Temporal Dynamics of the Adult Female Lower Urinary Tract Microbiota

Travis K Price, Birte Wolff, Thomas Halverson, Roberto Limeira, Linda Brubaker, Qunfeng Dong, Elizabeth R Mueller, Alan J Wolfe, Travis K Price, Birte Wolff, Thomas Halverson, Roberto Limeira, Linda Brubaker, Qunfeng Dong, Elizabeth R Mueller, Alan J Wolfe

Abstract

Temporal dynamics of certain human microbiotas have been described in longitudinal studies; variability often relates to modifiable factors or behaviors. Early studies of the urinary microbiota preferentially used samples obtained by transurethral catheterization to minimize vulvovaginal microbial contributions. Whereas voided specimens are preferred for longitudinal studies, the few studies that reported longitudinal data were limited to women with lower urinary tract (LUT) symptoms, due to ease of accessing a clinical population for sampling and the impracticality and risk of collecting repeated catheterized urine specimens in a nonclinical population. Here, we studied the microbiota of the LUT of nonsymptomatic, premenopausal women using midstream voided urine (MSU) specimens to investigate relationships between microbial dynamics and personal factors. Using 16S rRNA gene sequencing and a metaculturomics method called expanded quantitative urine culture (EQUC), we characterized the microbiotas of MSU and periurethral swab specimens collected daily for approximately 3 months from a small cohort of adult women. Participants were screened for eligibility, including the ability to self-collect paired urogenital specimens prior to enrollment. In this population, we found that measures of microbial dynamics related to specific participant-reported factors, particularly menstruation and vaginal intercourse. Further investigation of the trends revealed differences in the composition and diversity of LUT microbiotas within and across participants. These data, in combination with previous studies showing relationships between the LUT microbiota and LUT symptoms, suggest that personal factors relating to the genitourinary system may be an important consideration in the etiology, prevention, and/or treatment of LUT disorders.IMPORTANCE Following the discovery of the collective human urinary microbiota, important knowledge gaps remain, including the stability and variability of this microbial niche over time. Initial urinary studies preferentially utilized samples obtained by transurethral catheterization to minimize contributions from vulvovaginal microbes. However, catheterization has the potential to alter the urinary microbiota; therefore, voided specimens are preferred for longitudinal studies. In this report, we describe microbial findings obtained by daily assessment over 3 months in a small cohort of adult women. We found that, similarly to vaginal microbiotas, lower urinary tract (LUT) microbiotas are dynamic, with changes relating to several factors, particularly menstruation and vaginal intercourse. Our study results show that LUT microbiotas are both dynamic and resilient. They also offer novel opportunities to target LUT microbiotas by preventative or therapeutic means, through risk and/or protective factor modification.

Keywords: 16S rRNA gene sequencing; lower urinary tract; menstruation; metaculturomics; microbiome; sex; urinary microbiota; urobiome.

Copyright © 2020 Price et al.

Figures

FIG 1
FIG 1
ProFUM clinical study design outline. Midstream voided urine (MSU) and periurethral swab specimens were self-collected daily from 8 participants from day 1 to day 74, followed by weekly collection through day 95. Daily questionnaires were completed on each of these days. The study design was divided into three phases: phase I (days 1 to 20), phase II (days 21 to 60), and phase III (days 61 to 95). During phase II, the participants were randomized (2:1) to take an oral probiotic or placebo twice daily. This assignment was performed in a double-blind manner.
FIG 2
FIG 2
Principal-coordinate analyses of microbiota of specimens from participants ProFUM01, ProFUM03, and ProFUM04. Analysis was done using MSU (closed circles) and periurethral (open circles) microbiota data collected from three participants indicated as follows: top left, ProFUM01; top right, ProFUM03; bottom, ProFUM04. Graphs plot the first and second principal coordinates of the data. Percentages of total variance explained by each principal coordinate are shown in parentheses.
FIG 3
FIG 3
Microbiota profiles of MSU specimens from all ProFUM participants. Microbiota profiles are shown as stacked bar graphs depicting the relative abundances (y axes) of various genera from MSU specimens over time in chronological order (x axes). Bars that appear white refer to days where no specimen was collected, received, or stored. A legend containing the most common genera is shown in panel J. “Other” refers to the combined relative abundances for all taxa not included in the 20 most abundant taxa. Data were generated using modified EQUC (panels A, B, C, D, E, G, and I) or 16S rRNA gene sequencing (panels F and H). *Other, used only for panels F and H.

