-Kudlackova M., Valachovicova M., Mislanova C., Hudecova Z., Sustrova M., Ostatnikova D. Plasma concentrations of selected antioxidants in autistic children and adolescents. Bratisl. Lek. Listy. 2009;110:247–250.
    1. Fernández M.J.F., Valero-Cases E., Rincon-Frutos L. Food Components with the Potential to be Used in the Therapeutic Approach of Mental Diseases. Curr. Pharm. Biotechnol. 2019;20:100–113. doi: 10.2174/1389201019666180925120657.
    1. Wu Y., Wu Y., Chen I.-F., Wu Y.-L., Chuang C., Huang H., Kuo S. Reparative effects of astaxanthin-hyaluronan nanoaggregates against retrorsine-CCl4-induced liver fibrosis and necrosis. Molecules. 2018;23:726. doi: 10.3390/molecules23040726.
    1. Tamjidi F., Shahedi M., Varshosaz J., Nasirpour A. Stability of astaxanthin-loaded nanostructured lipid carriers in beverage systems. J. Sci. Food Agric. 2018;98:511–518. doi: 10.1002/jsfa.8488.
    1. Tamjidi F., Shahedi M., Varshosaz J., Nasirpour A. Design and characterization of astaxanthin-loaded nanostructured lipid carriers. Innov. Food Sci. Emerg. Technol. 2014;26:366–374. doi: 10.1016/j.ifset.2014.06.012.
    1. Zuluaga M., Gueguen V., Letourneur D., Pavon-Djavid G. Astaxanthin-antioxidant impact on excessive Reactive Oxygen Species generation induced by ischemia and reperfusion injury. Chem. Biol. Interact. 2018;279:145–158. doi: 10.1016/j.cbi.2017.11.012.
    1. McClements D.J. Nanoemulsions versus microemulsions: Terminology, differences, and similarities. Soft Matter. 2012;8:1719–1729. doi: 10.1039/C2SM06903B.
    1. Sotomayor-Gerding D., Oomah B.D., Acevedo F., Morales E., Bustamante M., Shene C., Rubilar M. High carotenoid bioaccessibility through linseed oil nanoemulsions with enhanced physical and oxidative stability. Food Chem. 2016;199:463–470. doi: 10.1016/j.foodchem.2015.12.004.
    1. Takemoto Y., Hirose Y., Sugahara K., Hashimoto M., Hara H., Yamashita H. Protective effect of an astaxanthin nanoemulsion against neomycin-induced hair-cell damage in zebrafish. Auris Nasus Larynx. 2018;45:20–25. doi: 10.1016/j.anl.2017.02.001.
    1. Date A.A., Patravale V. Current strategies for engineering drug nanoparticles. Curr. Opin. Colloid Interface Sci. 2004;9:222–235. doi: 10.1016/j.cocis.2004.06.009.
    1. Bhatt P.C., Srivastava P., Pandey P., Khan W., Panda B.P. Nose to brain delivery of astaxanthin-loaded solid lipid nanoparticles: Fabrication, radio labeling, optimization and biological studies. RSC Adv. 2016;6:10001–10010. doi: 10.1039/C5RA19113K.
    1. Shanmugapriya K., Kim H., Kang H.W. In vitro antitumor potential of astaxanthin nanoemulsion against cancer cells via mitochondrial mediated apoptosis. Int. J. Pharm. 2019;560:334–346. doi: 10.1016/j.ijpharm.2019.02.015.
    1. Khan I., Bahuguna A., Kumar P., Bajpai V.K., Kang S.C. In vitro and in vivo antitumor potential of carvacrol nanoemulsion against human lung adenocarcinoma A549 cells via mitochondrial mediated apoptosis. Sci. Rep. 2018;8:144. doi: 10.1038/s41598-017-18644-9.
    1. Montenegro L., Lai F., Offerta A., Sarpietro M.G., Micicche L., Maccioni A.M., Valenti D., Fadda A.M. From nanoemulsions to nanostructured lipid carriers: A relevant development in dermal delivery of drugs and cosmetics. J. Drug Deliv. Sci. Technol. 2016;32:100–112. doi: 10.1016/j.jddst.2015.10.003.
    1. Weber S., Zimmer A., Pardeike J. Solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC) for pulmonary application: A review of the state of the art. Eur. J. Pharm. Biopharm. 2014;86:7–22. doi: 10.1016/j.ejpb.2013.08.013.