References

    1. Human Microbiome Project Consortium. 2012. Structure, function and diversity of the healthy human microbiome. Nature 486:207–214. doi:10.1038/nature11234.
    1. Flint HJ, Scott KP, Louis P, Duncan SH. 2012. The role of the gut microbiota in nutrition and health. Nat Rev Gastroenterol Hepatol 9:577–589. doi:10.1038/nrgastro.2012.156.
    1. Gajer P, Brotman RM, Bai G, Sakamoto J, Schutte UME, Zhong X, Koenig SSK, Fu L, Ma Z, Zhou X, Abdo Z, Forney LJ, Ravel J. 2012. Temporal dynamics of the human vaginal microbiota. Sci Transl Med 4:132ra52. doi:10.1126/scitranslmed.3003605.
    1. Romero R, Hassan SS, Gajer P, Tarca AL, Fadrosh DW, Nikita L, Galuppi M, Lamont RF, Chaemsaithong P, Miranda J, Chaiworapongsa T, Ravel J. 2014. The composition and stability of the vaginal microbiota of normal pregnant women is different from that of non-pregnant women. Microbiome 2:4. doi:10.1186/2049-2618-2-4.
    1. Ravel J, Brotman RM, Gajer P, Ma B, Nandy M, Fadrosh DW, Sakamoto J, Koenig SS, Fu L, Zhou X, Hickey RJ, Schwebke JR, Forney LJ. 2013. Daily temporal dynamics of vaginal microbiota before, during and after episodes of bacterial vaginosis. Microbiome 1:29. doi:10.1186/2049-2618-1-29.
    1. Srinivasan S, Liu C, Mitchell CM, Fiedler TL, Thomas KK, Agnew KJ, Marrazzo JM, Fredricks DN. 2010. Temporal variability of human vaginal bacteria and relationship with bacterial vaginosis. PLoS One 5:e10197. doi:10.1371/journal.pone.0010197.
    1. Lewis DA, Brown R, Williams J, White P, Jacobson SK, Marchesi JR, Drake MJ. 15 August 2013, posting date The human urinary microbiome; bacterial DNA in voided urine of asymptomatic adults. Front Cell Infect Microbiol doi:10.3389/fcimb.2013.00041.
    1. Hickey RJ, Abdo Z, Zhou X, Nemeth K, Hansmann M, Osborn TW, Wang F, Forney LJ. 2013. Effects of tampons and menses on the composition and diversity of vaginal microbial communities over time. BJOG 120:695–706. doi:10.1111/1471-0528.12151.
    1. Donders G, Bellen G, Janssens D, Van Bulck B, Hinoul P, Verguts J. 2017. Influence of contraceptive choice on vaginal bacterial and fungal microflora. Eur J Clin Microbiol Infect Dis 36:43–48. doi:10.1007/s10096-016-2768-8.
    1. Fethers KA, Fairley CK, Hocking JS, Gurrin LC, Bradshaw CS. 2008. Sexual risk factors and bacterial vaginosis: a systematic review and meta-analysis. Clin Infect Dis 47:1426–1435. doi:10.1086/592974.
    1. Johnson SR, Petzold CR, Galask RP. 1985. Qualitative and quantitative changes of the vaginal microbial flora during the menstrual cycle. Am J Reprod Immunol Microbiol 9:1–5. doi:10.1111/j.1600-0897.1985.tb00331.x.
    1. Chaban B, Links MG, Jayaprakash T, Wagner EC, Bourque DK, Lohn Z, Albert AY, van Schalkwyk J, Reid G, Hemmingsen SM, Hill JE, Money DM. 2014. Characterization of the vaginal microbiota of healthy Canadian women through the menstrual cycle. Microbiome 2:23. doi:10.1186/2049-2618-2-23.
    1. DiGiulio DB, Callahan BJ, McMurdie PJ, Costello EK, Lyell DJ, Robaczewska A, Sun CL, Goltsman DSA, Wong RJ, Shaw G, Stevenson DK, Holmes SP, Relman DA. 2015. Temporal and spatial variation of the human microbiota during pregnancy. Proc Natl Acad Sci U S A 112:11060–11065. doi:10.1073/pnas.1502875112.
    1. Brotman RM, Shardell MD, Gajer P, Fadrosh D, Chang K, Silver MI, Viscidi RP, Burke AE, Ravel J, Gravitt PE. 2014. Association between the vaginal microbiota, menopause status, and signs of vulvovaginal atrophy. Menopause 21:450–458. doi:10.1097/GME.0b013e3182a4690b.
    1. Brotman RM, Ravel J, Cone RA, Zenilman JM. 2010. Rapid fluctuation of the vaginal microbiota measured by Gram stain analysis. Sex Transm Infect 86:297–302. doi:10.1136/sti.2009.040592.
    1. Thoma ME, Klebanoff MA, Rovner AJ, Nansel TR, Neggers Y, Andrews WW, Schwebke JR. 2011. Bacterial vaginosis is associated with variation in dietary indices. J Nutr 141:1698–1704. doi:10.3945/jn.111.140541.
    1. Klebanoff MA, Nansel TR, Brotman RM, Zhang J, Yu KF, Schwebke JR, Andrews WW. 2010. Personal hygienic behaviors and bacterial vaginosis. Sex Transm Dis 37:94–99. doi:10.1097/OLQ.0b013e3181bc063c.
    1. Brotman RM, Klebanoff MA, Nansel TR, Andrews WW, Schwebke JR, Zhang J, Yu KF, Zenilman JM, Scharfstein DO. 2008. A longitudinal study of vaginal douching and bacterial vaginosis–a marginal structural modeling analysis. Am J Epidemiol 168:188–196. doi:10.1093/aje/kwn103.
    1. Vodstrcil LA, Hocking JS, Law M, Walker S, Tabrizi SN, Fairley CK, Bradshaw CS. 2013. Hormonal contraception is associated with a reduced risk of bacterial vaginosis: a systematic review and meta-analysis. PLoS One 8:e73055. doi:10.1371/journal.pone.0073055.
    1. Morison L, Ekpo G, West B, Demba E, Mayaud P, Coleman R, Bailey R, Walraven G. 2005. Bacterial vaginosis in relation to menstrual cycle, menstrual protection method, and sexual intercourse in rural Gambian women. Sex Transm Infect 81:242–247. doi:10.1136/sti.2004.011684.
    1. Tibaldi C, Cappello N, Latino MA, Polarolo G, Masuelli G, Cavallo F, Benedetto C. 2016. Maternal risk factors for abnormal vaginal flora during pregnancy. Int J Gynaecol Obstet 133:89–93. doi:10.1016/j.ijgo.2015.07.035.
    1. Remis RS, Gurwith MJ, Gurwith D, Hargrett-Bean NT, Layde PM. 1987. Risk factors for urinary tract infection. Am J Epidemiol 126:685–694. doi:10.1093/oxfordjournals.aje.a114708.
    1. Foxman B, Frerichs RR. 1985. Epidemiology of urinary tract infection: I. Diaphragm use and sexual intercourse. Am J Public Health 75:1308–1313. doi:10.2105/AJPH.75.11.1308.
    1. Foxman B, Frerichs RR. 1985. Epidemiology of urinary tract infection: II. Diet, clothing, and urination habits. Am J Public Health 75:1314–1317. doi:10.2105/AJPH.75.11.1314.
    1. Foxman B, Chi JW. 1990. Health behavior and urinary tract infection in college-aged women. J Clin Epidemiol 43:329–337. doi:10.1016/0895-4356(90)90119-A.
    1. Foxman B, Somsel P, Tallman P, Gillespie B, Raz R, Colodner R, Kandula D, Sobel JD. 2001. Urinary tract infection among women aged 40 to 65: behavioral and sexual risk factors. J Clin Epidemiol 54:710–718. doi:10.1016/S0895-4356(00)00352-8.