    1. Garcês A., Amaral M., Lobo J.S., Silva A. Formulations based on solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC) for cutaneous use: A review. Eur. J. Pharm. Sci. 2018;112:159–167. doi: 10.1016/j.ejps.2017.11.023.
    1. Tamjidi F., Shahedi M., Varshosaz J., Nasirpour A. Nanostructured lipid carriers (NLC): A potential delivery system for bioactive food molecules. Innov. Food Sci. Emerg. Technol. 2013;19:29–43. doi: 10.1016/j.ifset.2013.03.002.
    1. Rodriguez-Ruiz V., Salatti-Dorado J., Barzegari A., Nicolas-Boluda A., Houaoui A., Caballo C., Caballero-Casero N., Sicilia D., Bastias Venegas J., Pauthe E. Astaxanthin-Loaded Nanostructured Lipid Carriers for Preservation of Antioxidant Activity. Molecules. 2018;23:2601. doi: 10.3390/molecules23102601.
    1. Karimi N., Ghanbarzadeh B., Hamishehkar H., Mehramuz B., Kafil H.S. Antioxidant, antimicrobial and physicochemical properties of turmeric extract-loaded nanostructured lipid carrier (NLC) Colloid Interface Sci. Commun. 2018;22:18–24. doi: 10.1016/j.colcom.2017.11.006.
    1. Tamjidi F., Shahedi M., Varshosaz J., Nasirpour A. Stability of astaxanthin-loaded nanostructured lipid carriers as affected by pH, ionic strength, heat treatment, simulated gastric juice and freeze–thawing. J. Food Sci. Technol. 2017;54:3132–3141. doi: 10.1007/s13197-017-2749-7.
    1. Anarjan N., Jafarizadeh Malmiri H., Ling T.C., Tan C.P. Effects of pH, ions, and thermal treatments on physical stability of astaxanthin nanodispersions. Int. J. Food Prop. 2014;17:937–947. doi: 10.1080/10942912.2012.685680.
    1. Raikos V., Ranawana V. Designing emulsion droplets of foods and beverages to enhance delivery of lipophilic bioactive components—A review of recent advances. Int. J. Food Sci. Technol. 2017;52:68–80. doi: 10.1111/ijfs.13272.
    1. Ozturk B., McClements D.J. Progress in natural emulsifiers for utilization in food emulsions. Curr. Opin. Food Sci. 2016;7:1–6. doi: 10.1016/j.cofs.2015.07.008.
    1. Khalid N., Shu G., Holland B.J., Kobayashi I., Nakajima M., Barrow C.J. Formulation and characterization of O/W nanoemulsions encapsulating high concentration of astaxanthin. Food Res. Int. 2017;102:364–371. doi: 10.1016/j.foodres.2017.06.019.
    1. Pan L., Wang H., Gu K. Nanoliposomes as Vehicles for Astaxanthin: Characterization, In Vitro Release Evaluation and Structure. Molecules. 2018;23:2822. doi: 10.3390/molecules23112822.
    1. Sangsuriyawong A., Limpawattana M., Siriwan D., Klaypradit W. Properties and bioavailability assessment of shrimp astaxanthin loaded liposomes. Food Sci. Biotechnol. 2019;28:529–537. doi: 10.1007/s10068-018-0495-x.
    1. Chiu C.-H., Chang C.-C., Lin S.-T., Chyau C.-C., Peng R. Improved hepatoprotective effect of liposome-encapsulated astaxanthin in lipopolysaccharide-induced acute hepatotoxicity. Int. J. Mol. Sci. 2016;17:1128. doi: 10.3390/ijms17071128.
    1. Peng C.-H., Chang C.-H., Peng R.Y., Chyau C.-C. Improved membrane transport of astaxanthine by liposomal encapsulation. Eur. J. Pharm. Biopharm. 2010;75:154–161. doi: 10.1016/j.ejpb.2010.03.004.
    1. Hama S., Uenishi S., Yamada A., Ohgita T., Tsuchiya H., Yamashita E., Kogure K. Scavenging of hydroxyl radicals in aqueous solution by astaxanthin encapsulated in liposomes. Biol. Pharm. Bull. 2012;35:2238–2242. doi: 10.1248/bpb.b12-00715.
    1. Hama S., Takahashi K., Inai Y., Shiota K., Sakamoto R., Yamada A., Tsuchiya H., Kanamura K., Yamashita E., Kogure K. Protective effects of topical application of a poorly soluble antioxidant astaxanthin liposomal formulation on ultraviolet-induced skin damage. J. Pharm. Sci. 2012;101:2909–2916. doi: 10.1002/jps.23216.
    1. Kamezaki C., Nakashima A., Yamada A., Uenishi S., Ishibashi H., Shibuya N., Hama S., Hosoi S., Yamashita E., Kogure K. Synergistic antioxidative effect of astaxanthin and tocotrienol by co-encapsulated in liposomes. J. Clin. Biochem. Nutr. 2016;59:100–106. doi: 10.3164/jcbn.15-153.
    1. Kittikaiwan P., Powthongsook S., Pavasant P., Shotipruk A. Encapsulation of Haematococcus pluvialis using chitosan for astaxanthin stability enhancement. Carbohydr. Polym. 2007;70:378–385. doi: 10.1016/j.carbpol.2007.04.021.
    1. Wang Q., Zhao Y., Guan L., Zhang Y., Dang Q., Dong P., Li J., Liang X. Preparation of astaxanthin-loaded DNA/chitosan nanoparticles for improved cellular uptake and antioxidation capability. Food Chem. 2017;227:9–15. doi: 10.1016/j.foodchem.2017.01.081.
    1. Zhang X., Yin W., Qi Y., Li X., Zhang W., He G. Microencapsulation of astaxanthin in alginate using modified emulsion technology: Preparation, characterization, and cytostatic activity. Can. J. Chem. Eng. 2017;95:412–419. doi: 10.1002/cjce.22712.
    1. Lee J.-S., Park S.-A., Chung D., Lee H.G. Encapsulation of astaxanthin-rich Xanthophyllomyces dendrorhous for antioxidant delivery. Int. J. Biol. Macromol. 2011;49:268–273. doi: 10.1016/j.ijbiomac.2011.04.021.
    1. Lin S.-F., Chen Y.-C., Chen R.-N., Chen L.-C., Ho H.-O., Tsung Y.-H., Sheu M.-T., Liu D.-Z. Improving the stability of astaxanthin by microencapsulation in calcium alginate beads. PLoS ONE. 2016;11:e0153685. doi: 10.1371/journal.pone.0153685.
    1. Astray G., Gonzalez-Barreiro C., Mejuto J.C., Rial-Otero R., Simal-Gandara J. A review on the use of cyclodextrins in foods. Food Hydrocoll. 2009;23:1631–1640. doi: 10.1016/j.foodhyd.2009.01.001.
    1. Dodziuk H. Cyclodextrins and Their Complexes: Chemistry, Analytical Methods, Applications. Wiley-VCH, GmbH & KGaA; Weinheim, Germany: 2006. Modeling of CyDs and their complexes; pp. 333–355.
    1. Del Valle E.M. Cyclodextrins and their uses: A review. Process. Biochem. 2004;39:1033–1046. doi: 10.1016/S0032-9592(03)00258-9.
    1. Dong S., Huang Y., Zhang R., Lian Z., Wang S., Liu Y. Inclusion complexes of astaxanthin with hydroxypropyl-β-cyclodextrin: Parameters optimization, spectroscopic profiles, and properties. Eur. J. Lipid Sci. Technol. 2014;116:978–986. doi: 10.1002/ejlt.201300261.
    1. Kim S., Cho E., Yoo J., Cho E., Choi S.J., Son S.M., Lee J.M., In M.-J., Kim D.C., Kim J.-H. β-CD-mediated encapsulation enhanced stability and solubility of astaxanthin. J. Korean Soc. Appl. Biol. Chem. 2010;53:559–565. doi: 10.3839/jksabc.2010.086.
    1. Nalawade P., Gajjar A. Assessment of in-vitro bio accessibility and characterization of spray dried complex of astaxanthin with methylated betacyclodextrin. J. Incl. Phenom. Macrocycl. Chem. 2015;83:63–75. doi: 10.1007/s10847-015-0541-8.
    1. Bharathiraja S., Manivasagan P., Quang Bui N., Oh Y.-O., Lim I., Park S., Oh J. Cytotoxic induction and photoacoustic imaging of breast cancer cells using astaxanthin-reduced gold nanoparticles. Nanomaterials. 2016;6:78. doi: 10.3390/nano6040078.

Source: PubMed

3
Suscribir