    1. Hilt EE, McKinley K, Pearce MM, Rosenfeld AB, Zilliox MJ, Mueller ER, Brubaker L, Gai X, Wolfe AJ, Schreckenberger PC. 2014. Urine is not sterile: use of enhanced urine culture techniques to detect resident bacterial flora in the adult female bladder. J Clin Microbiol 52:871–876. doi:10.1128/JCM.02876-13.
    1. Fouts DE, Pieper R, Szpakowski S, Pohl H, Knoblach S, Suh M-J, Huang S-T, Ljungberg I, Sprague BM, Lucas SK, Torralba M, Nelson KE, Groah SL. 2012. Integrated next-generation sequencing of 16S rDNA and metaproteomics differentiate the healthy urine microbiome from asymptomatic bacteriuria in neuropathic bladder associated with spinal cord injury. J Transl Med 10:174. doi:10.1186/1479-5876-10-174.
    1. Wolfe AJ, Toh E, Shibata N, Rong R, Kenton K, FitzGerald M, Mueller ER, Schreckenberger P, Dong Q, Nelson DE, Brubaker L. 2012. Evidence of uncultivated bacteria in the adult female bladder. J Clin Microbiol 50:1376–1383. doi:10.1128/JCM.05852-11.
    1. Karstens L, Asquith M, Davin S, Stauffer P, Fair D, Gregory WT, Rosenbaum JT, McWeeney SK, Nardos R. 27 July 2016, posting date Does the urinary microbiome play a role in urgency urinary incontinence and its severity? Front Cell Infect Microbiol doi:10.3389/fcimb.2016.00078.
    1. Pearce MM, Hilt EE, Rosenfeld AB, Zilliox MJ, Thomas-White K, Fok C, Kliethermes S, Schreckenberger PC, Brubaker L, Gai X, Wolfe AJ. 2014. The female urinary microbiome: a comparison of women with and without urgency urinary incontinence. mBio 5:1283-14. doi:10.1128/mBio.01283-14.
    1. Pearce MM, Zilliox MJ, Rosenfeld AB, Thomas-White KJ, Richter HE, Nager CW, Visco AG, Nygaard IE, Barber MD, Schaffer J, Moalli P, Sung VW, Smith AL, Rogers R, Nolen TL, Wallace D, Meikle SF, Gai X, Wolfe AJ, Brubaker L, Pelvic Floor Disorders Network. 2015. The female urinary microbiome in urgency urinary incontinence. Am J Obstet Gynecol 213:347.e1–347.e11. doi:10.1016/j.ajog.2015.07.009.
    1. Nelson DE, Dong Q, Van Der Pol B, Toh E, Fan B, Katz BP, Mi D, Rong R, Weinstock GM, Sodergren E, Fortenberry JD. 2012. Bacterial communities of the coronal sulcus and distal urethra of adolescent males. PLoS One 7:e36298. doi:10.1371/journal.pone.0036298.
    1. Wolff BJ, Price TK, Joyce CJ, Wolfe AJ, Mueller ER. 2019. Oral probiotics and the female urinary microbiome: a double-blinded randomized placebo-controlled trial. Int Urol Nephrol 51:2149–2159. doi:10.1007/s11255-019-02282-3.
    1. Southworth E, Hochstedler B, Price TK, Joyce C, Wolfe AJ, Mueller ER. 2019. A cross-sectional pilot cohort study comparing standard urine collection to the Peezy midstream device for research studies involving women. Female Pelvic Med Reconstr Surg 25:e28–e33. doi:10.1097/SPV.0000000000000693.
    1. Baerheim A, Digranes A, Hunskaar S. 1992. Evaluation of urine sampling technique: bacterial contamination of samples from women students. Br J Gen Pract 42:241–243.
    1. Aas JA, Paster BJ, Stokes LN, Olsen I, Dewhirst FE. 2005. Defining the normal bacterial flora of the oral cavity. J Clin Microbiol 43:5721–5732. doi:10.1128/JCM.43.11.5721-5732.2005.
    1. Eren AM, Zozaya M, Taylor CM, Dowd SE, Martin DH, Ferris MJ. 2011. Exploring the diversity of Gardnerella vaginalis in the genitourinary tract microbiota of monogamous couples through subtle nucleotide variation. PLoS One 6:e26732. doi:10.1371/journal.pone.0026732.
    1. Jespers V, Kyongo J, Joseph S, Hardy L, Cools P, Crucitti T, Mwaura M, Ndayisaba G, Delany-Moretlwe S, Buyze J, Vanham G, van de Wijgert JHHM. 2017. A longitudinal analysis of the vaginal microbiota and vaginal immune mediators in women from sub-Saharan Africa. Sci Rep 7:11974–11976. doi:10.1038/s41598-017-12198-6.
    1. Vodstrcil LA, Twin J, Garland SM, Fairley CK, Hocking JS, Law MG, Plummer EL, Fethers KA, Chow EPF, Tabrizi SN, Bradshaw CS. 2017. The influence of sexual activity on the vaginal microbiota and Gardnerella vaginalis clade diversity in young women. PLoS One 12:e0171856. doi:10.1371/journal.pone.0171856.
    1. Mändar R, Punab M, Borovkova N, Lapp E, Kiiker R, Korrovits P, Metspalu A, Krjutškov K, Nõlvak H, Preem J-K, Oopkaup K, Salumets A, Truu J. 2015. Complementary seminovaginal microbiome in couples. Res Microbiol 166:440–447. doi:10.1016/j.resmic.2015.03.009.
    1. Munir T, Lodhi M, Hussain RM, Mubeen M. 2009. Association between periurethral colonization with uropathogens and subsequent bacteriuria in catheterized patients. J Coll Physicians Surg Pak 19:169–172.
    1. Cattell WR, McSherry MA, Northeast A, Powell E, Brooks HJL, O'Grady F. 1974. Periurethral enterobacterial carriage in pathogenesis of recurrent urinary infection. Br Med J 4:136–139. doi:10.1136/bmj.4.5937.136.
    1. Gottschick C, Deng Z-L, Vital M, Masur C, Abels C, Pieper DH, Wagner-Döbler I. 2017. The urinary microbiota of men and women and its changes in women during bacterial vaginosis and antibiotic treatment. Microbiome 5:99. doi:10.1186/s40168-017-0305-3.
    1. Fok CS, Gao X, Lin H, Thomas-White KJ, Mueller ER, Wolfe AJ, Dong Q, Brubaker L. 2018. Urinary symptoms are associated with certain urinary microbes in urogynecologic surgical patients. Int Urogynecol J 29:1765–1771. doi:10.1007/s00192-018-3732-1.
    1. Yuan S, Cohen DB, Ravel J, Abdo Z, Forney LJ. 2012. Evaluation of methods for the extraction and purification of DNA from the human microbiome. PLoS One 7:e33865. doi:10.1371/journal.pone.0033865.
    1. Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, Lesniewski RA, Oakley BB, Parks DH, Robinson CJ, Sahl JW, Stres B, Thallinger GG, Van Horn DJ, Weber CF. 2009. Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol 75:7537–7541. doi:10.1128/AEM.01541-09.
    1. Edgar RC, Haas BJ, Clemente JC, Quince C, Knight R. 2011. UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 27:2194–2200. doi:10.1093/bioinformatics/btr381.
    1. Wang Q, Garrity GM, Tiedje JM, Cole JR. 2007. Naïve Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol 73:5261–5267. doi:10.1128/AEM.00062-07.
    1. Gao X, Lin H, Revanna K, Dong Q. 2017. A Bayesian taxonomic classification method for 16S rRNA gene sequences with improved species-level accuracy. BMC Bioinformatics 18:247. doi:10.1186/s12859-017-1670-4.

Source: PubMed

3
Suscribir